Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.617
Filter
1.
Sci Adv ; 10(31): eadn7979, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093975

ABSTRACT

We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.


Subject(s)
Biofilms , Microbial Sensitivity Tests , Pyridones , Soft Tissue Infections , Streptococcal Infections , Streptococcus pyogenes , Streptococcus pyogenes/drug effects , Animals , Soft Tissue Infections/drug therapy , Soft Tissue Infections/microbiology , Biofilms/drug effects , Streptococcal Infections/drug therapy , Streptococcal Infections/microbiology , Mice , Pyridones/pharmacology , Pyridones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Disease Models, Animal , Thiazoles/pharmacology , Thiazoles/chemistry , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/microbiology , Female , Wound Healing/drug effects , Humans
2.
J Med Chem ; 67(14): 12366-12385, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39007759

ABSTRACT

The dominant role of non-homologous end-joining in the repair of radiation-induced double-strand breaks identifies DNA-dependent protein kinase (DNA-PK) as an excellent target for the development of radiosensitizers. We report the discovery of a new class of imidazo[4,5-c]pyridine-2-one DNA-PK inhibitors. Structure-activity studies culminated in the identification of 78 as a nM DNA-PK inhibitor with excellent selectivity for DNA-PK compared to related phosphoinositide 3-kinase (PI3K) and PI3K-like kinase (PIKK) families and the broader kinome, and displayed DNA-PK-dependent radiosensitization of HAP1 cells. Compound 78 demonstrated robust radiosensitization of a broad range of cancer cells in vitro, displayed high oral bioavailability, and sensitized colorectal carcinoma (HCT116/54C) and head and neck squamous cell carcinoma (UT-SCC-74B) tumor xenografts to radiation. Compound 78 also provided substantial tumor growth inhibition of HCT116/54C tumor xenografts in combination with radiation. Compound 78 represents a new, potent, and selective class of DNA-PK inhibitors with significant potential as radiosensitizers for cancer treatment.


Subject(s)
DNA-Activated Protein Kinase , Protein Kinase Inhibitors , Radiation-Sensitizing Agents , Humans , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemical synthesis , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/chemical synthesis , Structure-Activity Relationship , Mice , Cell Line, Tumor , Imidazoles/pharmacology , Imidazoles/chemistry , Imidazoles/chemical synthesis , Imidazoles/pharmacokinetics , Pyridones/pharmacology , Pyridones/chemistry , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Xenograft Model Antitumor Assays , Mice, Nude , Rats
3.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000539

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was -93.25 ± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.


Subject(s)
Isocitrate Dehydrogenase , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacology
4.
J Agric Food Chem ; 72(28): 15512-15522, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959331

ABSTRACT

Root-knot nematodes pose a serious threat to crops by affecting production and quality. Over a period of time, substantial work has been done toward the development of effective and environmentally benign nematicidal compounds. However, due to the inefficiencies of previously reported synthetics in achieving the target of safe, selective, and effective treatment, it is necessary to develop new efficacious and safer nematicidal agents considering human health and environment on top priority. This work aims to highlight the efficient and convenient l-proline catalyzed synthesis of pyrano[3,2-c]pyridone and their use as potential nematicidal agents. In vitro results of larval mortality and egg hatching inhibition revealed maximum nematicidal activity against Meloidogyne incognita from compounds 15b, 15m, and 15w with LC50 values of 28.8, 46.8, and 49.18 µg/mL at 48 h, respectively. Under similar conditions, pyrano[3,2-c]pyridones derivatives 15b (LC50 = 28.8 µg/mL) was found at par with LC50 (26.92 µg/mL) of commercial nematicide carbofuran. The in vitro results were further validated with in silico studies with the most active compound 15b nematicidal within the binding to the pocket of acetylcholine esterase (AChE). In docking, binding free energy values for compound 15b were found to be -6.90 kcal/mol. Results indicated that pyrano[3,2-c]pyridone derivatives have the potential to control M. incognita.


Subject(s)
Antinematodal Agents , Drug Design , Molecular Docking Simulation , Pyridones , Tylenchoidea , Tylenchoidea/drug effects , Animals , Antinematodal Agents/pharmacology , Antinematodal Agents/chemistry , Antinematodal Agents/chemical synthesis , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Structure-Activity Relationship , Larva/drug effects , Larva/growth & development , Plant Diseases/parasitology , Molecular Structure
5.
J Nat Prod ; 87(7): 1746-1753, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-38958274

ABSTRACT

Mycoplasma genitalium is a sexually transmitted bacterium associated with urogenital disease syndromes in the US and worldwide. The global rise in drug resistance in M. genitalium necessitates the development of novel drugs to treat this pathogen. To address this need, we have screened extracts from a library of fungal isolates assembled through the University of Oklahoma Citizen Science Soil Collection Program. Analysis of one of the bioactive extracts using bioassay-guided fractionation led to the purification of the compound PF1140 (1) along with a new and several other known pyridones. The N-hydroxy pyridones are generally regarded as siderophores with high binding affinity for iron(III) under physiological conditions. Results from UV-vis absorption spectroscopy-based titration experiments revealed that 1 complexes with Fe3+. As M. genitalium does not utilize iron, we propose that the PF1140-iron complex induces cytotoxicity by facilitating the cellular uptake of iron, which reacts with endogenous hydrogen peroxide to produce toxic hydroxyl radicals.


Subject(s)
Iron , Mycoplasma genitalium , Mycoplasma genitalium/metabolism , Mycoplasma genitalium/drug effects , Iron/metabolism , Molecular Structure , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pyridones/pharmacology , Pyridones/chemistry , Fungi/chemistry , Fungi/metabolism , Ferric Compounds/chemistry , Hydrogen Peroxide , Siderophores/pharmacology , Siderophores/chemistry
6.
Eur J Med Chem ; 276: 116639, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38964259

ABSTRACT

Since influenza virus RNA polymerase subunit PAN is a dinuclear Mn2+ dependent endonuclease, metal-binding pharmacophores (MBPs) with Mn2+ coordination has been elucidated as a promising strategy to develop PAN inhibitors for influenza treatment. However, few attentions have been paid to the relationship between the optimal arrangement of the donor atoms in MBPs and anti-influenza A virus (IAV) efficacy. Given that, the privileged hydroxypyridinones fusing a seven-membered lactam ring with diverse side chains, chiral centers or cyclic systems were designed and synthesized. A structure-activity relationship study resulted in a hit compound 16l (IC50 = 2.868 ± 0.063 µM against IAV polymerase), the seven-membered lactam ring of which was fused a pyrrolidine ring. Further optimization of the hydrophobic binding groups on 16l afforded a lead compound (R, S)-16s, which exhibited a 64-fold more potent inhibitory activity (IC50 = 0.045 ± 0.002 µM) toward IAV polymerase. Moreover, (R, S)-16s demonstrated a potent anti-IAV efficacy (EC50 = 0.134 ± 0.093 µM) and weak cytotoxicity (CC50 = 15.35 µM), indicating the high selectivity of (R, S)-16s. Although the lead compound (R, S)-16s exhibited a little weaker activity than baloxavir, these findings illustrated the utility of a metal coordination-based strategy in generating novel MBPs with potent anti-influenza activity.


Subject(s)
Antiviral Agents , Drug Design , Endonucleases , Influenza A virus , Lactams , Pyridones , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Lactams/chemistry , Lactams/pharmacology , Lactams/chemical synthesis , Structure-Activity Relationship , Endonucleases/antagonists & inhibitors , Endonucleases/metabolism , Pyridones/pharmacology , Pyridones/chemistry , Pyridones/chemical synthesis , Influenza A virus/drug effects , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Dogs , Madin Darby Canine Kidney Cells , Animals
7.
J Org Chem ; 89(14): 9937-9948, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38985331

ABSTRACT

Baloxavir marboxil (1; BXM) is a potent drug used for treating influenza infections. The current synthetic route to BXM (1) is based on optical resolution; however, this method results in the loss of nearly 50% of the material. This study aimed to describe an efficient and simpler method for the synthesis of BXM. We achieved a stereoselective synthesis of BXM (1). The tricyclic triazinanone core possessing a chiral center was prepared via diastereoselective cyclization utilizing the readily available amino acid l-serine. The carboxyl moiety derived from l-serine was removed via photoredox decarboxylation under mild conditions to furnish the chiral tricyclic triazinanone core ((R)-14). The synthetic route demonstrated herein provides an efficient and atomically economical method for preparing this potent anti-influenza agent.


Subject(s)
Dibenzothiepins , Serine , Stereoisomerism , Cyclization , Serine/chemistry , Molecular Structure , Dibenzothiepins/chemistry , Dibenzothiepins/chemical synthesis , Triazines/chemistry , Triazines/chemical synthesis , Oxidation-Reduction , Decarboxylation , Morpholines/chemistry , Morpholines/chemical synthesis , Pyridones/chemistry , Pyridones/chemical synthesis , Photochemical Processes , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry
8.
Bioorg Med Chem Lett ; 111: 129902, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39059564

ABSTRACT

Integrase strand transfer inhibitors (INSTIs) are the most prescribed anchor drug in antiretroviral therapy. Today, there is an increasing need for long-acting treatment of HIV-1 infection. Improving drug pharmacokinetics and anti-HIV-1 activity are key to developing more robust inhibitors suitable for long-acting formulations, but 2nd-generation INSTIs have chiral centers, making it difficult to conduct further exploration. In this study, we designed aza-tricyclic and aza-bicyclic carbamoyl pyridone scaffolds which are devoid of the problematic hemiaminal stereocenter present in dolutegravir (DTG). This scaffold hopping made it easy to introduce several substituents, and evolving structure-activity studies using these scaffolds resulted in several leads with promising properties.


Subject(s)
Drug Design , HIV Integrase Inhibitors , HIV Integrase , HIV-1 , Pyridones , Humans , Aza Compounds/chemistry , Aza Compounds/pharmacology , Aza Compounds/chemical synthesis , Dose-Response Relationship, Drug , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/chemical synthesis , HIV-1/drug effects , Molecular Structure , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Structure-Activity Relationship , Integrases/chemistry , Integrases/metabolism , Integrases/pharmacokinetics
9.
Bioorg Med Chem Lett ; 109: 129849, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38876177

ABSTRACT

Clinical studies have shown that inhibitors of bromodomain and extra-terminal domain (BET) proteins, particularly BRD4, have antitumor activity and efficacy. The BET protein has two domains, BD1 and BD2, and we previously focused on BD1 and reported orally bioavailable BD1-selective inhibitors. In this study, we obtained a BD1 inhibitor, a more potent and highly selective pyrazolopyridone derivative 13a, and confirmed its in vivo efficacy.


Subject(s)
Pyridones , Humans , Administration, Oral , Structure-Activity Relationship , Animals , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Pyridones/pharmacokinetics , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Drug Discovery , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Molecular Structure , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Mice , Protein Domains , Dose-Response Relationship, Drug , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Rats , Bromodomain Containing Proteins
10.
Biomaterials ; 311: 122670, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38941685

ABSTRACT

After orthopedic surgeries, such as hip replacement, many patients are prone to developing deep vein thrombosis (DVT), which in severe cases can lead to fatal pulmonary embolism or major bleeding. Clinical intervention with high-dose anticoagulant therapy inevitably carries the risk of bleeding. Therefore, a targeted drug delivery system that adjusts local DVT lesions and potentially reduces drug dosage and toxic side effects important. In this study, we developed a targeted drug delivery platelet-derived nanoplatform (AMSNP@PM-rH/A) for DVT treatment that can simultaneously deliver a direct thrombin inhibitor (DTI) Recombinant Hirudin (rH), and the Factor Xa inhibitor Apixaban (A) by utilizing Aminated mesoporous silica nanoparticles (AMSNP). This formulation exhibits improved biocompatibility and blood half-life and can effectively eliminate deep vein thrombosis lesions and achieve therapeutic effects at half the dosage. Furthermore, we employed various visualization techniques to capture the targeted accumulation and release of a platelet membrane (PM) coating in deep vein thrombosis and explored its potential targeting mechanism.


Subject(s)
Blood Platelets , Hirudins , Pyridones , Venous Thrombosis , Venous Thrombosis/drug therapy , Blood Platelets/drug effects , Blood Platelets/metabolism , Pyridones/chemistry , Pyridones/therapeutic use , Pyridones/pharmacology , Animals , Humans , Hirudins/chemistry , Hirudins/pharmacology , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Nanoparticles/chemistry , Drug Delivery Systems , Nanotechnology/methods , Male , Silicon Dioxide/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice , Cell Membrane/metabolism , Cell Membrane/drug effects , Recombinant Proteins/therapeutic use , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/chemistry , Factor Xa Inhibitors/pharmacology
11.
Acta Chim Slov ; 71(2): 264-287, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38919094

ABSTRACT

Combined in silico strategy for molecular mechanisms exploration of a series 3H-thiazolo[4,5-b]pyridin-2-ones exhibiting strong anti-exudative action through QSAR analysis, molecular docking and pharmacophore modelling is reported. GA-ML technique was used for QSAR models generation with 2D autocorrelation descriptors. One- and two-parameter regressions revealed that certain structural patterns or heteroatoms contribute mutually to the anti-exudative activity potentiation. Possible action mechanisms were discovered through flexible docking simulations with cyclooxygenase pathway enzymes (COX-1, COX-2, mPGES-1). Docking results indicated the possibility of stable complexes formation with the effective docking scores and proper orientation of ligands within the enzymes active sites. Pharmacophore modelling was carried out using protein-ligand interaction fingerprints methodology. Two- and three-centre 3D pharmacophore queries were constructed. Their analysis indicated the functionality of bicyclic thiazolopyridine scaffold proved by the steric placement of heteroatoms in the corresponding pharmacophore centres.


Subject(s)
Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Thiazoles , Thiazoles/chemistry , Thiazoles/pharmacology , Computer Simulation , Pyridones/pharmacology , Pyridones/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Cyclooxygenase 2/metabolism , Inflammation/drug therapy
12.
Int J Nanomedicine ; 19: 5681-5703, 2024.
Article in English | MEDLINE | ID: mdl-38882541

ABSTRACT

Introduction: Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization. Rationale: To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds. Results: The fabricated drug-loaded fibers exhibited diameters of 443 ± 67 nm for moxifloxacin/pirfenidone nanofibers and 488 ± 92 nm for fusidic acid/pirfenidone nanofibers. The encapsulation efficiency, drug loading and drug release studies for the moxifloxacin/pirfenidone nanofibers were found to be 70 ± 3% and 20 ± 1 µg/mg, respectively, for moxifloxacin, and 96 ± 6% and 28 ± 2 µg/mg, respectively, for pirfenidone, with a complete release of both drugs within 24 hours, whereas the fusidic acid/pirfenidone nanofibers were found to be 95 ± 6% and 28 ± 2 µg/mg, respectively, for fusidic acid and 102 ± 5% and 30 ± 2 µg/mg, respectively, for pirfenidone, with a release rate of 66% for fusidic acid and 80%, for pirfenidone after 24 hours. The efficacy of the prepared nanofiber formulations in accelerating wound healing was evaluated using an induced diabetic rat model. All tested formulations showed an earlier complete closure of the wound compared to the controls, which was also supported by the histopathological assessment. Notably, the combination of fusidic acid and pirfenidone nanofibers demonstrated wound healing acceleration on day 8, earlier than all tested groups. Conclusion: These findings highlight the potential of the drug-loaded nanofibrous system as a promising medicated wound dressing for diabetic foot applications.


Subject(s)
Anti-Bacterial Agents , Bandages , Diabetic Foot , Drug Liberation , Fusidic Acid , Moxifloxacin , Nanofibers , Pyridones , Wound Healing , Diabetic Foot/drug therapy , Diabetic Foot/therapy , Nanofibers/chemistry , Animals , Moxifloxacin/administration & dosage , Moxifloxacin/pharmacology , Moxifloxacin/chemistry , Moxifloxacin/pharmacokinetics , Wound Healing/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/pharmacokinetics , Pyridones/administration & dosage , Fusidic Acid/administration & dosage , Fusidic Acid/pharmacology , Fusidic Acid/chemistry , Fusidic Acid/pharmacokinetics , Rats , Male , Diabetes Mellitus, Experimental , Povidone/chemistry , Rats, Sprague-Dawley
13.
FEBS Lett ; 598(15): 1919-1936, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38789398

ABSTRACT

Nanotechnology offers promising avenues for enhancing drug delivery systems, particularly in HIV-1 treatment. This study investigates a nanoemulsified formulation combining epigallocatechin gallate (EGCG) with dolutegravir (DTG) for managing HIV-1 infection. The combinatorial interaction between EGCG and DTG was explored through cellular, enzymatic, and molecular studies. In vitro assays demonstrated the potential of a dual drug-loaded nanoemulsion, NE-DTG-EGCG, in inhibiting HIV-1 replication, with EGCG serving as a supplementary treatment containing DTG. In silico molecular interaction studies highlighted EGCG's multifaceted inhibitory potential against HIV-1 integrase and reverse transcriptase enzymes. Further investigations are needed to validate the formulation's efficacy across diverse contexts. Overall, by integrating nanotechnology into drug delivery systems, this study represents a significant advancement in managing HIV-1 infection.


Subject(s)
Catechin , HIV-1 , Heterocyclic Compounds, 3-Ring , Oxazines , Piperazines , Pyridones , Virus Replication , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Pyridones/pharmacology , Pyridones/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/chemistry , Piperazines/pharmacology , Piperazines/chemistry , Oxazines/pharmacology , HIV-1/drug effects , Humans , Virus Replication/drug effects , Emulsions , HIV Integrase/metabolism , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/chemistry , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Nanoparticles/chemistry , HIV Infections/drug therapy , HIV Infections/virology
14.
J Labelled Comp Radiopharm ; 67(8): 280-287, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38744538

ABSTRACT

A key aspect for the applicability of 89Zr-radioimmunoconjugates is inert modification and radiolabeling. The two commercially available bifunctional variants of the siderophore desferrioxamine (DFO), Fe-DFO-N-suc-TFP-ester and p-NCS-Bz-DFO, are most often used for clinical 89Zr-immuno-PET. The use of Fe-DFO-N-suc-TFP-ester is advantageous with regard to higher radiolysis stability and more facile assessment of radiochemical purity as well as chelator-to-mAb ratio. However, not all mAbs withstand the Fe-removal step at relatively low pH (4-4.5) using EDTA, which is needed after conjugation to allow 89Zr labeling. In this study, it was investigated whether hydroxybenzyl ethylenediamine (HBED) or the clinically approved deferiprone (DFP) can serve as an alternative for EDTA to establish a pH-independent mild method for Fe-removal and thereby broaden the applicability of Fe-DFO-N-suc-TFP-ester. Carrier-added [59Fe]Fe-DFO-N-suc-TFP-ester was used for mAb modification to enable direct tracking of the Fe-removal efficiency under various conditions. Whereas incomplete Fe-removal with HBED was observed at pH 5 or higher, Fe-removal with DFP was possible at a broad pH range (4-9). This provides a mild, pH-independent method for Fe-removal, improving the applicability and attractiveness of Fe-DFO-N-suc-TFP-ester for 89Zr-mAb preparation.


Subject(s)
Deferoxamine , Iron , Positron-Emission Tomography , Radioisotopes , Zirconium , Zirconium/chemistry , Deferoxamine/chemistry , Radioisotopes/chemistry , Iron/chemistry , Positron-Emission Tomography/methods , Pyridones/chemistry , Deferiprone/chemistry , Immunoconjugates/chemistry , Radiopharmaceuticals/chemistry , Antibodies, Monoclonal/chemistry
15.
Bioorg Chem ; 147: 107419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703440

ABSTRACT

We formerly reported that EZH2 inhibitors sensitized HIF-1 inhibitor-resistant cells and inhibited HIF-1α to promote SUZ12 transcription, leading to enhanced EZH2 enzyme activity and elevated H3K27me3 levels, and conversely, inhibition of EZH2 promoted HIF-1α transcription. HIF-1α and EZH2 interacted to form a negative feedback loop that reinforced each other's activity. In this paper, a series of 2,2- dimethylbenzopyran derivatives containing pyridone structural fragments were designed and synthesized with DYB-03, a HIF-1α inhibitor previously reported by our group, and Tazemetostat, an EZH2 inhibitor approved by FDA, as lead compounds. Among these compounds, D-01 had significant inhibitory activities on HIF-1α and EZH2. In vitro experiments showed that D-01 significantly inhibited the migration of A549 cells, clone, invasion and angiogenesis. Moreover, D-01 had good pharmacokinetic profiles. All the results about compound D-01 could lay a foundation for the research and development of HIF-1α and EZH2 dual-targeting compounds.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Enhancer of Zeste Homolog 2 Protein , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Pyridones , Humans , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pyridones/chemistry , Pyridones/pharmacology , Pyridones/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Animals , Benzopyrans/chemistry , Benzopyrans/pharmacology , Benzopyrans/chemical synthesis , Cell Movement/drug effects
16.
Int J Biol Macromol ; 269(Pt 1): 132050, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777690

ABSTRACT

Solid dispersions (SDs) have emerged as a promising strategy to enhance the solubility and bioavailability of poorly soluble active pharmaceutical ingredients. However, SDs tend to recrystallize unless suitable excipients are utilized. This study aimed to facilitate the rational selection of polymers and formulation design by evaluating the impact of various polymers on the miscibility, and phase behavior of SDs using baloxavir marboxil (BXM) with a high crystallization tendency as a model drug. Meanwhile, the effects of these polymers on the solubility enhancement and recrystallization inhibition were also assessed. The results indicated that the miscibility limit of BXM for HPMCAS was around 40 % drug loading (DL), whereas for PVP, PVPVA, and HPMC approximately 20 % DL. The BXM-HPC system exhibited limited miscibility with DL of 10 % or higher. BXM SDs based on various polymers exhibited varying degrees of spontaneous phase separation once DL exceeded the miscibility limit. Interestingly, a correlation was discovered between the phase separation behavior and the ability of the polymer to inhibit recrystallization. BXM-HPMCAS SDs exhibited optimal dissolution performance, compared with other systems. In conclusion, the physicochemical properties of polymers significantly influence BXM SDs performance and the BXM-HPMCAS SDs might promote an efficient and stable drug delivery system.


Subject(s)
Crystallization , Hypromellose Derivatives , Solubility , Hypromellose Derivatives/chemistry , Polymers/chemistry , Pyridones/chemistry , Pyridones/pharmacology
17.
Luminescence ; 39(5): e4760, 2024 May.
Article in English | MEDLINE | ID: mdl-38738510

ABSTRACT

The present communication reports on the synthesis of a novel methyl-pyridone azo fluorescent tag (MPAFT) were proven through 1H (NMR), FT-IR, UV-vis, and high-resolution mass spectrometry. The quantum chemical parameters of MPAFT were evaluated using density functional theory (DFT) analysis. It was further investigated for its latent fingerprint (LFPs) in various surfaces and anticounterfeiting applications. By exposing Level I-Level III, ridge features to UV light with a wavelength of 365 nm, a bioimaging investigation has also demonstrated the potential of MPAFT's emission behaviour. The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at MPAFT/MGCE (modified glassy carbon electrode) were used to explore the electrochemical sensitivity and reliable detection of dopamine (DA) in neutral PBS (pH 7) electrolyte solution, and the results show good sensitivity and detection. The lower detection limit for LSV was 0.81 µM under optimum conditions.


Subject(s)
Dopamine , Electrochemical Techniques , Fluorescent Dyes , Pyrazoles , Pyridones , Pyridones/chemistry , Dopamine/analysis , Dopamine/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Pyrazoles/chemistry , Humans , Molecular Structure , Density Functional Theory , Optical Imaging , Photochemical Processes
18.
ACS Infect Dis ; 10(6): 2303-2317, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38725130

ABSTRACT

The design of siderophore-antibiotic conjugates is a promising strategy to overcome drug resistance in negative bacteria. However, accumulating studies have shown that only those antibiotics acting on the cell wall or cell membrane multiply their antibacterial effects when coupled with siderophores, while antibiotics acting on targets in the cytoplasm of bacteria do not show an obvious enhancement of their antibacterial effects when coupled with siderophores. To explore the causes of this phenomenon, we synthesized several conjugate probes using 3-hydroxypyridin-4(1H)-ones as siderophores and replacing the antibiotic cargo with 5-carboxyfluorescein (5-FAM) or malachite green (MG) cargo. By monitoring changes in the fluorescence intensity of FAM conjugate 20 in bacteria, the translocation of the conjugate across the outer membranes of Gram-negative pathogens was confirmed. Further, the use of the fluorogen activating protein(FAP)/MG system revealed that 3-hydroxypyridin-4(1H)-one-MG conjugate 26 was ultimately distributed mainly in the periplasm rather than being translocated into the cytosol of Escherichia coli and Pseudomonas aeruginosa PAO1. Additional mechanistic studies suggested that the uptake of the conjugate involved the siderophore-dependent iron transport pathway and the 3-hydroxypyridin-4(1H)-ones siderophore receptor-dependent mechanism. Meanwhile, we demonstrated that the conjugation of 3-hydroxypyridin-4(1H)-ones to the fluorescein 5-FAM can reduce the possibility of the conjugates crossing the membrane layers of mammalian Vero cells by passive diffusion, and the advantages of the mono-3-hydroxypyridin-4(1H)-ones as a delivery vehicle in the design of conjugates compared to the tri-3-hydroxypyridin-4(1H)-ones. Overall, this work reveals the localization rules of 3-hydroxypyridin-4(1H)-ones as siderophores to deliver the cargo into Gram-negative bacteria. It provides a theoretical basis for the subsequent design of siderophore-antibiotic conjugates, especially based on 3-hydroxypyridin-4(1H)-ones as siderophores.


Subject(s)
Anti-Bacterial Agents , Pseudomonas aeruginosa , Siderophores , Siderophores/chemistry , Siderophores/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Gram-Negative Bacteria/drug effects , Fluorescent Dyes/chemistry , Escherichia coli/drug effects , Escherichia coli/metabolism , Pyridones/pharmacology , Pyridones/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Animals , Fluorescein/chemistry , Biological Transport , Microbial Sensitivity Tests
19.
IUCrJ ; 11(Pt 3): 374-383, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38656310

ABSTRACT

The large Bunyavirales order includes several families of viruses with a segmented ambisense (-) RNA genome and a cytoplasmic life cycle that starts by synthesizing viral mRNA. The initiation of transcription, which is common to all members, relies on an endonuclease activity that is responsible for cap-snatching. In La Crosse virus, an orthobunyavirus, it has previously been shown that the cap-snatching endonuclease resides in the N-terminal domain of the L protein. Orthobunyaviruses are transmitted by arthropods and cause diseases in cattle. However, California encephalitis virus, La Crosse virus and Jamestown Canyon virus are North American species that can cause encephalitis in humans. No vaccines or antiviral drugs are available. In this study, three known Influenza virus endonuclease inhibitors (DPBA, L-742,001 and baloxavir) were repurposed on the La Crosse virus endonuclease. Their inhibition was evaluated by fluorescence resonance energy transfer and their mode of binding was then assessed by differential scanning fluorimetry and microscale thermophoresis. Finally, two crystallographic structures were obtained in complex with L-742,001 and baloxavir, providing access to the structural determinants of inhibition and offering key information for the further development of Bunyavirales endonuclease inhibitors.


Subject(s)
Antiviral Agents , Endonucleases , La Crosse virus , Triazines , La Crosse virus/drug effects , La Crosse virus/enzymology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Endonucleases/antagonists & inhibitors , Endonucleases/metabolism , Endonucleases/chemistry , Dibenzothiepins , Morpholines/pharmacology , Morpholines/chemistry , Pyridones/pharmacology , Pyridones/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Fluorescence Resonance Energy Transfer , Humans , Animals , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism
20.
Bioorg Med Chem ; 105: 117726, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626642

ABSTRACT

5-Aminolevulinic acid (ALA) and its derivatives, serving as the endogenous precursor of the photosensitizer (PS) protoporphyrin IX (PpIX), successfully applied in tumor imaging and photodynamic therapy (PDT). ALA and its derivatives have been used to treat actinic keratosis (AK), basal cell carcinoma (BCC), and improve the detection of superficial bladder cancer. However, the high hydrophilicity of ALA and the conversion of PpIX to heme have limited the accumulation of PpIX, hindering the efficiency and potential application of ALA-PDT. This study aims to evaluate the PDT activity of three rationally designed series of ALA-HPO prodrugs, which were based on enhancing the lipophilicity of the prodrugs and reducing the labile iron pool (LIP) through HPO iron chelators to promote PpIX accumulation. Twenty-four ALA-HPO conjugates, incorporating amide, amino acid, and ester linkages, were synthesized. Most of the conjugates, exhibited no dark-toxicity to cells, according to bioactivity evaluation. Ester conjugates 19a-g showed promoted phototoxicity when tested on tumor cell lines, and this increased phototoxicity was strongly correlated with elevated PpIX levels. Among them, conjugate 19c emerged as the most promising (HeLa, IC50 = 24.25 ± 1.43 µM; MCF-7, IC50 = 43.30 ± 1.76 µM; A375, IC50 = 28.03 ± 1.00 µM), displaying superior photodynamic anticancer activity to ALA (IC50 > 100 µM). At a concentration of 80 µM, the fluorescence intensity of PpIX induced by compound 19c in HeLa, MCF-7, and A375 cells was 18.9, 5.3, and 2.8 times higher, respectively, than that induced by ALA. In conclusion, cellular phototoxicity showed a strong correlation with intracellular PpIX fluorescence levels, indicating the potential application of ALA-HPO conjugates in ALA-PDT.


Subject(s)
Aminolevulinic Acid , Antineoplastic Agents , Drug Screening Assays, Antitumor , Photochemotherapy , Photosensitizing Agents , Humans , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Pyridones/pharmacology , Pyridones/chemistry , Pyridones/chemical synthesis , Cell Line, Tumor , Protoporphyrins/chemistry , Protoporphyrins/pharmacology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Cell Survival/drug effects , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL