Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.346
1.
Article En | MEDLINE | ID: mdl-38828869

BACKGROUND: Pyrazole is a well-known nucleus in the pharmacy field with a wide range of other activities in addition to anti-inflammatory and analgesic, i.e., anticonvulsant, antiviral, and anticancer activities. There are well-known marketed drugs having pyrazole moiety as celecoxib, and lonazolac as COX-II inhibitors. AIMS: We aim to synthesize better anti-inflammatory than existing ones. Thiophene is also known for its analgesic and anti-inflammatory action. Thus, the fusion of both gives better anti-inflammatory agents. In the present studies, derivatives from two series of pyrazole were prepared by reacting substituted chalcone (3a-3f) derivatives prepared from 2-acetyl thiophene. They substituted aromatic aldehydes with phenyl hydrazine to form (5a-5f) and with 2, 4-dinitro phenyl hydrazine giving compounds (6a-6f) separately. METHODS: Purified and characterized pyrazoles have been analyzed for in-vivo analgesic and anti-inflammatory activities by using standard methods. Compounds 5e, 5f, and 6d were proved to be potent analgesics and series (5a-5f) was found to have anti-inflammatory action, which was further validated using docking and ADME studies. RESULTS: The ADME profile of synthesized compounds was found to be satisfactory. CONCLUSION: The synthesized compounds can serve as lead for further drug designing.


Analgesics , Anti-Inflammatory Agents , Molecular Docking Simulation , Pyrazoles , Pyrazoles/pharmacology , Pyrazoles/chemistry , Animals , Analgesics/pharmacology , Analgesics/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Male , Mice , Structure-Activity Relationship , Edema/drug therapy , Edema/chemically induced , Humans , Rats , Pain/drug therapy , Rats, Wistar
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731825

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Amides , Antineoplastic Agents , Antioxidants , Cell Proliferation , Hydrazones , Pyrazoles , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Amides/chemistry , Amides/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , MCF-7 Cells , HeLa Cells
3.
J Am Chem Soc ; 146(19): 13317-13325, 2024 May 15.
Article En | MEDLINE | ID: mdl-38700457

We describe the synthesis and biological testing of ruthenium-bipyridine ruxolitinib (RuBiRuxo), a photoreleasable form of ruxolitinib, a JAK inhibitor used as an antitumoral agent in cutaneous T-cell lymphomas (CTCL). This novel caged compound is synthesized efficiently, is stable in aqueous solution at room temperature, and is photoreleased rapidly by visible light. Irradiation of RuBiRuxo reduces cell proliferation and induces apoptosis in a light- and time-dependent manner in a CTCL cell line. This effect is specific and is mediated by a decreased phosphorylation of STAT proteins. Our results demonstrate the potential of ruthenium-based photocompounds and light-based therapeutic approaches for the potential treatment of cutaneous lymphomas and other pathologies.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Nitriles , Pyrazoles , Pyrimidines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Nitriles/chemistry , Nitriles/pharmacology , Nitriles/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Apoptosis/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Cell Line, Tumor , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/chemistry , Janus Kinase Inhibitors/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Light , Molecular Structure , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism
4.
Pak J Pharm Sci ; 37(1(Special)): 173-184, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747267

Hydrazones 1-6, azo-pyrazoles 7-9 and azo-pyrimidines 10-15 are compounds that exhibit antibacterial activity. The mode of action and structures of these derivatives have been previously confirmed as antibacterial. In this investigation, biological screening and molecular docking studies were performed for derivatives 1-15, with compounds 2, 7, 8, 14 and 15 yielding the best energy scores (from -20.7986 to -10.5302 kcal/mol). Drug-likeness and in silico ADME prediction for the most potent derivatives, 2, 7, 8, 14 and 15, were predicted (from 84.46 to 96.85%). The latter compounds showed good recorded physicochemical properties and pharmacokinetics. Compound 8 demonstrated the strongest inhibition, which was similar to the positive control (eflornithine) against Trypanosoma brucei brucei (WT), with an EC50 of 25.12 and 22.52µM, respectively. Moreover, compound 14 exhibited the best activity against Leishmania mexicana promastigotes and Leishmania major promastigotes (EC50 =46.85; 40.78µM, respectively).


Molecular Docking Simulation , Pyrazoles , Pyrimidines , Trypanocidal Agents , Trypanosoma brucei brucei , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Trypanosoma brucei brucei/drug effects , Pyrazoles/pharmacology , Pyrazoles/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Leishmania mexicana/drug effects , Leishmania major/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Computer Simulation , Azo Compounds/pharmacology , Azo Compounds/chemistry , Azo Compounds/chemical synthesis , Structure-Activity Relationship , Parasitic Sensitivity Tests
5.
Pak J Pharm Sci ; 37(1(Special)): 191-197, 2024 Jan.
Article En | MEDLINE | ID: mdl-38747269

synthesis of a pyrazole containing compound was achieved by reacting phenyl hydrazine with (E)-2-((4-bromophenyl) diazinyl)-1-phenylbutane-1,3-dione to produce 4-((4-bromophenyl) diazinyl)-5-methyl-1,3-diphenyl-pyrazole and characterization using mass spectrometer, 1H NMR and 13C NMR. The pharmacological evaluation of the synthesized compound, denoted as (KA5), against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 29213 and Clostridiums sporogeneses ATCC 19404, indicate that there is no promising antibacterial activity. However, KA5 shows a competitive anticancer activity (IC50: 8.5µM) upon its evaluation against hepatocellular carcinoma cell line (HepG 2) compared to sorafenib (IC50: 4.51µM). Moreover, human skin fibroblast (HSF) was used to investigate the effect of KA5 on normal cell lines, (IC50: 5.53µM). The presented biological evaluations resulted in better understanding of structure-activity relationship for 1, 3, 4-trisubstituted pyrazoles and revealed a great opportunity for more investigations for novel pyrazole-containing anticancer agents.


Anti-Bacterial Agents , Antineoplastic Agents , Pyrazoles , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Hep G2 Cells , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Sorafenib/pharmacology , Fibroblasts/drug effects , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Niacinamide/chemical synthesis , Niacinamide/chemistry , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects
6.
Bioorg Chem ; 147: 107413, 2024 Jun.
Article En | MEDLINE | ID: mdl-38696844

Cyclin-dependent kinase 2 (CDK2) is a vital protein for controlling cell cycle progression that is critically associated with various malignancies and its inhibition could offer a convenient therapeutic approach in designing anticancer remedies. Consequently, this study aimed to design and synthesize new CDK2 inhibitors featuring roscovitine as a template model. The purine ring of roscovitine was bioisosterically replaced with the pyrazolo[3,4-d]pyrimidine scaffold, in addition to some modifications in the side chains. A preliminary molecular docking study for the target chemotypes in the CDK2 binding domain revealed their ability to accomplish similar binding patterns and interactions to that of the lead compound roscovitine. Afterwards, synthesis of the new derivatives was accomplished. Then, the initial anticancer screening at a single dose by the NCI revealed that compounds 7a, 9c, 11c, 17a and 17b achieved the highest GI% values reaching up to 150 % indicating their remarkable activity. These derivatives were subsequently selected to undertake five-dose testing, where compounds 7a, 9c, 11c and 17a unveiled the most pronounced activity against almost the full panel with GI50 ranges; 1.41-28.2, 0.116-2.39, 0.578-60.6 and 1.75-42.4 µM, respectively and full panel GI50 (MG-MID); 8.24, 0.6, 2.46 and 6.84 µM, respectively. CDK2 inhibition assay presented compounds 7a and 9c as the most potent inhibitors with IC50 values of 0.262 and 0.281 µM, respectively which are nearly 2.4 folds higher than the reference ligand roscovitine (IC50 = 0.641 µM). Besides, flow cytometric analysis on the most susceptible and safe cell lines depicted that 7a caused cell cycle arrest at G1/S phase in renal cancer cell line (RXF393) while 9c led to cell growth arrest at S phase in breast cancer cell line (T-47D) along with pronounced apoptotic induction in the mentioned cell lines. These findings afforded new anticancer pyrazolo[3,4-d]pyrimidine, roscovitine analogs, acting via CDK2 inhibition.


Antineoplastic Agents , Cell Proliferation , Cyclin-Dependent Kinase 2 , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Protein Kinase Inhibitors , Pyrazoles , Pyrimidines , Roscovitine , Humans , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Roscovitine/pharmacology , Roscovitine/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Purines/pharmacology , Purines/chemistry , Purines/chemical synthesis
7.
Molecules ; 29(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38792163

To further extend the structure-activity relationships (SARs) of 5-aminopyrazoles (5APs) and identify novel compounds able to interfere with inflammation, oxidative stress, and tumorigenesis, 5APs 1-4 have been designed and prepared. Some chemical modifications have been inserted on cathecol function or in aminopyrazole central core; in detail: (i) smaller, bigger, and more lipophilic substituents were introduced in meta and para positions of catechol portion (5APs 1); (ii) a methyl group was inserted on C3 of the pyrazole scaffold (5APs 2); (iii) a more flexible alkyl chain was inserted on N1 position (5APs 3); (iv) the acylhydrazonic linker was moved from position 4 to position 3 of the pyrazole scaffold (5APs 4). All new derivatives 1-4 have been tested for radical scavenging (DPPH assay), anti-aggregating/antioxidant (in human platelets) and cell growth inhibitory activity (MTT assay) properties. In addition, in silico pharmacokinetics, drug-likeness properties, and toxicity have been calculated. 5APs 1 emerged to be promising anti-proliferative agents, able to suppress the growth of specific cancer cell lines. Furthermore, derivatives 3 remarkably inhibited ROS production in platelets and 5APs 4 showed interesting in vitro radical scavenging properties. Overall, the collected results further confirm the pharmaceutical potentials of this class of compounds and support future studies for the development of novel anti-proliferative and antioxidant agents.


Antineoplastic Agents , Antioxidants , Pyrazoles , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Structure-Activity Relationship , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Structure
8.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791130

The increase in multi-drug resistant Candida strains has caused a sharp rise in life-threatening fungal infections in immunosuppressed patients, including those with SARS-CoV-2. Novel antifungal drugs are needed to combat multi-drug-resistant yeasts. This study aimed to synthesize a new series of 2-oxazolines and evaluate the ligands in vitro for the inhibition of six Candida species and in silico for affinity to the CYP51 enzymes (obtained with molecular modeling and protein homology) of the same species. The 5-(1,3-diphenyl-1H-pyrazol-4-yl)-4-tosyl-4,5-dihydrooxazoles 6a-j were synthesized using the Van Leusen reaction between 1,3-diphenyl-4-formylpyrazoles 4a-j and TosMIC 5 in the presence of K2CO3 or KOH without heating, resulting in short reaction times, high compound purity, and high yields. The docking studies revealed good affinity for the active site of the CYP51 enzymes of the Candida species in the following order: 6a-j > 4a-j > fluconazole (the reference drug). The in vitro testing of the compounds against the Candida species showed lower MIC values for 6a-j than 4a-j, and for 4a-j than fluconazole, thus correlating well with the in silico findings. According to growth rescue assays, 6a-j and 4a-j (like fluconazole) inhibit ergosterol synthesis. The in silico toxicity assessment evidenced the safety of compounds 6a-j, which merit further research as possible antifungal drugs.


Antifungal Agents , Candida , Microbial Sensitivity Tests , Molecular Docking Simulation , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida/drug effects , Humans , Oxazoles/chemistry , Oxazoles/pharmacology , Oxazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Computer Simulation , SARS-CoV-2/drug effects
9.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791418

In a screen of over 200 novel pyrazole compounds, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl)ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a potential anticancer compound. GeGe-3 displays potent anti-angiogenic properties through the presumptive targeting of the protein kinase DMPK1 and the Ca2+-binding protein calreticulin. We further explored the anticancer potential of GeGe-3 on a range of established cancer cell lines, including PC3 (prostate adenocarcinoma), SKMEL-28 (cutaneous melanoma), SKOV-3 (ovarian adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MDA-MB231, SKBR3, MCF7 (breast adenocarcinoma), A549 (lung carcinoma), and HeLa (cervix epithelioid carcinoma). At concentrations in the range of 10 µM, GeGe-3 significantly restricted cell proliferation and metabolism. GeGe-3 also reduced PC3 cell migration in a standard wound closure and trans-well assay. Together, these results confirm the anticancer potential of GeGe-3 and underline the need for more detailed pre-clinical investigations into its molecular targets and mechanisms of action.


Antineoplastic Agents , Cell Movement , Cell Proliferation , Pyrazoles , Humans , Pyrazoles/pharmacology , Pyrazoles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Urea/pharmacology , Urea/chemistry , Urea/analogs & derivatives
10.
J Enzyme Inhib Med Chem ; 39(1): 2343352, 2024 Dec.
Article En | MEDLINE | ID: mdl-38700244

In the last decade, an increasing interest in compounds containing pyrazolo[4,3-e][1,2,4]triazine moiety is observed. Therefore, the aim of the research was to synthesise a novel sulphonyl pyrazolo[4,3-e][1,2,4]triazines (2a, 2b) and pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulphonamide derivatives (3a, 3b) to assess their anticancer activity. The MTT assay showed that 2a, 2b, 3a, 3b have stronger cytotoxic activity than cisplatin in both breast cancer cells (MCF-7 and MDA-MB-231) and exhibited weaker effect on normal breast cells (MCF-10A). The obtained results showed that the most active compound 3b increased apoptosis via caspase 9, caspase 8, and caspase 3/7. It is worth to note that compound 3b suppressed NF-κB expression and promoted p53, Bax, and ROS which play important role in activation of apoptosis. Moreover, our results confirmed that compound 3b triggers autophagy through increased formation of autophagosomes, expression of beclin-1 and mTOR inhibition. Thus, our study defines a possible mechanism underlying 3b-induced anti-cancer activity against breast cancer cell lines.


Antineoplastic Agents , Apoptosis , Breast Neoplasms , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Sulfonamides , Triazines , Humans , Triazines/pharmacology , Triazines/chemistry , Triazines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Structure-Activity Relationship , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Molecular Structure , Cell Proliferation/drug effects , Apoptosis/drug effects , Tumor Cells, Cultured , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Female , Cell Line, Tumor , Spheroids, Cellular/drug effects
11.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731916

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Pyrazoles , Trypanosoma cruzi , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Humans , Trypanosoma cruzi/drug effects , Antiparasitic Agents/pharmacology , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/chemistry , Drug Design , Leishmania infantum/drug effects , Structure-Activity Relationship , Trypanosoma brucei rhodesiense/drug effects , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry
12.
Luminescence ; 39(5): e4760, 2024 May.
Article En | MEDLINE | ID: mdl-38738510

The present communication reports on the synthesis of a novel methyl-pyridone azo fluorescent tag (MPAFT) were proven through 1H (NMR), FT-IR, UV-vis, and high-resolution mass spectrometry. The quantum chemical parameters of MPAFT were evaluated using density functional theory (DFT) analysis. It was further investigated for its latent fingerprint (LFPs) in various surfaces and anticounterfeiting applications. By exposing Level I-Level III, ridge features to UV light with a wavelength of 365 nm, a bioimaging investigation has also demonstrated the potential of MPAFT's emission behaviour. The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at MPAFT/MGCE (modified glassy carbon electrode) were used to explore the electrochemical sensitivity and reliable detection of dopamine (DA) in neutral PBS (pH 7) electrolyte solution, and the results show good sensitivity and detection. The lower detection limit for LSV was 0.81 µM under optimum conditions.


Dopamine , Electrochemical Techniques , Fluorescent Dyes , Pyrazoles , Pyridones , Pyridones/chemistry , Dopamine/analysis , Dopamine/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Pyrazoles/chemistry , Humans , Molecular Structure , Density Functional Theory , Optical Imaging , Photochemical Processes
13.
Eur J Med Chem ; 272: 116460, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38704943

It has been reported that 4,5-dihydropyrazole and thiazole derivatives have many biological functions, especially in the aspect of anti-inflammation. According to the strategy of pharmacophore combination, we introduced thiazolinone and dihydropyrazole moiety into steroid skeleton to design and synthesize a novel series of D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives, and assessed their in vitro anti-inflammatory profiles against Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. The anti-inflammatory activities assay demonstrated that compound 12e was considered as the most effective anti-inflammatory drug, which suppressed the expression of pro-inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), it also dose-dependently inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 macrophage cells. Furthermore, the results of the Western blot analysis showed a correlation between the inhibition of the Nuclear factor-kappa B (NF-κB) and Mitogen-activated protein kinases (MAPKs) signaling pathways and the suppressive effects of compound 12e on pro-inflammatory cytokines. Molecular docking studies of compound 12e into the COX-2 protein receptor (PDB ID: 5IKQ) active site was performed to rationalize their COX-2 inhibitory potency. The results were found to be in line with the biological findings as they exerted more favorable interactions compared to that of dexamethasone (DXM), explaining their remarkable COX-2 inhibitory activity. The findings revealed that these candidates could be identified as potent anti-inflammatory agents, compound 12e could be a promising drug for the treatment of inflammatory diseases.


Cyclooxygenase 2 , Down-Regulation , Drug Design , Lipopolysaccharides , Macrophages , NF-kappa B , Nitric Oxide Synthase Type II , Pyrazoles , Animals , Mice , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , RAW 264.7 Cells , Cyclooxygenase 2/metabolism , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Structure-Activity Relationship , Pyrazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/chemical synthesis , Macrophages/drug effects , Macrophages/metabolism , Down-Regulation/drug effects , Molecular Structure , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Models, Molecular , Dose-Response Relationship, Drug , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Steroids/pharmacology , Steroids/chemistry , Steroids/chemical synthesis , Molecular Docking Simulation
14.
J Agric Food Chem ; 72(21): 11949-11957, 2024 May 29.
Article En | MEDLINE | ID: mdl-38757770

As the first marketed phenylpyrazole insecticide, fipronil exhibited remarkable broad-spectrum insecticidal activity. However, it poses a significant threat to aquatic organisms and bees due to its high toxicity. Herein, 35 phenylpyrazole derivatives containing a trifluoroethylthio group on the 4 position of the pyrazole ring were designed and synthesized. The predicted physicochemical properties of all of the compounds were within a reasonable range. The biological assay results revealed that compound 7 showed 69.7% lethality against Aedes albopictus (A. albopictus) at the concentration of 0.125 mg/L. Compounds 7, 7g, 8d, and 10j showed superior insecticidal activity for the control of Plutella xylostella (P. xylostella). Notably, compound 7 showed similar insecticidal activity against Aphis craccivora (A. craccivora) compared with fipronil. Potential surface calculation and molecular docking suggested that different lipophilicity and binding models to the Musca domestica (M. domestica) gamma-aminobutyric acid receptors may be responsible for the decreased activity of the tested derivatives. Toxicity tests indicated that compound 8d (LC50 = 14.28 mg/L) induced obviously 14-fold lower toxicity than fipronil (LC50 = 1.05 mg/L) on embryonic-juvenile zebrafish development.


Aedes , Drug Design , Houseflies , Insecticides , Molecular Docking Simulation , Pyrazoles , Animals , Insecticides/chemistry , Insecticides/chemical synthesis , Insecticides/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Aedes/drug effects , Aedes/growth & development , Structure-Activity Relationship , Houseflies/drug effects , Houseflies/growth & development , Aphids/drug effects , Aphids/growth & development , Moths/drug effects , Moths/growth & development , Molecular Structure , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Zebrafish/embryology
15.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Article En | MEDLINE | ID: mdl-38720452

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Drug Design , Enzyme Inhibitors , Fungicides, Industrial , Oximes , Pyrazoles , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/chemistry , Succinate Dehydrogenase/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Oximes/chemistry , Oximes/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/metabolism , Molecular Docking Simulation , Rhizoctonia/drug effects , Ethers/chemistry , Ethers/pharmacology , Molecular Structure
16.
Bioorg Chem ; 147: 107403, 2024 Jun.
Article En | MEDLINE | ID: mdl-38691909

A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).


Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , Pyrazoles , Thiourea , Urea , Vascular Endothelial Growth Factor Receptor-2 , Humans , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Molecular Structure , Urea/pharmacology , Urea/chemistry , Urea/analogs & derivatives , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Drug Discovery , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis
17.
J Agric Food Chem ; 72(22): 12469-12477, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38771932

Photopharmacology can be implemented in a way of regulating drug activities by light-controlling the molecular configuations. Three photochromic ligands (PCLs) that bind on one or two sites of GABARs and nAChRs were reported here. These multiphoton PCLs, including FIP-AB-FIP, IMI-AB-FIP, and IMI-AB-IMI, are constructed with an azobenzene (AB) bridge that covalently connects two fipronil (FIP) and imidacloprid (IMI) molecules. Interestingly, the three PCLs as well as FIP and IMI showed great insecticidal activities against Aedes albopictus larvae and Aphis craccivora. IMI-AB-FIP in both trans/cis isomers can be reversibly interconverted depending on light, accompanied by insecticidal activity decrease or increase by 1.5-2.3 folds. In addition, IMI-AB-FIP displayed synergistic effects against A. craccivora (LC50, IMI-AB-FIP = 14.84-22.10 µM, LC50, IMI-AB-IMI = 210.52-266.63 µM, LC50, and FIP-AB-FIP = 36.25-51.04 µM), mainly resulting from a conceivable reason for simultaneous targeting on both GABARs and nAChRs. Furthermore, modulations of wiggler-swimming behaviors and cockroach neuron function were conducted and the results indirectly demonstrated the ligand-receptor interactions. In other words, real-time regulations of receptors and insect behaviors can be spatiotemporally achieved by our two-photon PCLs using light.


Aedes , Azo Compounds , Insecticides , Neonicotinoids , Nitro Compounds , Pyrazoles , Animals , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Azo Compounds/chemistry , Azo Compounds/pharmacology , Neonicotinoids/chemistry , Neonicotinoids/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Aedes/drug effects , Larva/drug effects , Larva/growth & development , Insect Proteins/chemistry , Insect Proteins/metabolism , Behavior, Animal/drug effects , Light , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, GABA/metabolism , Receptors, GABA/chemistry
18.
Metallomics ; 16(6)2024 Jun 04.
Article En | MEDLINE | ID: mdl-38802123

New binuclear copper(II) [Cu(II)] tetraligand complexes (six examples) with sulfanylpyrazole ligands were synthesized. Electron spin resonance (ESR) studies have shown that in solution the complexes are transformed to the mononuclear one. Fungicidal properties against Candida albicans were found for the Cu complexes with benzyl and phenyl substituents. An in vitro evaluation of the cytotoxic properties of Cu chelates against HEK293, Jurkat, MCF-7, and THP-1 cells identified the Cu complex with the cyclohexylsulfanyl substituent in the pyrazole core as the lead compound, whereas the Cu complex without a sulfur atom in the pyrazole ligand had virtually no cytotoxic or fungicidal activity. The lead Cu(II) complex was more active than cisplatin. Effect of the S-containing Cu complex on apoptosis and cell cycle distribution has been investigated as well.


Antifungal Agents , Candida albicans , Coordination Complexes , Copper , Pyrazoles , Copper/chemistry , Copper/pharmacology , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Ligands , Candida albicans/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Crystallography, X-Ray , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cytostatic Agents/pharmacology , Cytostatic Agents/chemistry , Cytostatic Agents/chemical synthesis
19.
Bioorg Chem ; 147: 107363, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657527

Environment-benign, multicomponent synthetic methodologies are vital in modern pharmaceutical research and facilitates multi-targeted drug development via synergistic approach. Herein, we reported green and efficient synthesis of pyrano[2,3-c]pyrazole fused spirooxindole linked 1,2,3-triazoles using a tea waste supported copper catalyst (TWCu). The synthetic approach involves a one-pot, five-component reaction using N-propargylated isatin, hydrazine hydrate, ethyl acetoacetate, malononitrile/ethyl cyanoacetate and aryl azides as model substrates. Mechanistically, the reaction was found to proceed via in situ pyrazolone formation followed by Knoevenagel condensation, azide alkyne cycloaddition and Michael's addition reactions. The molecules were developed using structure-based drug design. The primary goal is to identifying anti-oxidant molecules with potential ability to modulate α-amylase and DPP4 (dipeptidyl-peptidase 4) activity. The anti-oxidant analysis, as determined via DPPH, suggested that the synthesized compounds, A6 and A10 possessed excellent anti-oxidant potential compared to butylated hydroxytoluene (BHT). In contrast, compounds A3, A5, A8, A9, A13, A15, and A18 were found to possess comparable anti-oxidant potential. Among these, A3 and A13 possessed potential α-amylase inhibitory activity compared to the acarbose, and A3 further emerged as dual inhibitors of both DPP4 and α-amylase with anti-oxidant potential. The relationship of functionalities on their anti-oxidant and enzymatic inhibition was explored in context to their SAR that was further corroborated using in silico techniques and enzyme kinetics.


Antioxidants , Dipeptidyl Peptidase 4 , Hypoglycemic Agents , Pyrazoles , Triazoles , alpha-Amylases , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Structure-Activity Relationship , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Dipeptidyl Peptidase 4/metabolism , Molecular Structure , Humans , Dose-Response Relationship, Drug , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Molecular Docking Simulation , Picrates/antagonists & inhibitors , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Benzopyrans , Nitriles
20.
J Biochem Mol Toxicol ; 38(4): e23704, 2024 Apr.
Article En | MEDLINE | ID: mdl-38588035

A series of novel pyrazole-dicarboxamides were synthesized from pyrazole-3,4-dicarboxylic acid chloride and various primary and secondary sulfonamides. The structures of the new compounds were confirmed by FT-IR, 1H-NMR, 13C-NMR, and HRMS. Then the inhibition effects of newly synthesized molecules on human erythrocyte hCA I and hCA II isoenzymes were investigated. Ki values of the compounds were in the range of 0.024-0.496 µM for hCA I and 0.006-5.441 µM for hCA II. Compounds 7a and 7i showed nanomolar level of inhibition of hCA II, and these compounds exhibited high selectivity for this isoenzyme. Molecular docking studies were performed between the most active compounds 7a, 7b, 7i, and the reference inhibitor AAZ and the hCAI and hCAII to investigate the binding mechanisms between the compounds and the isozymes. These compounds showed better interactions than the AAZ. ADMET and drug-likeness analyses for the compounds have shown that the compounds can be used pharmacologically in living organisms.


Carbonic Anhydrase I , Carbonic Anhydrase Inhibitors , Humans , Carbonic Anhydrase Inhibitors/chemistry , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Carbonic Anhydrase II , Spectroscopy, Fourier Transform Infrared , Pyrazoles/chemistry , Sulfonamides/chemistry , Isoenzymes , Sulfanilamide
...