Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.282
Filter
1.
In Vivo ; 38(4): 2041-2048, 2024.
Article in English | MEDLINE | ID: mdl-38936894

ABSTRACT

BACKGROUND/AIM: Hematotoxicity is a life-threatening condition that has become the major cause of drug discontinuation in patients with acute lymphoblastic leukemia (ALL). The nudix hydrolase 15 (NUDT15) gene polymorphism (c.415C>T) is reported to have an association with the hematotoxicity of 6-mercaptopurine (6-MP) as maintenance therapy in patients with ALL. However, the prevalence of this genetic polymorphism in the Indonesian population is unknown. This study aimed to assess the frequency of NUDT15 polymorphism among Indonesian pediatric patients with ALL and its association with the hematotoxicity of 6-MP. PATIENTS AND METHODS: A total of 101 stored DNA samples from pediatric patients with ALL receiving 6-MP treatment were used for genetic testing. Direct sequencing was conducted to determine the NUDT15 c.415C>T genotype. Chi-square or Fisher's exact test were employed to examine the association between the NUDT15 c.415C>T genotype and hematotoxicity. RESULTS: All (100%) of the DNA samples from patients with ALL treated with 6-MP exhibited a homozygous variant of the NUDT15 c.415C>T genotype, 70.3% of which showed hematotoxicity to some extent. We found no significant differences in NUDT15 gene polymorphism among patients with ALL with different states of hematotoxicity. CONCLUSION: The observed high frequency of NUDT15 c.415C>T in our study population might explain the elevated prevalence of 6-MP-associated hematotoxicity in pediatric patients with ALL within the Indonesian population. Our study provides new insight regarding the NUDT15 gene polymorphism and its relation to hematotoxicity. Further studies are required to determine the necessity of adjusting the initial dose of 6-MP for Indonesian pediatric patients with ALL.


Subject(s)
Mercaptopurine , Nudix Hydrolases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Pyrophosphatases , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Alleles , Antimetabolites, Antineoplastic/adverse effects , Gene Frequency , Genetic Predisposition to Disease , Genotype , Indonesia/epidemiology , Mercaptopurine/adverse effects , Nudix Hydrolases/genetics , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Pyrophosphatases/genetics
2.
Sci Rep ; 14(1): 13139, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849394

ABSTRACT

The enzyme dUTPase has an essential role in maintaining genomic integrity. In mouse, nuclear and mitochondrial isoforms of the enzyme have been described. Here we present the isoform-specific mRNA expression levels in different murine organs during development using RT-qPCR. In this study, we analyzed organs of 14.5-day embryos and of postnatal 2-, 4-, 10-week- and 13-month-old mice. We demonstrate organ-, sex- and developmental stage-specific differences in the mRNA expression levels of both isoforms. We found high mRNA expression level of the nuclear isoform in the embryo brain, and the expression level remained relatively high in the adult brain as well. This was surprising, since dUTPase is known to play an important role in proliferating cells, and mass production of neural cells is completed by adulthood. Thus, we investigated the pattern of the dUTPase protein expression specifically in the adult brain with immunostaining and found that dUTPase is present in the germinative zones, the subventricular and the subgranular zones, where neurogenesis occurs and in the rostral migratory stream where neuroblasts migrate to the olfactory bulb. These novel findings suggest that dUTPase may have a role in cell differentiation and indicate that accurate dTTP biosynthesis can be vital, especially in neurogenesis.


Subject(s)
Brain , Neurogenesis , Pyrophosphatases , Animals , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Mice , Female , Male , Brain/metabolism , Brain/growth & development , Gene Expression Regulation, Developmental , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891956

ABSTRACT

Regulatory cystathionine ß-synthase (CBS) domains are widespread in proteins; however, difficulty in structure determination prevents a comprehensive understanding of the underlying regulation mechanism. Tetrameric microbial inorganic pyrophosphatase containing such domains (CBS-PPase) is allosterically inhibited by AMP and ADP and activated by ATP and cell alarmones diadenosine polyphosphates. Each CBS-PPase subunit contains a pair of CBS domains but binds cooperatively to only one molecule of the mono-adenosine derivatives. We used site-directed mutagenesis of Desulfitobacterium hafniense CBS-PPase to identify the key elements determining the direction of the effect (activation or inhibition) and the "half-of-the-sites" ligand binding stoichiometry. Seven amino acid residues were selected in the CBS1 domain, based on the available X-ray structure of the regulatory domains, and substituted by alanine and other residues. The interaction of 11 CBS-PPase variants with the regulating ligands was characterized by activity measurements and isothermal titration calorimetry. Lys100 replacement reversed the effect of ADP from inhibition to activation, whereas Lys95 and Gly118 replacements made ADP an activator at low concentrations but an inhibitor at high concentrations. Replacement of these residues for alanine increased the stoichiometry of mono-adenosine phosphate binding by twofold. These findings identified several key protein residues and suggested a "two non-interacting pairs of interacting regulatory sites" concept in CBS-PPase regulation.


Subject(s)
Cystathionine beta-Synthase , Cystathionine beta-Synthase/metabolism , Cystathionine beta-Synthase/chemistry , Cystathionine beta-Synthase/genetics , Mutation , Protein Binding , Mutagenesis, Site-Directed , Adenine Nucleotides/metabolism , Adenine Nucleotides/chemistry , Protein Domains , Pyrophosphatases/metabolism , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Inorganic Pyrophosphatase/metabolism , Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/genetics , Models, Molecular , Binding Sites
4.
BMC Oral Health ; 24(1): 659, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840172

ABSTRACT

BACKGROUND: Peri-implantitis (PI) is a frequent inflammatory disorder characterised by progressive loss of the supporting bone. Not all patients with recognised risk factors develop PI. The aim of this study is to evaluate the presence of single nucleotide polymorphisms (SNP) of inflammatory and bone metabolism related proteins in a population treated with dental implants from the Basque Country (Spain). METHODS: We included 80 patients with diagnosis of PI and 81 patients without PI, 91 women and 70 men, with a mean age of 60.90 years. SNPs of BMP-4, BRINP3, CD14, FGF-3, FGF-10, GBP-1, IL-1α, IL-1ß, IL-10, LTF, OPG and RANKL proteins were selected. We performed a univariate and bivariate analysis using IBM SPSS® v.28 statistical software. RESULTS: Presence of SNPs GBP1 rs7911 (p = 0.041) and BRINP3 rs1935881 (p = 0.012) was significantly more common in patients with PI. Patients with PI who smoked (> 10 cig/day) showed a higher presence of OPG rs2073617 SNP (p = 0.034). Also, BMP-4 rs17563 (p = 0.018) and FGF-3 rs1893047 (p = 0.014) SNPs were more frequent in patients with PI and Type II diabetes mellitus. CONCLUSIONS: Our findings suggest that PI could be favoured by an alteration in the osseointegration of dental implants, based on an abnormal immunological response to peri-implant infection in patients from the Basque Country (Spain).


Subject(s)
Dental Implants , Peri-Implantitis , Polymorphism, Single Nucleotide , Humans , Male , Female , Case-Control Studies , Middle Aged , Spain , Peri-Implantitis/genetics , Osteoprotegerin/genetics , Aged , Bone Morphogenetic Protein 4/genetics , GTP-Binding Proteins/genetics , RANK Ligand/genetics , Interleukin-1alpha/genetics , Phosphoric Diester Hydrolases , Pyrophosphatases
5.
Pharmacogenomics J ; 24(4): 20, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906864

ABSTRACT

Thiopurines, an effective therapy for Crohn's disease (CD), often lead to adverse events (AEs). Gene polymorphisms affecting thiopurine metabolism may predict AEs. This retrospective study in CD patients (n = 114) with TPMT activity > 5 Units/Red Blood Cells analyzed TPMT (c.238 G > C, c.460 G > A, c.719 A > G), ITPA (c.94 C > A, IVS2 + 21 A > C), and NUDT15 (c.415 C > T) polymorphisms. All patients received azathioprine (median dose 2.2 mg/kg) with 41.2% experiencing AEs, mainly myelotoxicity (28.1%). No NUDT15 polymorphisms were found, 7% had TPMT, and 31.6% had ITPA polymorphisms. AEs led to therapy modifications in 41.2% of patients. Multivariate analysis identified advanced age (OR 1.046, p = 0.007) and ITPA IVS2 + 21 A > C (OR 3.622, p = 0.015) as independent predictors of AEs. IVS2 + 21 A > C was also associated with myelotoxicity (OR 2.863, p = 0.021). These findings suggest that ITPA IVS2 + 21 A > C polymorphism and advanced age predict AEs during thiopurine therapy for CD with intermediate-normal TPMT activity.


Subject(s)
Azathioprine , Crohn Disease , Methyltransferases , Pyrophosphatases , Humans , Crohn Disease/genetics , Crohn Disease/drug therapy , Pyrophosphatases/genetics , Female , Male , Adult , Retrospective Studies , Azathioprine/adverse effects , Azathioprine/therapeutic use , Methyltransferases/genetics , Middle Aged , Young Adult , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Adolescent , Pharmacogenomic Variants/genetics , Polymorphism, Single Nucleotide/genetics , Polymorphism, Genetic/genetics , Mercaptopurine/adverse effects , Mercaptopurine/therapeutic use , Multivariate Analysis , Aged , Risk Factors , Nudix Hydrolases , Inosine Triphosphatase
6.
Bone ; 186: 117136, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38806089

ABSTRACT

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.


Subject(s)
Phenotype , Phosphoric Diester Hydrolases , Pyrophosphatases , Pyrophosphatases/genetics , Humans , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Female , Genetic Variation , Male , Mutation/genetics
7.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776712

ABSTRACT

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Subject(s)
Deoxyguanine Nucleotides , Escherichia coli Proteins , Escherichia coli , Mycobacterium smegmatis , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/genetics , Substrate Specificity , Deoxyguanine Nucleotides/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acid Substitution , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Guanosine Triphosphate/metabolism , Guanosine Triphosphate/analogs & derivatives
8.
Cell Rep ; 43(5): 114209, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38749434

ABSTRACT

2'3'-Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) is a second messenger synthesized upon detection of cytosolic double-stranded DNA (dsDNA) and passed between cells to facilitate downstream immune signaling. Ectonucleotide pyrophosphatase phosphodiesterase I (ENPP1), an extracellular enzyme, was the only metazoan hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and likely the only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from ENPP1's and accounts for all cGAMP hydrolysis activity in ENPP1-deficient mice. Importantly, we also show that, as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolysis activity results in diminished cancer growth and metastasis of certain tumor types in a stimulator of interferon genes (STING)-dependent manner. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work demonstrates that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a target for cancer immunotherapy.


Subject(s)
Immunity, Innate , Membrane Proteins , Nucleotides, Cyclic , Phosphoric Diester Hydrolases , Pyrophosphatases , Animals , Nucleotides, Cyclic/metabolism , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Mice , Membrane Proteins/metabolism , Pyrophosphatases/metabolism , Pyrophosphatases/genetics , Humans , Mice, Inbred C57BL , Hydrolysis , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction
9.
BMC Med Genomics ; 17(1): 143, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789983

ABSTRACT

BACKGROUND: Therapy with anti-cancer drugs remain the cornerstone of treating cancer. The effectiveness and safety of anti-cancer drugs vary significantly among individuals due to genetic factors influencing the drug response and metabolism. Data on the pharmacogenomic variations in Sri Lankans related to anti-cancer therapy is sparse. As current treatment guidelines in Sri Lanka often do not consider local pharmacogenomic variants, this study aimed to explore the diversity of pharmacogenomic variants in the Sri Lankan population to pave the way for personalized treatment approaches and improve patient outcomes. METHODS: Pharmacogenomic data regarding variant-drug pairs of genes CYP2D6, DPYD, NUDT15, EPAS1, and XRCC1 with clinical annotations labelled as evidence levels 1A-2B were obtained from the Pharmacogenomics Knowledgebase database. Their frequencies in Sri Lankans were obtained from an anonymized database that was derived from 541 Sri Lankans who underwent exome sequencing at the Human Genetics Unit, Faculty of Medicine, University of Colombo. Variations in DPYD, NUDT15, and EPAS1 genes are related to increased toxicity to fluoropyrimidines, mercaptopurines, and sorafenib respectively. Variations in CYP2D6 and XRCC1 genes are related to changes in efficacy of tamoxifen and platinum compounds, respectively. Minor allele frequencies of these variants were calculated and compared with other populations. RESULTS: MAFs of rs1065852 c.100 C > T (CYP2D6), rs3918290 c.1905 + 1G > A (DPYD), rs56038477 c.1236G > A (DPYD), rs7557402 c.1035-7 C > G (EPAS1), rs116855232 c.415 C > T (NUDT15*3), and rs25487 c.1196 A > G (XRCC1) were: 12.9% [95%CI:10.9-14.9], 1.5% [95%CI:0.8-2.2], 1.2% [95%CI:0.5-1.8], 37.7% [95%CI:34.8-40.6], 8.3% [95%CI:6.7-10.0], and 64.0% [95%CI:61.1-66.8], respectively. Frequencies of rs1065852 c.100 C > T (CYP2D6), rs7557402 c.1035-7 C > G (EPAS1), and rs25487 (XRCC1) were significantly lower in Sri Lankans, while frequencies of rs116855232 c.415 C > T (NUDT15*3) and rs56038477 c.1236G > A (DPYD) were significantly higher in Sri Lankans when compared to some Western and Asian populations. CONCLUSION: Sri Lankans are likely to show lower toxicity risk with sorafenib (rs7557402 c.84,131 C > G) and, higher toxicity risk with fluoropyrimidines (rs56038477 c.1236G > A) and mercaptopurine (rs116855232 c.415 C > T), and reduced effectiveness with tamoxifen (rs1065852 c.100 C > T) and platinum compounds (rs25487). These findings highlight the potential contribution of these genetic variations to the individual variability in anti-cancer dosage requirements among Sri Lankans.


Subject(s)
Antineoplastic Agents , Pharmacogenomic Variants , Humans , Sri Lanka , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , X-ray Repair Cross Complementing Protein 1/genetics , Pyrophosphatases/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cytochrome P-450 CYP2D6/genetics , Neoplasms/genetics , Neoplasms/drug therapy , Asian People/genetics , Pharmacogenetics , Gene Frequency , Nudix Hydrolases
10.
Nucleic Acids Res ; 52(11): 6532-6542, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38738661

ABSTRACT

Cancer cells produce vast quantities of reactive oxygen species, leading to the accumulation of toxic nucleotides as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). The human MTH1 protein catalyzes the hydrolysis of 8-oxo-dGTP, and cancer cells are dependent on MTH1 for their survival. MTH1 inhibitors are possible candidates for a class of anticancer drugs; however, a reliable screening system using live cells has not been developed. Here we report a visualization method for 8-oxo-dGTP and its related nucleotides in living cells. Escherichia coli MutT, a functional homologue of MTH1, is divided into the N-terminal (1-95) and C-terminal (96-129) parts (Mu95 and 96tT, respectively). Mu95 and 96tT were fused to Ash (assembly helper tag) and hAG (Azami Green), respectively, to visualize the nucleotides as fluorescent foci formed upon the Ash-hAG association. The foci were highly increased when human cells expressing Ash-Mu95 and hAG-96tT were treated with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-dGTP. The foci formation by 8-oxo-dG(TP) was strikingly enhanced by the MTH1 knockdown. Moreover, known MTH1 inhibitors and oxidizing reagents also increased foci. This is the first system that visualizes damaged nucleotides in living cells, provides an excellent detection method for the oxidized nucleotides and oxidative stress, and enables high throughput screening for MTH1 inhibitors.


Subject(s)
Deoxyguanine Nucleotides , Pyrophosphatases , Humans , Deoxyguanine Nucleotides/metabolism , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/antagonists & inhibitors , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Guanine Nucleotides/metabolism , Oxidation-Reduction , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/antagonists & inhibitors
11.
Expert Rev Mol Diagn ; 24(5): 459-466, 2024 May.
Article in English | MEDLINE | ID: mdl-38756100

ABSTRACT

BACKGROUND: Breast cancer (BC) is the leading cause of cancer death among women worldwide. The nudix hydrolase 17 (NUDT17) may play notable roles in cancer growth and metastasis. In this study, we explored the importance of NUDT17 gene polymorphism in patients with BC. METHODS: In our study, 563 BC patients and 552 healthy controls participated. We used logistic regression analysis to calculate odds ratios (OR) and 95% confidence intervals (CI), and multifactor dimension reduction (MDR) analysis of SNP-SNP interactions. Finally, UALCAN and THPA databases were used for bioinformatics analysis. RESULTS: The rs9286836 G allele was associated with a decreased the BC risk (p = 0.022), and the carriers of rs2004659 G allele had a 32% decreased risk of BC than individuals with allele A (p = 0.004). In the four genetic models, rs9286836 and rs2004659 reduced the risk of BC. Additionally, we found that the NUDT17 SNPs were associated with BC risk under age, tumor size, and clinical stage stratification. The MDR analysis showed that the five-locus interaction model was the best in the multi-locus model. CONCLUSION: Our study found that NUDT17 single nucleotide polymorphisms are associated with BC susceptibility in Chinese Han population.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Pyrophosphatases , Humans , Breast Neoplasms/genetics , Female , Middle Aged , Pyrophosphatases/genetics , Alleles , Adult , Case-Control Studies , Genotype , Odds Ratio , Genetic Association Studies , Aged , Risk Factors
12.
Int J Biol Macromol ; 267(Pt 2): 131327, 2024 May.
Article in English | MEDLINE | ID: mdl-38574903

ABSTRACT

The emergence of multidrug resistance has provided a great challenge to treat nosocomial infections, which have become a major health threat around the globe. Lipid A (an active endotoxin component), the final product of the Raetz lipid A metabolism pathway, is a membrane anchor of lipopolysaccharide (LPS) of the gram-negative bacterial outer membrane. It shields bacterial cells and serves as a protective barrier from antibiotics, thereby eliciting host response and making it difficult to destroy. UDP-2,3-diacylglucosamine pyrophosphate hydrolase (LpxH), a crucial peripheral membrane enzyme of the Raetz pathway, turned out to be the potential target to inhibit the production of Lipid A. This review provides a comprehensive compilation of information regarding the structural and functional aspects of LpxH, as well as its analogous LpxI and LpxG. In addition, apart from by providing a broader understanding of the enzyme-inhibitor mechanism, this review facilitates the development of novel drug candidates that can inhibit the pathogenicity of the lethal bacterium.


Subject(s)
Gram-Negative Bacteria , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/drug effects , Pyrophosphatases/metabolism , Pyrophosphatases/chemistry , Lipid A/chemistry , Lipid A/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Humans
13.
Pharmacogenet Genomics ; 34(5): 170-173, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38682355

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most frequent pediatric cancer. 6-Mercaptopurine (6-MP) is a key component of ALL treatment. Its use, however, is also associated with adverse drug reactions, particularly myelosuppression. Thiopurine S-methyltransferase (TPMT) and, more recently, Nudix hydrolase 15 (NUDT15) deficiency, due to no-function variants in their respective genes, are well known for their role in the development of this toxicity. Two novel genetic variants, rs12199316 in TPMT and rs73189762 in the NUDT15 gene, were recently identified by targeted sequencing. The latter is particularly interesting because of its potential association with 6-MP intolerance. Here, we assessed the relationship of this variant with the risk of myelosuppression and 6-MP dose intensity in 275 patients treated with Dana Farber Cancer Institute ALL protocols at the Sainte Justine University Health Center. Carriers of the NUDT15 rs73189762 variant allele were at a higher risk of myelosuppression, as shown by absolute phagocyte count reduction during consolidation II and maintenance phases of therapy. Reduction in 6-MP dose intensity was observed in patients with both rs73189762 and known no-function variants in the NUDT15 and TPMT genes. This finding supports the initial observation and suggests that 6-MP dose reduction might be beneficial for individuals with this genotype combination.


Subject(s)
Antimetabolites, Antineoplastic , Mercaptopurine , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Pyrophosphatases , Humans , Mercaptopurine/adverse effects , Mercaptopurine/administration & dosage , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Pyrophosphatases/genetics , Child , Male , Female , Child, Preschool , Adolescent , Antimetabolites, Antineoplastic/adverse effects , Methyltransferases/genetics , Infant , Polymorphism, Single Nucleotide , Nudix Hydrolases
14.
J Gastroenterol ; 59(6): 468-482, 2024 06.
Article in English | MEDLINE | ID: mdl-38589597

ABSTRACT

BACKGROUND: This study evaluated the effectiveness of NUDT15 codon 139 genotyping in optimizing thiopurine treatment for inflammatory bowel disease (IBD) in Japan, using real-world data, and aimed to establish genotype-based treatment strategies. METHODS: A retrospective analysis of 4628 IBD patients who underwent NUDT15 codon 139 genotyping was conducted. This study assessed the purpose of the genotyping test and subsequent prescriptions following the obtained results. Outcomes were compared between the Genotyping group (thiopurine with genotyping test) and Non-genotyping group (thiopurine without genotyping test). Risk factors for adverse events (AEs) were analyzed by genotype and prior genotyping status. RESULTS: Genotyping test for medical purposes showed no significant difference in thiopurine induction rates between Arg/Arg and Arg/Cys genotypes, but nine Arg/Cys patients opted out of thiopurine treatment. In the Genotyping group, Arg/Arg patients received higher initial doses than the Non-genotyping group, while Arg/Cys patients received lower ones (median 25 mg/day). Fewer AEs occurred in the Genotyping group because of their lower incidence in Arg/Cys cases. Starting with < 25 mg/day of AZA reduced AEs in Arg/Cys patients, while Arg/Arg patients had better retention rates when maintaining ≥ 75 mg AZA. Nausea and liver injury correlated with thiopurine formulation but not dosage. pH-dependent mesalamine reduced leukopenia risk in mesalamine users. CONCLUSIONS: NUDT15 codon 139 genotyping effectively reduces thiopurine-induced AEs and improves treatment retention rates in IBD patients after genotype-based dose adjustments. This study provides data-driven treatment strategies based on genotype and identifies risk factors for specific AEs, contributing to a refined thiopurine treatment approach.


Subject(s)
Azathioprine , Genotype , Inflammatory Bowel Diseases , Mercaptopurine , Pyrophosphatases , Humans , Pyrophosphatases/genetics , Female , Male , Retrospective Studies , Adult , Middle Aged , Mercaptopurine/therapeutic use , Mercaptopurine/adverse effects , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Japan , Azathioprine/adverse effects , Azathioprine/therapeutic use , Young Adult , Aged , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Adolescent , Risk Factors , Codon , Nudix Hydrolases
15.
J Med Chem ; 67(9): 7245-7259, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38635563

ABSTRACT

Cofactor mimicry represents an attractive strategy for the development of enzyme inhibitors but can lead to off-target effects due to the evolutionary conservation of binding sites across the proteome. Here, we uncover the ADP-ribose (ADPr) hydrolase NUDT5 as an unexpected, noncovalent, off-target of clinical BTK inhibitors. Using a combination of biochemical, biophysical, and intact cell NanoBRET assays as well as X-ray crystallography, we confirm catalytic inhibition and cellular target engagement of NUDT5 and reveal an unusual binding mode that is independent of the reactive acrylamide warhead. Further investigation of the prototypical BTK inhibitor ibrutinib also revealed potent inhibition of the largely unstudied NUDIX hydrolase family member NUDT14. By exploring structure-activity relationships (SARs) around the core scaffold, we identify a potent, noncovalent, and cell-active dual NUDT5/14 inhibitor. Cocrystallization experiments yielded new insights into the NUDT14 hydrolase active site architecture and inhibitor binding, thus providing a basis for future chemical probe design.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Pyrophosphatases , Humans , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Structure-Activity Relationship , Crystallography, X-Ray , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/chemical synthesis , Drug Discovery , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Adenine/metabolism , Models, Molecular , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
16.
Sci Rep ; 14(1): 9798, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684784

ABSTRACT

Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.


Subject(s)
Aging , Creatine , Muscle, Skeletal , Resistance Training , Sarcopenia , Ubiquinone/analogs & derivatives , Sarcopenia/drug therapy , Sarcopenia/metabolism , Animals , Male , Rats , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Physical Conditioning, Animal , Myogenin/metabolism , Myogenin/genetics , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Antioxidants/metabolism , Creatine Kinase/blood , Rats, Wistar
17.
J Cell Mol Med ; 28(9): e18371, 2024 May.
Article in English | MEDLINE | ID: mdl-38686496

ABSTRACT

Cisplatin (DDP) resistance is a major challenge in treating ovarian cancer patients. A recently discovered enzyme called dCTP pyrophosphatase 1 (DCTPP1) has been implicated in regulating cancer characteristics, including drug responses. In this study, we aimed to understand the role of DCTPP1 in cancer progression and cisplatin response. Using publicly available databases, we analysed the expression and clinical significance of DCTPP1 in ovarian cancer. Our bioinformatics analysis confirmed that DCTPP1 is significantly overexpressed in ovarian cancer and is closely associated with tumour progression and poor prognosis after cisplatin treatment. We also found that DCTPP1 located in oxidoreductase complex and may be involved in various biological processes related to cisplatin resistance, including pyrimidine nucleotide metabolism, the P53 signalling pathway and cell cycle signalling pathways. We observed higher expression of DCTPP1 in cisplatin-resistant cells (SKOV3/DDP) and samples compared to their sensitive counterparts. Additionally, we found that DCTPP1 expression was only enhanced in SKOV3/S cells when treated with cisplatin, indicating different expression patterns of DCTPP1 in cisplatin-sensitive and cisplatin-resistant cancer cells. Our study further supports the notion that cisplatin induces intracellular reactive oxygen species (ROS) and triggers cancer cell death through excessive oxidative stress. Knocking out DCTPP1 reversed the drug resistance of ovarian cancer cells by enhancing the intracellular antioxidant stress response and accumulating ROS. Based on our research findings, we conclude that DCTPP1 has prognostic value for ovarian cancer patients, and targeting DCTPP1 may be clinically significant in overcoming cisplatin resistance in ovarian cancer.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms , Pyrophosphatases , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Reactive Oxygen Species/metabolism , Prognosis , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
18.
Free Radic Biol Med ; 218: 166-177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582229

ABSTRACT

BACKGROUND: Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS: We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS: Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS: We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.


Subject(s)
Autophagy , DNA Methylation , Dioxygenases , Disease Models, Animal , Epigenesis, Genetic , Hepatocytes , Non-alcoholic Fatty Liver Disease , Phosphoric Diester Hydrolases , Promoter Regions, Genetic , Pyrophosphatases , Animals , Humans , Male , Mice , Autophagy/genetics , Carbon Tetrachloride/toxicity , Diet, High-Fat/adverse effects , Dioxygenases/genetics , Dioxygenases/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
19.
Talanta ; 274: 125943, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38564823

ABSTRACT

Fenton chemistry has aroused widespread concern due to its application in the green oxidation and mineralization of organic wastes. Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of pyrophosphate ions (PPi) and provides a thermodynamic driving force for many biosynthetic reactions. Fluoride (F-) is widely applied to fight against tooth decay and reduce cavities. The electrochemical determination of PPase activity and F- was realized based on Fenton chemistry in this work. Glassy carbon electrode modified with poly (azure A) and acetylene black (GCE/PAA-AB) was fabricated. Hydroxyl radicals (∙OH) that were generated from a Cu2+-catalyzed Fenton-type reaction could oxidize PAA in the near-neutral medium, leading to a great increase of the cathodic peak current (Ipc). A coordination reaction between PPi and Cu2+ exerted a negative effect on Fenton reaction and hindered the Ipc enhancement. Cu2+-PPi complex was decomposed due to the hydrolysis of PPi induced by PPase, which caused the reappearance of the notably increased current response. F- could effectively inhibit PPase activity. As a result, the stable Cu2+-PPi complex remained and the high Ipc suffered from the decline again. The Ipc difference was used for the highly sensitive determination of PPase activity in the content range of 0.001-20 mU mL-1 with a detection of limit (LOD) at 0.6 µU mL-1 and that of F- in the concentration range of 0.01-100 µM with a LOD at 7 nM. The proposed PPase and F- sensor displayed a good selectivity, stability and reproducibility, and a high accuracy.


Subject(s)
Electrochemical Techniques , Fluorides , Iron , Fluorides/chemistry , Iron/chemistry , Electrochemical Techniques/methods , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Copper/chemistry , Electrodes , Pyrophosphatases/metabolism , Pyrophosphatases/analysis , Inorganic Pyrophosphatase/metabolism , Inorganic Pyrophosphatase/chemistry , Limit of Detection , Enzyme Assays/methods
20.
Biochim Biophys Acta Gen Subj ; 1868(5): 130594, 2024 May.
Article in English | MEDLINE | ID: mdl-38428647

ABSTRACT

Inorganic pyrophosphatases (PPases) are enzymes that catalyze the conversion of inorganic pyrophosphate (PPi) into phosphate (Pi). Human inorganic pyrophosphatase 1 (Hu-PPase) exhibits high expression levels in a variety of tumors and plays roles in cell proliferation, apoptosis, invasion and metastasis, making it a promising prognostic biomarker and a target for cancer therapy. Despite its widespread presence, the catalytic mechanism of Hu-PPase in humans remains inadequately understood. The signature motif amino acid sequence (DXDPXD) within the active sites of PPases is preserved across different species. In this research, an enzymatic activity assay revealed that mutations led to a notable reduction in enzymatic function, although the impact of the four amino acids on the activity of the pocket varied. To investigate the influence of these residues on the substrate binding and enzymatic function of PPase, the crystal structure of the Hu-PPase-ED quadruple mutant (D116A/D118A/P119A/D121A) was determined at 1.69 Å resolution. The resulting structure maintained a barrel-like shape similar to that of the wild-type, albeit lacking Mg2+ ions. Molecular docking analysis demonstrated a decreased ability of Hu-PPase-ED to bind to PPi. Further, molecular dynamics simulation analysis indicated that the mutation rendered the loop of Mg2+ ion-binding residues less stable. Therefore, the effect on enzyme activity did not result from a change in the gross protein structure but rather from a mutation that abolished the Mg2+-coordinating groups, thereby eliminating Mg2+ binding and leading to the loss of enzyme activity.


Subject(s)
Inorganic Pyrophosphatase , Pyrophosphatases , Humans , Amino Acid Sequence , Catalytic Domain , Inorganic Pyrophosphatase/chemistry , Inorganic Pyrophosphatase/genetics , Molecular Docking Simulation , Pyrophosphatases/chemistry , Pyrophosphatases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...