Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.626
Filter
1.
Microb Cell Fact ; 23(1): 215, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39061071

ABSTRACT

BACKGROUND: Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles. RESULTS: The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass. CONCLUSIONS: Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.


Subject(s)
Pseudomonas aeruginosa , Pyocyanine , Zinc Oxide , Pyocyanine/metabolism , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/drug effects , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Temperature , Stress, Physiological , Biomass
2.
Arch Microbiol ; 206(8): 360, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066828

ABSTRACT

Toxin-antitoxin (TA) modules are widely found in the genomes of pathogenic bacteria. They regulate vital cellular functions like transcription, translation, and DNA replication, and are therefore essential to the survival of bacteria under stress. With a focus on the type II parDE modules, this study thoroughly examines TAome in Pseudomonas aeruginosa, a bacterium well-known for its adaptability and antibiotic resistance. We explored the TAome in three P. aeruginosa strains: ATCC 27,853, PAO1, and PA14, and found 15 type II TAs in ATCC 27,853, 12 in PAO1, and 13 in PA14, with significant variation in the associated mobile genetic elements. Five different parDE homologs were found by further TAome analysis in ATCC 27,853, and their relationships were confirmed by sequence alignments and precise genomic positions. After comparing these ParDE modules' sequences to those of other pathogenic bacteria, it was discovered that they were conserved throughout many taxa, especially Proteobacteria. Nucleic acids were predicted as potential ligands for ParD antitoxins, whereas ParE toxins interacted with a wide range of small molecules, indicating a diverse functional repertoire. The interaction interfaces between ParDE TAs were clarified by protein-protein interaction networks and docking studies, which also highlighted important residues involved in binding. This thorough examination improves our understanding of the diversity, evolutionary dynamics, and functional significance of TA systems in P. aeruginosa, providing insights into their roles in bacterial physiology and pathogenicity.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Pseudomonas aeruginosa , Toxin-Antitoxin Systems , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Toxin-Antitoxin Systems/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Genome, Bacterial , Antitoxins/genetics , Antitoxins/metabolism , Protein Interaction Maps , Computational Biology , Sequence Alignment
3.
Molecules ; 29(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39064867

ABSTRACT

Surfactants are amphiphilic molecules that are capable of mixing water and oil. Biosurfactants are eco-friendly, low-toxicity, and stable to a variety of environmental factors. Optimizing conditions for microorganisms to produce biosurfactants can lead to improved production suitable for scaling up. In this study, we compared heterologous expression levels of the luminescence system luxCDABE operon controlled by regulatable promoters araC-PBAD and its strong version araC-PBAD-SD in Escherichia coli K12, Pseudomonas aeruginosa PAO1, and P. putida KT2440. Real-time monitoring of luminescence levels in the three strains indicated that luxCDABE controlled by araC-PBAD-SD promoter with 0.2% arabinose supplementation in P. putida produced the highest level of luminescence. By using the araC-PBAD-SD promoter-controlled rhlAB expression in P. putida, we were able to produce mono-rhamnolipid at a level of 1.5 g L-1 when 0.02% arabinose was supplemented. With the same system to express olsB, lyso-ornithine lipid was produced at a level of 10 mg L-1 when 0.2% arabinose was supplemented. To our knowledge, this is the first report about optimizing conditions for lyso-ornithine lipid production at a level up to 10 mg L-1. Taken together, our results demonstrate that regulatable araC-PBAD-SD promoter in P. putida KT2440 is a useful system for heterologous production of biosurfactants.


Subject(s)
Glycolipids , Ornithine , Promoter Regions, Genetic , Pseudomonas putida , Surface-Active Agents , Glycolipids/biosynthesis , Glycolipids/metabolism , Pseudomonas putida/metabolism , Pseudomonas putida/genetics , Surface-Active Agents/metabolism , Ornithine/metabolism , Ornithine/analogs & derivatives , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Arabinose/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/metabolism , Escherichia coli/genetics , Operon , Lipids
4.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-39030066

ABSTRACT

Sphingosine has been previously shown to kill many strains of pathogenic bacteria including Pseudomonas aeruginosa, Staphyloccus aureus, Acinetobacter, and atypical mycobacteria. However, these studies were performed on isolated or extracellular bacteria and it is unknown whether sphingosine also targets intracellular bacteria. Here, we demonstrate that exogenously-added sphingosine directly binds to extracellular P. aeruginosa and S. aureus, but also targets and binds to intracellular bacteria. Intracellular sphingosine and bacteria were identified by sequential immunostainings. We further show that exogenously-added sphingosine also kills intracellular P. aeruginosa and S. aureus using modified gentamycin assays. Intracellular killing of P. aeruginosa and S. aureus by sphingosine is not mediated by improved phagosomal-lysosomal fusion. In summary, our data indicate that sphingosine binds to and most likely also directly kills extra- and intracellular P. aeruginosa and S. aureus.


Subject(s)
Pseudomonas aeruginosa , Sphingosine , Staphylococcus aureus , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Sphingosine/analogs & derivatives , Sphingosine/pharmacology , Sphingosine/metabolism , Humans , Anti-Bacterial Agents/pharmacology , Microbial Viability/drug effects , Animals
5.
World J Microbiol Biotechnol ; 40(9): 262, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972951

ABSTRACT

Pseudomonas aeruginosa PR23 isolated from the hydrocarbon contaminated soil can tolerate and degrade mixture of polyaromatic hydrocarbons (PAHs) at an initial concentration of 1300 ppm. The degradation and intermediates formed were assessed by gas chromatography-mass spectrometry (GC-MS) analysis. The isolated strain was able to degrade 59.2% of the mixture of PAHs in 3 days and 71.6% by day 15. Effect of PAHs on protein expression in Pseudomonas aeruginosa PR23 was studied using nano LC-MS/MS. Thirty-six proteins showed a more than 2-fold increase in expression in the presence of mixture of PAHs. Out of these proteins, 7 proteins have been reported for their role in degradation of naphthalene, phenanthrene, and pyrene. The data revealed the presence of 16 proteins that were uniquely expressed in the presence of mixture of PAHs. A twin-arginine translocation signal peptide (Tat system), known for the transportation of folded proteins across the cell membrane, showed more than 8-fold increased expression in the presence of mixture of PAHs. These results indicate that the isolated strain adopts the conditions in the presence of mixture of PAHs by modulating its metabolic and physiological processes. These findings suggest that Pseudomonas aeruginosa PR23 may be a suitable candidate for use in the development of strategies for bioremediation of mixtures of PAHs.


Subject(s)
Bacterial Proteins , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Pseudomonas aeruginosa , Soil Microbiology , Soil Pollutants , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Gas Chromatography-Mass Spectrometry , Phenanthrenes/metabolism , Tandem Mass Spectrometry , Naphthalenes/metabolism
6.
Biochemistry ; 63(14): 1795-1807, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38951132

ABSTRACT

Many bacteria have hemerythrin (Hr) proteins that bind O2, including Pseudomonas aeruginosa, in which microoxia-induced Hr (Mhr) provide fitness advantages under microoxic conditions. Mhr has a 23 amino-acid extension at its C-terminus relative to a well-characterized Hr from Methylococcus capsulatus, and similar extensions are also found in Hrs from other bacteria. The last 11 amino acids of this extended, C-terminal tail are highly conserved in gammaproteobacteria and predicted to form a helix with positively charged and hydrophobic faces. In cellular fractionation assays, wild-type (WT) Mhr was found in both membrane and cytosolic fractions, while a MhrW143* variant lacking the last 11 residues was largely in the cytosol and did not complement Mhr function in competition assays. MhrL112Y, a variant that has a much longer-lived O2-bound form, was fully functional and had a similar localization pattern to that of WT Mhr. Both MhrW143* and MhrL112Y had secondary structures, stabilities, and O2-binding kinetics similar to those of WT Mhr. Fluorescence studies revealed that the C-terminal tail, and particularly the fragment corresponding to its last 11 residues, was sufficient and necessary for association with lipid vesicles. Molecular dynamics simulations and subsequent cellular analysis of Mhr variants have demonstrated that conserved, positively charged residues in the tail are important for Mhr interactions with negatively charged membranes and the contribution of this protein to competitive fitness. Together, these data suggest that peripheral interactions of Mhr with membranes are guided by the C-terminal tail and are independent of O2-binding.


Subject(s)
Cell Membrane , Hemerythrin , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Hemerythrin/metabolism , Hemerythrin/chemistry , Hemerythrin/genetics , Cell Membrane/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Amino Acid Sequence , Conserved Sequence , Oxygen/metabolism
7.
Biochemistry ; 63(14): 1808-1823, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38962820

ABSTRACT

Theoretical concepts linking the structure, function, and evolution of a protein, while often intuitive, necessitate validation through investigations in real-world systems. Our study empirically explores the evolutionary implications of multiple gene copies in an organism by shedding light on the structure-function modulations observed in Pseudomonas aeruginosa's second copy of ketopantoate reductase (PaKPR2). We demonstrated with two apo structures that the typical active site cleft of the protein transforms into a two-sided pocket where a molecular gate made up of two residues controls the substrate entry site, resulting in its inactivity toward the natural substrate ketopantoate. Strikingly, this structural modification made the protein active against several important α-keto-acid substrates with varied efficiency. Structural constraints at the binding site for this altered functional trait were analyzed with two binary complexes that show the conserved residue microenvironment faces restricted movements due to domain closure. Finally, its mechanistic highlights gathered from a ternary complex structure help in delineating the molecular perspectives behind its kinetic cooperativity toward these broad range of substrates. Detailed structural characteristics of the protein presented here also identified four key amino acid residues responsible for its versatile α-keto-acid reductase activity, which can be further modified to improve its functional properties through protein engineering.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Evolution, Molecular , Catalytic Domain , Substrate Specificity , Models, Molecular , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Crystallography, X-Ray , Protein Conformation , Kinetics
8.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964855

ABSTRACT

AIMS: Microbial enhanced oil recovery (MEOR) is cost-effective and eco-friendly for oil exploitation. Genetically modified biosurfactants-producing high-yield strains are promising for ex-situ MEOR. However, can they survive and produce biosurfactants in petroleum reservoirs for in-situ MEOR? What is their effect on the native bacterial community? METHODS AND RESULTS: A genetically modified indigenous biosurfactants-producing strain Pseudomonas aeruginosa PrhlAB was bioaugmented in simulated reservoir environments. Pseudomonas aeruginosa PrhlAB could stably colonize in simulated reservoirs. Biosurfactants (200 mg l-1) were produced in simulated reservoirs after bio-augmenting strain PrhlAB. The surface tension of fluid was reduced to 32.1 mN m-1. Crude oil was emulsified with an emulsification index of 60.1%. Bio-augmenting strain PrhlAB stimulated the MEOR-related microbial activities. Hydrocarbon-degrading bacteria and biosurfactants-producing bacteria were activated, while the hydrogen sulfide-producing bacteria were inhibited. Bio-augmenting P. aeruginosa PrhlAB reduced the diversity of bacterial community, and gradually simplified the species composition. Bacteria with oil displacement potential became dominant genera, such as Shewanella, Pseudomonas, and Arcobacter. CONCLUSIONS: Culture-based and sequence-based analyses reveal that genetically modified biosurfactants-producing strain P. aeruginosa PrhlAB are promising for in-situ MEOR as well.


Subject(s)
Petroleum , Pseudomonas aeruginosa , Surface-Active Agents , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Petroleum/metabolism , Surface-Active Agents/metabolism , Biodegradation, Environmental , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Hydrocarbons/metabolism , Microbiota
9.
Sci Rep ; 14(1): 16181, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003361

ABSTRACT

Quorum sensing (QS) is a communication form between bacteria via small signal molecules that enables global gene regulation as a function of cell density. We applied a microfluidic mother machine to study the kinetics of the QS response of Pseudomonas aeruginosa bacteria to additions and withdrawals of signal molecules. We traced the fast buildup and the subsequent considerably slower decay of a population-level and single-cell-level QS response. We applied a mathematical model to explain the results quantitatively. We found significant heterogeneity in QS on the single-cell level, which may result from variations in quorum-controlled gene expression and protein degradation. Heterogeneity correlates with cell lineage history, too. We used single-cell data to define and quantitatively characterize the population-level quorum state. We found that the population-level QS response is well-defined. The buildup of the quorum is fast upon signal molecule addition. At the same time, its decay is much slower following signal withdrawal, and the quorum may be maintained for several hours in the absence of the signal. Furthermore, the quorum sensing response of the population was largely repeatable in subsequent pulses of signal molecules.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Quorum Sensing , Single-Cell Analysis , Trans-Activators , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Gene Expression Regulation, Bacterial , Signal Transduction , Kinetics
10.
Microb Cell Fact ; 23(1): 207, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044227

ABSTRACT

The engineering of non ribosomal peptide synthetases (NRPS) for new substrate specificity is a potent strategy to incorporate non-canonical amino acids into peptide sequences, thereby creating peptide diversity and broadening applications. The non-ribosomal peptide pyoverdine is the primary siderophore produced by Pseudomonas aeruginosa and holds biomedical promise in diagnosis, bio-imaging and antibiotic vectorization. We engineered the adenylation domain of PvdD, the terminal NRPS in pyoverdine biosynthesis, to accept a functionalized amino acid. Guided by molecular modeling, we rationally designed mutants of P. aeruginosa with mutations at two positions in the active site. A single amino acid change results in the successful incorporation of an azido-L-homoalanine leading to the synthesis of a new pyoverdine analog, functionalized with an azide function. We further demonstrated that copper free click chemistry is efficient on the functionalized pyoverdine and that the conjugated siderophore retains the iron chelation properties and its capacity to be recognized and transported by P. aeruginosa. The production of clickable pyoverdine holds substantial biotechnological significance, paving the way for numerous downstream applications.


Subject(s)
Click Chemistry , Oligopeptides , Peptide Synthases , Protein Engineering , Pseudomonas aeruginosa , Oligopeptides/biosynthesis , Oligopeptides/metabolism , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Peptide Synthases/metabolism , Peptide Synthases/genetics , Protein Engineering/methods , Siderophores/biosynthesis , Siderophores/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Catalytic Domain , Substrate Specificity
11.
Gene ; 927: 148754, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38972555

ABSTRACT

Pseudomonas aeruginosa PA2196 is a TetR family transcriptional repressor. In this study, the deletion of the PA2196 gene caused increased expression of the downstream gene curA (PA2197), which encodes for a NADPH-dependent curcumin/dihydrocurcumin reductase. The PA2196 gene was then identified as curR, and a DNA footprinting assay showed that CurR directly bound to the curA promoter at an imperfect 15-bp inverted repeat, 5'-TAGTTGA-C-TGGTCTA-3'. A curA promoter-lacZ fusion assay and site-directed mutagenesis further demonstrated that the identified CurR binding site plays a crucial role in curA repression by CurR. curA transcription was inducible by sodium hypochlorite (NaOCl) and N-ethylmaleimide (NEM) but not by hydrogen peroxide, organic hydroperoxide, or curcumin. The oxidation and alkylation of CurR by NaOCl and NEM, respectively, resulted in the inactivation of its DNA-binding activity, which induced curA expression. Under the tested conditions, the deletion of either curR or curA did not affect the survival of P. aeruginosa under NaOCl stress in the absence or presence of curcumin.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa , Repressor Proteins , Sodium Hypochlorite , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/drug effects , Sodium Hypochlorite/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Repressor Proteins/genetics , Repressor Proteins/metabolism , Promoter Regions, Genetic , Curcumin/pharmacology , Binding Sites , Oxidoreductases/genetics , Oxidoreductases/metabolism
12.
Front Cell Infect Microbiol ; 14: 1375872, 2024.
Article in English | MEDLINE | ID: mdl-38846355

ABSTRACT

Introduction: Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods: The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 µg/ml, with a slightly lower pyocyanin-based MIC of 38.5 µg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion: These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.


Subject(s)
Antifungal Agents , Candida albicans , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Plasmids , Pseudomonas aeruginosa , Pyocyanine , RNA, Ribosomal, 16S , Soil Microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Candida albicans/growth & development , RNA, Ribosomal, 16S/genetics , India , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Antibiosis
13.
Protein Sci ; 33(7): e5038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864725

ABSTRACT

Peptidoglycan is a major constituent of the bacterial cell wall. Its integrity as a polymeric edifice is critical for bacterial survival and, as such, it is a preeminent target for antibiotics. The peptidoglycan is a dynamic crosslinked polymer that undergoes constant biosynthesis and turnover. The soluble lytic transglycosylase (Slt) of Pseudomonas aeruginosa is a periplasmic enzyme involved in this dynamic turnover. Using amber-codon-suppression methodology in live bacteria, we incorporated a fluorescent chromophore into the structure of Slt. Fluorescent microscopy shows that Slt populates the length of the periplasmic space and concentrates at the sites of septation in daughter cells. This concentration persists after separation of the cells. Amber-codon-suppression methodology was also used to incorporate a photoaffinity amino acid for the capture of partner proteins. Mass-spectrometry-based proteomics identified 12 partners for Slt in vivo. These proteomics experiments were complemented with in vitro pulldown analyses. Twenty additional partners were identified. We cloned the genes and purified to homogeneity 22 identified partners. Biophysical characterization confirmed all as bona fide Slt binders. The identities of the protein partners of Slt span disparate periplasmic protein families, inclusive of several proteins known to be present in the divisome. Notable periplasmic partners (KD < 0.5 µM) include PBPs (PBP1a, KD = 0.07 µM; PBP5 = 0.4 µM); other lytic transglycosylases (SltB2, KD = 0.09 µM; RlpA, KD = 0.4 µM); a type VI secretion system effector (Tse5, KD = 0.3 µM); and a regulatory protease for alginate biosynthesis (AlgO, KD < 0.4 µM). In light of the functional breadth of its interactome, Slt is conceptualized as a hub protein within the periplasm.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Periplasm/metabolism , Periplasm/enzymology , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Proteins/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , Peptidoglycan/metabolism , Peptidoglycan/chemistry
14.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38845372

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that recently has been increasingly isolated from foods, especially from minimally processed fish-based products. Those are preserved by the addition of sodium chloride (NaCl) and packaging in a modified atmosphere. However, the current trends of minimizing NaCl content may result in an increased occurrence of P. aeruginosa. NaCl can be replaced with potassium chloride (KCl) or sodium salts of organic acids. Herein, we examined the antimicrobial effects of KCl, sodium lactate (NaL), sodium citrate (NaC), and sodium acetate (NaA) against P. aeruginosa NT06 isolated from fish. Transcriptome response of cells grown in medium imitating a fish product supplemented with KCl and KCl/NaL/NaC and maintained under microaerophilic conditions was analysed. Flow cytometry analysis showed that treatment with KCl and KCl/NaL/NaC resulted in changed metabolic activity of cells. In response to KCl and KCl/NaL/NaC treatment, genes related to cell maintenance, stress response, quorum sensing, virulence, efflux pump, and metabolism were differentially expressed. Collectively, our results provide an improved understanding of the response of P. aeruginosa to NaCl alternative compounds that can be implemented in fish-based products and encourage further exploration of the development of effective methods to protect foods against the P. aeruginosa, underestimate foodborne bacteria.


Subject(s)
Gene Expression Profiling , Potassium Chloride , Pseudomonas aeruginosa , Sodium Citrate , Sodium Lactate , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Potassium Chloride/pharmacology , Animals , Sodium Citrate/pharmacology , Sodium Lactate/pharmacology , Fishes/microbiology , Citrates/pharmacology , Citrates/metabolism , Anti-Bacterial Agents/pharmacology , Sodium Acetate/pharmacology , Transcriptome/drug effects , Ecosystem , Food Microbiology
15.
NPJ Biofilms Microbiomes ; 10(1): 52, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918415

ABSTRACT

It is becoming increasingly apparent that commensal skin bacteria have an important role in wound healing and infection progression. However, the precise mechanisms underpinning many of these probiotic interactions remain to be fully uncovered. In this work, we demonstrate that the common skin commensal Cutibacterium acnes can limit the pathogenicity of the prevalent wound pathogen Pseudomonas aeruginosa in vivo. We show that this impact on pathogenicity is independent of any effect on growth, but occurs through a significant downregulation of the Type Three Secretion System (T3SS), the primary toxin secretion system utilised by P. aeruginosa in eukaryotic infection. We also show a downregulation in glucose acquisition systems, a known regulator of the T3SS, suggesting that glucose availability in a wound can influence infection progression. C. acnes is well known as a glucose fermenting organism, and we demonstrate that topically supplementing a wound with glucose reverses the probiotic effects of C. acnes. This suggests that introducing carbon source competition within the wound microenvironment may be an effective way to prevent or limit wound infection.


Subject(s)
Glucose , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Glucose/metabolism , Animals , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Propionibacterium acnes/growth & development , Propionibacterium acnes/physiology , Propionibacterium acnes/metabolism , Wound Infection/microbiology , Mice , Pseudomonas Infections/microbiology , Skin/microbiology , Carbon/metabolism , Wound Healing , Antibiosis , Disease Progression , Humans
16.
Microbiology (Reading) ; 170(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38900549

ABSTRACT

Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl ß-naphthylamide (PAßN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAßN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.


Subject(s)
Anti-Bacterial Agents , Erythromycin , Furans , Membrane Transport Proteins , Microbial Sensitivity Tests , Nitrosative Stress , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/physiology , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Nitrosative Stress/drug effects , Erythromycin/pharmacology , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Furans/pharmacology , Dipeptides/pharmacology , Macrolides/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , Humans , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
17.
Phys Chem Chem Phys ; 26(24): 17011-17027, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38835320

ABSTRACT

Pseudomonas aeruginosa, a formidable pathogen renowned for its antimicrobial resistance, poses a significant threat to immunocompromised individuals. In this regard, the MexAB-OprM efflux pump acts as a pivotal line of defense by extruding antimicrobials from bacterial cells. The inner membrane homotrimeric protein MexB captures antibiotics and translocates them into the outer membrane OprM channel protein connected through the MexA adaptor protein. Despite extensive efforts, competitive inhibitors targeting the tight (T) protomer of the MexB protein have not received FDA approval for medical use. Over the past few years, allosteric inhibitors have become popular as alternatives to the classical competitive inhibitor-based approach because of their higher specificity, lower dosage, and reduced toxicological effects. Hence, in this study, we unveiled the existence of a transmembrane allosteric binding pocket of MexB inspired by the recent discovery of an important allosteric inhibitor, BDM88855, for the homolog AcrB protein. While repurposing BDM88855 proved ineffective in controlling the MexB loose (L) protomer, our investigation identified a promising alternative: a chlorine-containing variant of DB08385 (2-Cl DB08385 or Variant 1). Molecular dynamics simulations, including binding free energy estimation coupled with heterogeneous dielectric implicit membrane model (implicit-membrane MM/PBSA), interaction entropy (IE) analysis and potential of mean force (PMF) calculation, demonstrated Variant 1's superior binding affinity to the transmembrane pocket, displaying the highest energy barrier in the ligand unbinding process. To elucidate the allosteric crosstalk between the transmembrane and porter domain of MexB, we employed the 'eigenvector centrality' measure in the linear mutual information obtained from the protein correlation network. Notably, this study confirmed the presence of an allosteric transmembrane site in the MexB L protomer. In addition to this, Variant 1 emerged as a potent regulator of allosteric crosstalk, inducing an 'O-L intermediate state' in the MexB L protomer. This induced state might hold the potential to diminish substrate intake into the access pocket, leading to the ineffective efflux of antibiotics.


Subject(s)
Anti-Bacterial Agents , Bacterial Outer Membrane Proteins , Molecular Dynamics Simulation , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Allosteric Regulation/drug effects , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Drug Resistance, Bacterial/drug effects
18.
mBio ; 15(7): e0141924, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38920394

ABSTRACT

Pseudomonas aeruginosa encodes the beta-lactamase AmpC, which promotes resistance to beta-lactam antibiotics. Expression of ampC is induced by anhydro-muropeptides (AMPs) released from the peptidoglycan (PG) cell wall upon beta-lactam treatment. AmpC can also be induced via genetic inactivation of PG biogenesis factors such as the endopeptidase DacB that cleaves PG crosslinks. Mutants in dacB occur in beta-lactam-resistant clinical isolates of P. aeruginosa, but it has remained unclear why DacB inactivation promotes ampC induction. Similarly, the inactivation of lytic transglycosylase (LT) enzymes such as SltB1 that cut PG glycans has also been associated with ampC induction and beta-lactam resistance. Given that LT enzymes are capable of producing AMP products that serve as ampC inducers, this latter observation has been especially difficult to explain. Here, we show that ampC induction in sltB1 or dacB mutants requires another LT enzyme called MltG. In Escherichia coli, MltG has been implicated in the degradation of nascent PG strands produced upon beta-lactam treatment. Accordingly, in P. aeruginosa sltB1 and dacB mutants, we detected the MltG-dependent production of pentapeptide-containing AMP products that are signatures of nascent PG degradation. Our results therefore support a model in which SltB1 and DacB use their PG-cleaving activity to open space in the PG matrix for the insertion of new material. Thus, their inactivation mimics low-level beta-lactam treatment by reducing the efficiency of new PG insertion into the wall, causing the degradation of some nascent PG material by MltG to produce the ampC-inducing signal. IMPORTANCE: Inducible beta-lactamases like the ampC system of Pseudomonas aeruginosa are a common determinant of beta-lactam resistance among gram-negative bacteria. The regulation of ampC is elegantly tuned to detect defects in cell wall synthesis caused by beta-lactam drugs. Studies of mutations causing ampC induction in the absence of drug therefore promise to reveal new insights into the process of cell wall biogenesis in addition to aiding our understanding of how resistance to beta-lactam antibiotics arises in the clinic. In this study, the ampC induction phenotype for mutants lacking a glycan-cleaving enzyme or an enzyme that cuts cell wall crosslinks was used to uncover a potential role for these enzymes in making space in the wall matrix for the insertion of new material during cell growth.


Subject(s)
Bacterial Proteins , Cell Wall , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Cell Wall/metabolism , Cell Wall/drug effects , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactam Resistance/genetics , Phenotype , Peptidoglycan/metabolism , Anti-Bacterial Agents/pharmacology , beta-Lactams/pharmacology , beta-Lactams/metabolism , Gene Expression Regulation, Bacterial
19.
mBio ; 15(7): e0119824, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38832773

ABSTRACT

Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).


Subject(s)
Bacterial Proteins , Stenotrophomonas maltophilia , Type IV Secretion Systems , Stenotrophomonas maltophilia/genetics , Stenotrophomonas maltophilia/enzymology , Stenotrophomonas maltophilia/metabolism , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Type IV Secretion Systems/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Conformation
20.
Nanoscale ; 16(25): 12134-12141, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38832761

ABSTRACT

Type IV pili (TFP) contribute to the ability of microbes such as Pseudomonas aeruginosa to engage with and move across surfaces. We reported previously that P. aeruginosa TFP generate retractive forces of ∼30 pN and provided indirect evidence that TFP-mediated surface attachment was enhanced in the presence of the Pel polysaccharide. Here, we use different mutants defective in flagellar, Pel production or TFP production - alone or in combination - to decipher the relative contribution of these biofilm-promoting factors for P. aeruginosa adhesion. By means of atomic force microscopy (AFM), we show that mutating the flagellum (ΔflgK mutant) results in an increase in Pel polysaccharide production, but this increase in Pel does not result in an increase in surface adhesive properties compared to those previously described for the WT strain. By blocking Pel production in the ΔflgK mutant (ΔflgKΔpel), we directly show that TFP play a major role in the adhesion of the bacteria to hydrophobic AFM tips, but that the adhesion force is only slightly impaired by the absence of Pel. Inversely, performing single-cell force spectroscopy measurements with the mutant lacking TFP (ΔflgKΔpilA) reveals that the Pel can modulate the attachment of the bacteria to a hydrophobic substrate in a time-dependent manner. Finally, little adhesion was detected for the ΔflgKΔpilAΔpelA triple mutant, suggesting that both TFP and Pel polysaccharide make a substantial contribution to bacteria-substratum interaction events. Altogether, our data allow us to decipher the relative contribution of Pel and TFP in the early attachment by P. aeruginosa.


Subject(s)
Bacterial Adhesion , Fimbriae, Bacterial , Microscopy, Atomic Force , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/physiology , Fimbriae, Bacterial/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Biofilms/growth & development , Flagella/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL