Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Publication year range
1.
Antonie Van Leeuwenhoek ; 113(8): 1201-1211, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32436126

ABSTRACT

The bacterial strain M7D1T was isolated from samples of the rhizosphere of desert bloom plants on the Atacama region located in northern Chile as part of a study intended to isolate nitrifying bacteria in this adverse environment. It was previously identified as belonging to the Pseudomonas fluorescens group. In this study, the phylogenetic analysis of the 16s RNA, gyrA, rpoB and rpoD genes confirmed that this strain belongs to this group, especially Sub Group (SG) Koreensis, but it represents a potential new species. Additionally, the average nucleotide identity confirmed this as the highest identity value (0.92) with Pseudomonas moraviensis LMG 24280, which is lower than the 0.94 threshold established to classify two strains within the same species. The strain M7D1T shared a similar fatty acids methyl ester profile than the type strains of other Pseudomonas spp. previously described. Furthermore, it can be differentiated phenotypically from other related species of SG P. koreensis. Based on these results, the existence of a new species of Pseudomonas is demonstrated, for which the name Pseudomonas atacamensis is proposed. This strain presented a set of genes associated with plant growth-promoting rhizobacteria and it is a good candidate to be used for recovery of contaminated soils. However, more studies are required to demonstrate whether this bacterium is non-pathogenic, can survive in the presence of toxic compounds and promote growth or help to the stress management of plants.


Subject(s)
Phylogeny , Pseudomonas/classification , Pseudomonas/isolation & purification , Rhizosphere , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Chile , DNA, Bacterial/genetics , Fatty Acids/analysis , Genes, Bacterial/genetics , Genome, Bacterial , Nucleic Acid Hybridization , Pseudomonas/cytology , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Braz. J. Microbiol. ; 47(3): 551-562, Jul-Set. 2016. tab, graf
Article in English | VETINDEX | ID: vti-23384

ABSTRACT

The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94 ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R2 = 1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site.(AU)


Subject(s)
Pseudomonas/chemistry , Pseudomonas/cytology , Biodegradation, Environmental , Hydrocarbons, Aromatic
3.
São Paulo; s.n; s.n; 2014. 82 p. tab, graf, ilus.
Thesis in Portuguese | LILACS | ID: biblio-847153

ABSTRACT

Pseudomonas aeruginosa é uma gamaproteobactéria com capacidade de colonizar diversos tipos de ambiente e infectar hospedeiros filogeneticamente distintos. Em humanos, comporta-se como um patógeno oportunista,estando frequentemente relacionada à infecções em indivíduos imunocomprometidos e indivíduos portadores de fibrose cística. Um mecanismo importante para a versatilidade de P. aeruginosa é o sistema de percepção de quórum (QS), onde a bactéria pode vincular expressão gênica à densidade populacional e às características do ambiente. Atualmente, sabe-se que muitos outros reguladores estão interligados com QS, entre eles, a proteína reguladora RsmA e os pequenos RNAs RsmZ e RsmY. Além disso, diversos fatores importantes para a patogenicidade da bactéria são reguladas por QS. Em P. aeruginosa PA14, um fator importante para a patogenicidade em diversos hospedeiros é a proteína KerV, cujo envolvimento com QS foi descrito pela primeira vez neste trabalho. A linhagem D12, que possui uma deleção no gene kerV, mostrou alterações em fenótipos regulados por QS, como a maior produção de piocianina, composto que contribui para virulência e persistência das infecções causada por P. aeruginosa. Por ser facilmente detectável e pela regulação de sua síntese não ter sido completamente explorada em PA14, a expressão dos genes responsáveis pela produção de piocianina é um interessante repórter na investigação do possível envolvimento de KerV com QS. Além de piocianina, D12 apresenta níveis reduzidos de ramnolipídeos. Esses fenótipos somados se assemelham aos fenótipos da mutação de rsmA, sugerindo o envolvimento de KerV com os sistemas QS e Gac-Rsm direta ou indiretamente. Neste trabalho, mostramos que KerV exerce um efeito negativo na regulação dos operons phz1 e phz2, responsáveis pela síntese de piocianina, alterando a expressão desses genes. KerV exerce também um efeito positivo na expressão da proteína RsmA, responsável pela repressão de diversos genes alvos, onde RsmA se liga ao sítio de ligação ao ribossomo no mRNA, impedindo a tradução. Ensaios de gel shift mostraram que a ligação direta de RsmA na sequência líder de phzA1 e phzA2 ocorre, elucidando a maneira pela qual KerV está envolvido na regulação da expressão dos operons phz em P. aeruginosa PA14. Mostramos também que phz2 é ativo e contribui para a síntese de piocianina, pois na ausência de phz1, os níveis do pigmento são maiores do que aqueles detectados em PA14. Isso sugere uma maior expressão de phz2 e uma regulação diferencial dos operons de acordo com as condições ambientais como possível estratégia para manter os níveis desse composto. Uma evidência dessa regulação diferencial é vista no mutante lasR. Na fase inicial de crescimento, esse mutante não produz piocianina, porém quando exposto a tempos mais longos de cultivo, a produção de piocianina é maior quando comparada a PA14. Isso é reflexo da ativação da expressão de phz1 no mutante lasR em fase estacionária tardia, enquanto phz2 permanece não expresso. Isso indica que phz2 é dependente de LasR, ainda que indiretamente. Já phz1, embora tenha sua expressão influenciada por LasR no estágio inicial de crescimento, na fase estacionária é regulado por outros fatores independentes de las


Pseudomonas aeruginosa is a gammaproteobacterium that colonizes several environments and infects phylogenetically distinct hosts. It behaves as an opportunistic pathogen in humans, often related to infection in immunocompromised individuals and cystic fibrosis patients. An important mechanism for P. aeruginosa versatility is the quorum sensing (QS) network, that allows bacteria to link gene expression to population density and environmental traits. Several additional regulators are interconnected with QS, as the regulatory mRNA binding protein RsmA and the non-coding small RNAs RsmZ and RsmY. Futhermore, key factors for pathogenicity are QS-regulated. In P. aeruginosa PA14, an important pathogenicity-related factor is the KerV protein, described for the first time here as involved in QS. D12 strain, that harbor a deletion in the kerV gene, shows alterations in QS-regulated phenotypes, such as high production of pyocyanin, a compound that contributes to virulence and persistence of P. aeruginosa infections. As the production of pyocyanin is easily detected and all mechanisms involved in its synthesis regulation are not fully described, the expression of genes responsible for production of this pigment is a good reporter to investigate KerV involvement in the QS network. Additionally, D12 also shows lower levels of rhamnolipids, another QS-regulated trait. Taken together, these phenotypes resemble the effects of a rsmA mutation, suggesting KerV involvement with QS and Gac-Rsm systems. In this work, we propose that KerV exerts a negative effect in the regulation of phz1 and phz2 operons, responsible for pyocyanin synthesis, by alterating the expression of these genes. KerV also has a positive effect on rsmA expression, responsible for the repression of several genes by blocking the ribosome binding site preventing the translation. Gel shift assays showed that RsmA binds directly in the leader sequence of phzA1 and phzA2, elucidating the manner in which KerV is involved in the regulation of phz operons expression in P. aeruginosa PA14. We also demonstrate that phz2 is actively expressed and contributes to pyocyanin production in PA14, since in the phz1 mutant the levels of pyocyanin are even higher than in the wild type strain. This suggests a phz2 higher expression and a differential regulation of phz operons according to environmental changes as a mechanism to maintain the levels of pyocyanin synthesis. An evidence for this regulation is the synthesis of pyocyanin by the lasR mutant, which does not make pyocyanin at early growth stages. However, at late stationary phase, pyocyanin production is even higher than in the wild-type strain, reflecting the LasR-independent regulation of phz1 expression, while phz2 operon remains silent


Subject(s)
Pseudomonas aeruginosa/growth & development , Quorum Sensing , Bacterial Infections , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Molecular Biology/instrumentation , Polymerase Chain Reaction/methods , Proteobacteria , Pseudomonas/cytology , Pyocyanine/pharmacology
4.
PLoS One ; 8(10): e76685, 2013.
Article in English | MEDLINE | ID: mdl-24146909

ABSTRACT

Pseudomonas extremaustralis is a versatile Antarctic bacterium, able to grow under microaerobic and anaerobic conditions and is related to several non-pathogenic Pseudomonads. Here we report on the role of the global anaerobic regulator Anr, in the early steps of P. extremaustralis biofilm development. We found that the anr mutant was reduced in its ability to attach, to form aggregates and to display twitching motility but presented higher swimming motility than the wild type. In addition, microscopy revealed that the wild type biofilm contained more biomass and was thicker, but were less rough than that of the anr mutant. In silico analysis of the P. extremaustralis genome for Anr-like binding sites led to the identification of two biofilm-related genes as potential targets of this regulator. When measured using Quantitative Real Time PCR, we found that the anr mutant expressed lower levels of pilG, which encodes a component of Type IV pili and has been previously implicated in cellular adhesion. Levels of morA, involved in signal transduction and flagella development, were also lower in the mutant. Our data suggest that under low oxygen conditions, such as those encountered in biofilms, Anr differentially regulates aggregation and motility thus affecting the first stages of biofilm formation.


Subject(s)
Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Biofilms/growth & development , Pseudomonas/cytology , Pseudomonas/physiology , Aerobiosis , Anaerobiosis , Base Sequence , DNA, Intergenic/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Molecular Sequence Data , Movement , Mutation/genetics , Pseudomonas/genetics , Pseudomonas/ultrastructure
5.
J Biomed Opt ; 17(5): 056011, 2012 May.
Article in English | MEDLINE | ID: mdl-22612134

ABSTRACT

We present a dynamic laser speckle method to easily discriminate filamentous fungi from motile bacteria in soft surfaces, such as agar plate. The method allows the detection and discrimination between fungi and bacteria faster than with conventional techniques. The new procedure could be straightforwardly extended to different micro-organisms, as well as applied to biological and biomedical research, infected tissues analysis, and hospital water and wastewaters studies.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Lasers , Pattern Recognition, Automated/methods , Phanerochaete/classification , Phanerochaete/cytology , Pseudomonas/classification , Pseudomonas/cytology , Diagnosis, Differential , Fungi , Image Enhancement/methods , Lighting/methods , Reproducibility of Results , Sensitivity and Specificity
6.
Bioresour Technol ; 101(7): 2375-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20034786

ABSTRACT

The immobilization of Pseudomonas stutzeri using adsorption on different inorganic supports was studied in relation to the number of adsorbed cells, metabolic activity and biodesulfurization (BDS). The electrophoretic migration (EM) measurements and Tetrazolioum (TTC) method were used to evaluate adsorption and metabolic activity. Results indicate that maximal immobilization was obtained with an initial load of 14 x 10(8) cells mL(-1) for Al and Sep, whereas Ti requires 20 x 10(8) cells mL(-1). The highest interaction was observed in the P. stutzeri/Si and P. stutzeri/Sep biocatalysts. The IEP values and metabolic activities indicate that P. stutzeri change the surface of supports and maintains metabolic activity. A direct relation between BDS activity and the adsorption capacity of the bacterial cells was observed at the adsorption/desorption equilibrium level. The biomodification of inorganic supports by the adsorption process increases the bioavailability of sulphur substrates for bacterial cells, improving BDS activity.


Subject(s)
Environmental Restoration and Remediation/methods , Gases/chemistry , Oils/chemistry , Pseudomonas/cytology , Pseudomonas/metabolism , Sulfur/isolation & purification , Adsorption , Biocatalysis , Biodegradation, Environmental , Cells, Immobilized/cytology , Cells, Immobilized/metabolism
7.
Int J Syst Evol Microbiol ; 55(Pt 3): 1107-1112, 2005 May.
Article in English | MEDLINE | ID: mdl-15879241

ABSTRACT

During a study in the Argentinian region of Chaco (Cordoba), some strains were isolated from the rhizosphere of grasses growing in semi-desertic arid soils. Two of these strains, one isolated from the rhizospheric soil of Chloris ciliata (strain CH01(T)) and the other from Pappophorum caespitosum (strain PA01), were Gram-negative, strictly aerobic rods, which formed yellow round colonies on nutrient agar. They produced a water-insoluble yellow pigment, and a fluorescent pigment was also detected. A polyphasic taxonomic approach was used to characterize the strains. Comparison of the 16S rRNA gene sequences showed a similarity of 99.3 % between them, and phylogenetic analysis revealed that the strains belong to the genus Pseudomonas, within the gamma-subclass of the Proteobacteria. The closest related species is Pseudomonas straminea IAM 1598(T) (similarity of 99.0 % to strain CH01(T) and 98.8 % to strain PA01), clustering in a separate branch with the various methods of tree building used. Strains CH01(T) and PA01 both had a single polar flagellum, like other yellow pigment-producing pseudomonads related to them. Both strains produced catalase and oxidase. Similar to P. straminea, they did not hydrolyse gelatin or casein. The G+C DNA contents determined were 57.5 mol% for CH01(T) and 58.0 mol% for PA01. DNA-DNA hybridization results showed 81 % relatedness between them, and only 40-44 % relatedness with respect to the type strain of P. straminea. These results, together with other phenotypic characteristics, support the conclusion that both isolates belong to the same species, and should be described as representing a novel species within the genus Pseudomonas, for which the name Pseudomonas argentinensis sp. nov. is proposed. The type strain is CH01(T) (=LMG 22563(T) = CECT 7010(T)).


Subject(s)
Pigments, Biological/biosynthesis , Pseudomonas/classification , Pseudomonas/isolation & purification , Soil Microbiology , Aerobiosis , Argentina , Bacterial Typing Techniques , Base Composition , Caseins/metabolism , Catalase/analysis , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Ribosomal/chemistry , DNA, Ribosomal/isolation & purification , Fatty Acids/analysis , Fatty Acids/isolation & purification , Flagella , Gelatin/metabolism , Genes, rRNA , Molecular Sequence Data , Nucleic Acid Hybridization , Oxidoreductases/analysis , Phylogeny , Pseudomonas/cytology , Pseudomonas/physiology , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
8.
Rev. méd. IMSS ; 32(6): 499-502, nov.-dic. 1994. tab
Article in Spanish | LILACS | ID: lil-173969

ABSTRACT

Con el propósito de conocer la incidencia y el manejo antimicrobiano en la peritonitis posdiálisis, se estudiaron 358 procedimientos dialíticos, encontrando 37 casos de peritonitis con un porcentaje de 10.3, de los cuales 35 cumplían con los criterios de inclusión para el estudio, dividiéndose en dos grupos: grupo I formado por 19 pacientes en tratamiento con pefloxacina y grupo II integrado por 16 pacientes en tratamiento con ceftazidima. Obteniendo en el grupo I una remisión del cuadro en 89.5 por ciento y en el grupo II de 93.8 por ciento, no encontrando diferencia significativa (p=0.56) entre ambos antimicrobianos


Subject(s)
Peritonitis/therapy , Pseudomonas/cytology , Staphylococcus/cytology , Candida/cytology , Urinary Catheterization/adverse effects , Pefloxacin/therapeutic use , Ceftazidime/therapeutic use , Enterococcus/cytology , Escherichia coli/cytology , Antibiosis/drug effects , Peritoneal Dialysis/adverse effects , Renal Insufficiency, Chronic/therapy
SELECTION OF CITATIONS
SEARCH DETAIL