Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 934
Filter
1.
Cell Rep ; 43(9): 114737, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39277862

ABSTRACT

Itaconate serves as an immune-specific metabolite that regulates gene transcription and metabolism in both host and pathogens. S-itaconation is a post-translational modification that regulates immune response; however, its antimicrobial mechanism under the physiological condition remains unclear. Here, we apply a bioorthogonal itaconate probe to perform global profiling of S-itaconation in living pathogens, including S. Typhimurium, S. aureus, and P. aeruginosa. Some functional enzymes are covalently modified by itaconate, including those involved in the de novo purine biosynthesis pathway. Further biochemical studies demonstrate that itaconate suppresses this specific pathway to limit Salmonella growth by inhibiting the initiator purF to lower de novo purine biosynthesis and simultaneously targeting the guaABC cluster to block the salvage route. Our chemoproteomic study provides a global portrait of S-itaconation in multiple pathogens and offers a valuable resource for finding susceptible targets to combat drug-resistant pathogens in the future.


Subject(s)
Proteomics , Purines , Succinates , Succinates/pharmacology , Succinates/metabolism , Purines/biosynthesis , Purines/pharmacology , Proteomics/methods , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/metabolism , Bacterial Proteins/metabolism
2.
Cancer Res Commun ; 4(7): 1863-1880, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38957115

ABSTRACT

Various lines of investigation support a signaling interphase shared by receptor tyrosine kinases and the DNA damage response. However, the underlying network nodes and their contribution to the maintenance of DNA integrity remain unknown. We explored MET-related metabolic pathways in which interruption compromises proper resolution of DNA damage. Discovery metabolomics combined with transcriptomics identified changes in pathways relevant to DNA repair following MET inhibition (METi). METi by tepotinib was associated with the formation of γH2AX foci and with significant alterations in major metabolic circuits such as glycolysis, gluconeogenesis, and purine, pyrimidine, amino acid, and lipid metabolism. 5'-Phosphoribosyl-N-formylglycinamide, a de novo purine synthesis pathway metabolite, was consistently decreased in in vitro and in vivo MET-dependent models, and METi-related depletion of dNTPs was observed. METi instigated the downregulation of critical purine synthesis enzymes including phosphoribosylglycinamide formyltransferase, which catalyzes 5'-phosphoribosyl-N-formylglycinamide synthesis. Genes encoding these enzymes are regulated through E2F1, whose levels decrease upon METi in MET-driven cells and xenografts. Transient E2F1 overexpression prevented dNTP depletion and the concomitant METi-associated DNA damage in MET-driven cells. We conclude that DNA damage following METi results from dNTP reduction via downregulation of E2F1 and a consequent decline of de novo purine synthesis. SIGNIFICANCE: Maintenance of genome stability prevents disease and affiliates with growth factor receptor tyrosine kinases. We identified de novo purine synthesis as a pathway in which key enzymatic players are regulated through MET receptor and whose depletion via MET targeting explains MET inhibition-associated formation of DNA double-strand breaks. The mechanistic importance of MET inhibition-dependent E2F1 downregulation for interference with DNA integrity has translational implications for MET-targeting-based treatment of malignancies.


Subject(s)
DNA Damage , E2F1 Transcription Factor , Proto-Oncogene Proteins c-met , Purines , DNA Damage/drug effects , Purines/biosynthesis , Purines/metabolism , Animals , Mice , Humans , E2F1 Transcription Factor/metabolism , E2F1 Transcription Factor/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , DNA Repair/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Signal Transduction/drug effects
3.
Microb Cell Fact ; 23(1): 159, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822377

ABSTRACT

BACKGROUND: Bacillus subtilis is widely used in industrial-scale riboflavin production. Previous studies have shown that targeted mutagenesis of the ribulose 5-phosphate 3-epimerase in B. subtilis can significantly enhance riboflavin production. This modification also leads to an increase in purine intermediate concentrations in the medium. Interestingly, B. subtilis exhibits remarkable efficiency in purine nucleoside synthesis, often exceeding riboflavin yields. These observations highlight the importance of the conversion steps from inosine-5'-monophosphate (IMP) to 2,5-diamino-6-ribosylamino-4(3 H)-pyrimidinone-5'-phosphate (DARPP) in riboflavin production by B. subtilis. However, research elucidating the specific impact of these reactions on riboflavin production remains limited. RESULT: We expressed the genes encoding enzymes involved in these reactions (guaB, guaA, gmk, ndk, ribA) using a synthetic operon. Introduction of the plasmid carrying this synthetic operon led to a 3.09-fold increase in riboflavin production compared to the control strain. Exclusion of gmk from the synthetic operon resulted in a 36% decrease in riboflavin production, which was further reduced when guaB and guaA were not co-expressed. By integrating the synthetic operon into the genome and employing additional engineering strategies, we achieved riboflavin production levels of 2702 mg/L. Medium optimization further increased production to 3477 mg/L, with a yield of 0.0869 g riboflavin per g of sucrose. CONCLUSION: The conversion steps from IMP to DARPP play a critical role in riboflavin production by B. subtilis. Our overexpression strategies have demonstrated their effectiveness in overcoming these limiting factors and enhancing riboflavin production.


Subject(s)
Bacillus subtilis , Biosynthetic Pathways , Metabolic Engineering , Purines , Riboflavin , Riboflavin/biosynthesis , Riboflavin/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Purines/biosynthesis , Purines/metabolism , Metabolic Engineering/methods , Operon , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
4.
Cell ; 187(14): 3602-3618.e20, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38823389

ABSTRACT

Purine nucleotides are vital for RNA and DNA synthesis, signaling, metabolism, and energy homeostasis. To synthesize purines, cells use two principal routes: the de novo and salvage pathways. Traditionally, it is believed that proliferating cells predominantly rely on de novo synthesis, whereas differentiated tissues favor the salvage pathway. Unexpectedly, we find that adenine and inosine are the most effective circulating precursors for supplying purine nucleotides to tissues and tumors, while hypoxanthine is rapidly catabolized and poorly salvaged in vivo. Quantitative metabolic analysis demonstrates comparative contribution from de novo synthesis and salvage pathways in maintaining purine nucleotide pools in tumors. Notably, feeding mice nucleotides accelerates tumor growth, while inhibiting purine salvage slows down tumor progression, revealing a crucial role of the salvage pathway in tumor metabolism. These findings provide fundamental insights into how normal tissues and tumors maintain purine nucleotides and highlight the significance of purine salvage in cancer.


Subject(s)
Neoplasms , Purine Nucleotides , Purines , Animals , Mice , Purines/metabolism , Purines/biosynthesis , Neoplasms/metabolism , Neoplasms/pathology , Purine Nucleotides/metabolism , Humans , Inosine/metabolism , Hypoxanthine/metabolism , Mice, Inbred C57BL , Adenine/metabolism , Cell Line, Tumor , Female
5.
Gene ; 923: 148587, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38768877

ABSTRACT

High levels of purine and uric acid, which are associated with health issues such as gout and cardiovascular disease, are found in the meat of fast-growing broiler chickens, which raises concerns about the quality of chicken meat and the health of the consumers who consume it. High genetic homogeneity and uniformity, particularly in genes involved in the synthesis of inosine monophosphate (IMP) and subsequent process of purine synthesis, which are associated with the meat quality, are exhibited in commercial broiler chickens owing to intensive inbreeding programs. Adenosine succinate lyase (ADSL) is a key enzyme involved in de novo purine biosynthetic pathway and its genetic polymorphisms affect IMP metabolism and purine content. In this study, we investigated the polymorphism of the ADSL gene in indigenous and local chicken breeds and red junglefowl in Thailand, using metabarcoding and genetic diversity analyses. Five alleles with 73 single nucleotide polymorphisms in exon 2, including missense and silent mutations, which may act on the synthesis efficiency of IMP and purine. Their protein structures revealed changes in amino acid composition that may affect ADSL enzyme activity. Weak purifying selection in these ADSL alleles was observed in the chicken population studied, implying that the variants have minor fitness impacts and a greater probability of fixation of beneficial mutations than strong purifying selection. A potential selective sweep was observed in Mae Hong Son chickens, whose purine content was lower than that in other breeds. This suggests a potential correlation between variations of the ADSL gene and reduced purine content and an impact of ADSL expression on the quality of chicken meat. However, further studies are required to validate its potential availability as a genetic marker for selecting useful traits that are beneficial to human health and well-being.


Subject(s)
Adenylosuccinate Lyase , Chickens , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Chickens/genetics , Adenylosuccinate Lyase/genetics , Thailand , Alleles , Inosine Monophosphate/metabolism , Breeding , Meat , Genetic Variation , Purines/metabolism , Purines/biosynthesis
6.
Chem Biodivers ; 21(7): e202400050, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719741

ABSTRACT

Caffeine and purine derivatives represent interesting chemical moieties, which show various biological activities. Caffeine is an alkaloid that belongs to the family of methylxanthine alkaloids and it is present in food, beverages, and drugs. Coffee, tea, and some other beverages are a major source of caffeine in the human diet. Caffeine can be extracted from tea or coffee using hot water with dichloromethane or chloroform and the leftover is known as decaffeinated coffee or tea. Caffeine and its derivatives were synthesized via different procedures on small and large scales. It competitively antagonizes the adenosine receptors (ARs), which are G protein-coupled receptors largely distributed in the human body, including the heart, vessels, brain, and kidneys. Recently, many reports showed the effect of caffeine derivatives in the treatment of many diseases such as Alzheimer's, asthma, parkinsonism, and cancer. Also, it is used as an antioxidant, anti-inflammatory, analgesic, and hypocholesterolemic agent. The present review article discusses the synthesis, reactivity, and biological and pharmacological properties of caffeine and its derivatives. The biosynthesis and biotransformation of caffeine in coffee and tea leaves and the human body were summarized in the review.


Subject(s)
Caffeine , Purines , Animals , Humans , Caffeine/chemistry , Caffeine/metabolism , Caffeine/pharmacology , Coffee/chemistry , Coffee/metabolism , Purines/chemistry , Purines/biosynthesis , Purines/pharmacology , Purines/metabolism
7.
Nat Ecol Evol ; 8(5): 999-1009, 2024 May.
Article in English | MEDLINE | ID: mdl-38519634

ABSTRACT

An unresolved question in the origin and evolution of life is whether a continuous path from geochemical precursors to the majority of molecules in the biosphere can be reconstructed from modern-day biochemistry. Here we identified a feasible path by simulating the evolution of biosphere-scale metabolism, using only known biochemical reactions and models of primitive coenzymes. We find that purine synthesis constitutes a bottleneck for metabolic expansion, which can be alleviated by non-autocatalytic phosphoryl coupling agents. Early phases of the expansion are enriched with enzymes that are metal dependent and structurally symmetric, supporting models of early biochemical evolution. This expansion trajectory suggests distinct hypotheses regarding the tempo, mode and timing of metabolic pathway evolution, including a late appearance of methane metabolisms and oxygenic photosynthesis consistent with the geochemical record. The concordance between biological and geological analyses suggests that this trajectory provides a plausible evolutionary history for the vast majority of core biochemistry.


Subject(s)
Purines , Purines/biosynthesis , Purines/metabolism , Biological Evolution , Models, Biological , Origin of Life , Metabolic Networks and Pathways
8.
J Infect Dis ; 229(6): 1648-1657, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38297970

ABSTRACT

BACKGROUND: Staphylococcus aureus is the most common cause of life-threatening endovascular infections, including infective endocarditis (IE). These infections, especially when caused by methicillin-resistant strains (MRSA), feature limited therapeutic options and high morbidity and mortality rates. METHODS: Herein, we investigated the role of the purine biosynthesis repressor, PurR, in virulence factor expression and vancomycin (VAN) treatment outcomes in experimental IE due to MRSA. RESULTS: The PurR-mediated repression of purine biosynthesis was confirmed by enhanced purF expression and production of an intermediate purine metabolite in purR mutant strain. In addition, enhanced expression of the transcriptional regulators, sigB and sarA, and their key downstream virulence genes (eg, fnbA, and hla) was demonstrated in the purR mutant in vitro and within infected cardiac vegetations. Furthermore, purR deficiency enhanced fnbA/fnbB transcription, translating to increased fibronectin adhesion versus the wild type and purR-complemented strains. Notably, the purR mutant was refractory to significant reduction in target tissues MRSA burden following VAN treatment in the IE model. CONCLUSIONS: These findings suggest that the purine biosynthetic pathway intersects the coordination of virulence factor expression and in vivo persistence during VAN treatment, and may represent an avenue for novel antimicrobial development targeting MRSA.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Endocarditis, Bacterial , Methicillin-Resistant Staphylococcus aureus , Purines , Repressor Proteins , Staphylococcal Infections , Vancomycin , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Animals , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Purines/biosynthesis , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/drug therapy , Virulence Factors/genetics , Virulence Factors/metabolism , Mice , Gene Expression Regulation, Bacterial , Disease Models, Animal , Microbial Sensitivity Tests , Humans
9.
J Biol Chem ; 298(5): 101853, 2022 05.
Article in English | MEDLINE | ID: mdl-35331738

ABSTRACT

There is growing evidence that mammalian cells deploy a mitochondria-associated metabolon called the purinosome to perform channeled de novo purine biosynthesis (DNPB). However, the molecular mechanisms of this substrate-channeling pathway are not well defined. Here, we present molecular evidence of protein-protein interactions (PPIs) between the human bifunctional phosphoribosylaminoimidazole carboxylase/succinocarboxamide synthetase (PAICS) and other known DNPB enzymes. We employed two orthogonal approaches: bimolecular fluorescence complementation, to probe PPIs inside live, intact cells, and co-immunoprecipitation using StrepTag-labeled PAICS that was reintegrated into the genome of PAICS-knockout HeLa cells (crPAICS). With the exception of amidophosphoribosyltransferase, the first enzyme of the DNPB pathway, we discovered PAICS interacts with all other known DNPB enzymes and with MTHFD1, an enzyme which supplies the 10-formyltetrahydrofolate cofactor essential for DNPB. We show these interactions are present in cells grown in both purine-depleted and purine-rich conditions, suggesting at least a partial assembly of these enzymes may be present regardless of the activity of the DNPB pathway. We also demonstrate that tagging of PAICS on its C terminus disrupts these interactions and that this disruption is correlated with disturbed DNPB activity. Finally, we show that crPAICS cells with reintegrated N-terminally tagged PAICS regained effective DNPB with metabolic signatures of channeled synthesis, whereas crPAICS cells that reintegrated C-terminally tagged PAICS exhibit reduced DNPB intermediate pools and a perturbed partitioning of inosine monophosphate into AMP and GMP. Our results provide molecular evidence in support of purinosomes and suggest perturbing PPIs between DNPB enzymes negatively impact metabolite flux through this important pathway.


Subject(s)
Peptide Synthases , Purines , Humans , Amidophosphoribosyltransferase , HeLa Cells , Peptide Synthases/metabolism , Purines/biosynthesis
10.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34767747

ABSTRACT

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Subject(s)
Inflammation/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Purines/biosynthesis , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Cell Differentiation , Cytokines/metabolism , DNA Methylation , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Lymphocyte Activation , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Mice , Mice, Transgenic , Mutation/genetics , Signal Transduction
11.
Microbiol Spectr ; 9(3): e0080421, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34935415

ABSTRACT

Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.


Subject(s)
Biofilms , Culture Media/metabolism , Enterococcus faecalis/physiology , Purines/biosynthesis , Staphylococcus aureus/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Culture Media/chemistry , Enterococcus faecalis/genetics , Gram-Positive Bacterial Infections/microbiology , Humans , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics
12.
mBio ; 12(6): e0208121, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34724823

ABSTRACT

Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinically challenging subset of invasive, life-threatening S. aureus infections. We have recently demonstrated that purine biosynthesis plays an important role in such persistent infections. Cyclic di-AMP (c-di-AMP) is an essential and ubiquitous second messenger that regulates many cellular pathways in bacteria. However, whether there is a regulatory connection between the purine biosynthesis pathway and c-di-AMP impacting persistent outcomes was not known. Here, we demonstrated that the purine biosynthesis mutant MRSA strain, the ΔpurF strain (compared to its isogenic parental strain), exhibited the following significant differences in vitro: (i) lower ADP, ATP, and c-di-AMP levels; (ii) less biofilm formation with decreased extracellular DNA (eDNA) levels and Triton X-100-induced autolysis paralleling enhanced expressions of the biofilm formation-related two-component regulatory system lytSR and its downstream gene lrgB; (iii) increased vancomycin (VAN)-binding and VAN-induced lysis; and (iv) decreased wall teichoic acid (WTA) levels and expression of the WTA biosynthesis-related gene, tarH. Substantiating these data, the dacA (encoding diadenylate cyclase enzyme required for c-di-AMP synthesis) mutant strain (dacAG206S strain versus its isogenic wild-type MRSA and dacA-complemented strains) showed significantly decreased c-di-AMP levels, similar in vitro effects as seen above for the purF mutant and hypersusceptible to VAN treatment in an experimental biofilm-related MRSA endovascular infection model. These results reveal an important intersection between purine biosynthesis and c-di-AMP that contributes to biofilm-associated persistence in MRSA endovascular infections. This signaling pathway represents a logical therapeutic target against persistent MRSA infections. IMPORTANCE Persistent endovascular infections caused by MRSA, including vascular graft infection syndromes and infective endocarditis, are significant and growing public health threats. A particularly worrisome trend is that most MRSA isolates from these patients are "susceptible" in vitro to conventional anti-MRSA antibiotics, such as VAN and daptomycin (DAP), based on Clinical and Laboratory Standards Institute breakpoints. Yet, these antibiotics frequently fail to eliminate these infections in vivo. Therefore, the persistent outcomes in MRSA infections represent a unique and important variant of classic "antibiotic resistance" that is only disclosed during in vivo antibiotic treatment. Given the high morbidity and mortality associated with the persistent infection, there is an urgent need to understand the specific mechanism(s) of this syndrome. In the current study, we demonstrate that a functional intersection between purine biosynthesis and the second messenger c-di-AMP plays an important role in VAN persistence in experimental MRSA endocarditis. Targeting this pathway may represent a potentially novel and effective strategy for treating these life-threatening infections.


Subject(s)
Cyclic AMP/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Persistent Infection/microbiology , Purines/biosynthesis , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Biosynthetic Pathways , Daptomycin/pharmacology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Second Messenger Systems
13.
Nat Metab ; 3(11): 1512-1520, 2021 11.
Article in English | MEDLINE | ID: mdl-34799699

ABSTRACT

Mammalian cells require activated folates to generate nucleotides for growth and division. The most abundant circulating folate species is 5-methyl tetrahydrofolate (5-methyl-THF), which is used to synthesize methionine from homocysteine via the cobalamin-dependent enzyme methionine synthase (MTR). Cobalamin deficiency traps folates as 5-methyl-THF. Here, we show using isotope tracing that MTR is only a minor source of methionine in cell culture, tissues or xenografted tumours. Instead, MTR is required for cells to avoid folate trapping and assimilate 5-methyl-THF into other folate species. Under conditions of physiological extracellular folates, genetic MTR knockout in tumour cells leads to folate trapping, purine synthesis stalling, nucleotide depletion and impaired growth in cell culture and as xenografts. These defects are rescued by free folate but not one-carbon unit supplementation. Thus, MTR plays a crucial role in liberating THF for use in one-carbon metabolism.


Subject(s)
5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Neoplasms/metabolism , Tetrahydrofolates/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Cell Line, Tumor , Cell Proliferation , Folic Acid/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Metabolic Networks and Pathways , Methionine/metabolism , Methylation , Mutation , Neoplasms/etiology , Purines/biosynthesis , Vitamin B 12 Deficiency/metabolism
14.
Nat Commun ; 12(1): 6176, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702840

ABSTRACT

Serine is a non-essential amino acid that is critical for tumour proliferation and depletion of circulating serine results in reduced tumour growth and increased survival in various cancer models. While many cancer cells cultured in a standard tissue culture medium depend on exogenous serine for optimal growth, here we report that these cells are less sensitive to serine/glycine depletion in medium containing physiological levels of metabolites. The lower requirement for exogenous serine under these culture conditions reflects both increased de novo serine synthesis and the use of hypoxanthine (not present in the standard medium) to support purine synthesis. Limiting serine availability leads to increased uptake of extracellular hypoxanthine, sparing available serine for other pathways such as glutathione synthesis. Taken together these results improve our understanding of serine metabolism in physiologically relevant nutrient conditions and allow us to predict interventions that may enhance the therapeutic response to dietary serine/glycine limitation.


Subject(s)
Neoplasms/metabolism , Serine/metabolism , Biosynthetic Pathways , Cell Line, Tumor , Cell Proliferation , Culture Media/chemistry , Culture Media/metabolism , Glycine/analysis , Glycine/metabolism , Humans , Hypoxanthine/analysis , Hypoxanthine/metabolism , Neoplasms/diet therapy , Neoplasms/pathology , Purines/biosynthesis , Serine/analysis , Up-Regulation
15.
Insect Biochem Mol Biol ; 138: 103636, 2021 11.
Article in English | MEDLINE | ID: mdl-34478812

ABSTRACT

There are several known non-molting mutations of the silkworm, Bombyx mori, including non-molting dwarf (nm-d). Larvae with this mutation hatch normally and start eating leaves, but die before the completion of the first ecdysis. Genetic analysis of the nm-d mutation would contribute to the isolation of essential genes for the larval development of lepidopteran insects. To identify the causative gene of the nm-d locus, we conducted RNA-seq based rough mapping. Using two sets of RNA-seq data, one from a pooled sample of normal larvae, and one from a pooled sample of nm-d larvae, the nm-d locus was narrowed to a 500 kb region. Among the genes located in this region, a nm-d-specific exon loss was identified in the Bombyx homolog of the ATIC (5-aminoimidazole-4-carboxamide ribonucleotide transformylase/Inosine 5'-monophosphate cyclohydrolase) (BmATIC) gene, which catalyzes the final two steps of the de novo purine biosynthetic pathway in mammals. PCR and subsequent sequencing analysis revealed that a region containing exon 9 of the BmATIC gene is deleted in the nm-d larvae. A knockout allele of the BmATIC gene (BmATICKO), that was generated using the CRISPR/Cas9 system, revealed that first instar knockout larvae died while exhibiting the dark brown larval body that is a typical feature of mutants that lack uric acid in the integument. Lethal larvae resulted from crosses between +/BmATICKO moths. The uric acid content in the whole-body of the first instar was drastically reduced in the nm-d larvae compared to normal larvae. These results indicated that the BmATIC gene is responsible for the nm-d phenotype, and that nm-d larvae have a defect in purine biosynthesis, including uric acid. We also discuss the possibility that the BmATIC mRNA is maternally transmitted to eggs. Our results indicated that RNA-seq based mapping using pooled samples is a practical method for the identification of the causative genes of lethal mutations.


Subject(s)
Insect Proteins/genetics , Moths/metabolism , Mutation , Purines/biosynthesis , Animals , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Moths/genetics , Moths/growth & development
16.
Cancer Res ; 81(19): 4964-4980, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34385182

ABSTRACT

Methylthioadenosine phosphorylase (MTAP) is a key enzyme associated with the salvage of methionine and adenine that is deficient in 20% to 30% of pancreatic cancer. Our previous study revealed that MTAP deficiency indicates a poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC). In this study, bioinformatics analysis of The Cancer Genome Atlas (TCGA) data indicated that PDACs with MTAP deficiency display a signature of elevated glycolysis. Metabolomics studies showed that that MTAP deletion-mediated metabolic reprogramming enhanced glycolysis and de novo purine synthesis in pancreatic cancer cells. Western blot analysis revealed that MTAP knockout stabilized hypoxia-inducible factor 1α (HIF1α) protein via posttranslational phosphorylation. RIO kinase 1 (RIOK1), a downstream kinase upregulated in MTAP-deficient cells, interacted with and phosphorylated HIF1α to regulate its stability. In vitro experiments demonstrated that the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) and the de novo purine synthesis inhibitor l-alanosine synergized to kill MTAP-deficient pancreatic cancer cells. Collectively, these results reveal that MTAP deficiency drives pancreatic cancer progression by inducing metabolic reprogramming, providing a novel target and therapeutic strategy for treating MTAP-deficient disease. SIGNIFICANCE: This study demonstrates that MTAP status impacts glucose and purine metabolism, thus identifying multiple novel treatment options against MTAP-deficient pancreatic cancer.


Subject(s)
Cellular Reprogramming/genetics , Energy Metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Purine-Nucleoside Phosphorylase/deficiency , Purines/biosynthesis , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Survival/genetics , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Glycolysis , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Metabolic Networks and Pathways , Metabolomics/methods , Mice , Models, Biological , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/mortality , Positron Emission Tomography Computed Tomography , Prognosis
17.
Mol Biotechnol ; 63(10): 909-918, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34156642

ABSTRACT

Riboflavin is widely regarded as an essential nutrient that is involved in biological oxidation in vivo. In addition to preventing and treating acyl-CoA dehydrogenase deficiency in patients with keratitis, stomatitis, and glossitis, riboflavin is also closely related to the treatment of radiation mucositis and cardiovascular disease. Chemical synthesis has been the dominant method for producing riboflavin for approximately 50 years. Nevertheless, due to the intricate synthesis process, relatively high cost, and high risk of pollution, alternative methods of chemical syntheses, such as the fermentation method, began to develop and eventually became the main methods for producing riboflavin. At present, there are three types of strains used in industrial riboflavin production: Ashbya gossypii, Candida famata, and Bacillus subtilis. Additionally, many recent studies have been conducted on Escherichia coli and Lactobacillus. Fermentation increases the yield of riboflavin using genetic engineering technology to modify and induce riboflavin production in the strain, as well as to regulate the metabolic flux of the purine pathway and pentose phosphate pathway (PP pathway), thereby optimizing the culture process. This article briefly introduces recent progress in the fermentation of riboflavin.


Subject(s)
Genetic Engineering/methods , Riboflavin/biosynthesis , Bacteria/genetics , Bacteria/growth & development , Batch Cell Culture Techniques , Fermentation , Fungi/genetics , Fungi/growth & development , Humans , Pentose Phosphate Pathway , Purines/biosynthesis
18.
Annu Rev Biochem ; 90: 57-76, 2021 06 20.
Article in English | MEDLINE | ID: mdl-34153218

ABSTRACT

I endeavor to share how various choices-some deliberate, some unconscious-and the unmistakable influence of many others shaped my scientific pursuits. I am fascinated by how two long-term, major streams of my research, DNA replication and purine biosynthesis, have merged with unexpected interconnections. If I have imparted to many of the talented individuals who have passed through my lab a degree of my passion for uncloaking the mysteries hidden in scientific research and an understanding of the honesty and rigor it demands and its impact on the world community, then my mentorship has been successful.


Subject(s)
Biochemistry/history , DNA Replication , Enzymes , Purines/biosynthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antibodies, Catalytic/chemistry , Antibodies, Catalytic/metabolism , Enzymes/chemistry , Enzymes/metabolism , History, 20th Century , History, 21st Century , Humans , Male , United States
19.
Elife ; 102021 05 04.
Article in English | MEDLINE | ID: mdl-33942714

ABSTRACT

We analyze the metabolomes of humans, chimpanzees, and macaques in muscle, kidney and three different regions of the brain. Although several compounds in amino acid metabolism occur at either higher or lower concentrations in humans than in the other primates, metabolites downstream of adenylosuccinate lyase, which catalyzes two reactions in purine synthesis, occur at lower concentrations in humans. This enzyme carries an amino acid substitution that is present in all humans today but absent in Neandertals. By introducing the modern human substitution into the genomes of mice, as well as the ancestral, Neandertal-like substitution into the genomes of human cells, we show that this amino acid substitution contributes to much or all of the reduction of de novo synthesis of purines in humans.


Subject(s)
Biosynthetic Pathways/genetics , Metabolome/genetics , Neanderthals/metabolism , Purines/biosynthesis , Purines/metabolism , Animals , Female , Gene Editing , Humans , Macaca/metabolism , Male , Mice , Mice, Transgenic , Mutation, Missense , Pan troglodytes/metabolism
20.
Brain ; 144(4): 1230-1246, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33855339

ABSTRACT

Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.


Subject(s)
Brain Neoplasms/metabolism , Drug Resistance, Neoplasm/physiology , Gene Expression Regulation, Neoplastic/physiology , Glioblastoma/metabolism , Purines/biosynthesis , Animals , Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/pathology , Heterografts , Humans , Mice , Mice, Nude , Mycophenolic Acid/pharmacology , Temozolomide/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL