Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.010
Filter
1.
Adv Pharmacol ; 99: 83-124, 2024.
Article in English | MEDLINE | ID: mdl-38467490

ABSTRACT

Synthetic cathinone derivatives comprise a family of psychoactive compounds structurally related to amphetamine. Over the last decade, clandestine chemists have synthesized a consistent stream of innovative cathinone derivatives to outpace governmental regulatory restrictions. Many of these unregulated substances are produced and distributed as designer drugs. Two of the principal chemical scaffolds exploited to expand the synthetic cathinone family are methcathinone and α-pyrrolidinopentiophenone (or α-pyrrolidinovalerophenone, α-PVP). These compounds' main physiological targets are monoamine transporters, where they promote addiction by potentiating dopaminergic neurotransmission. This chapter describes techniques used to study the pharmacodynamic properties of cathinones at monoamine transporters in vitro. Biochemical techniques described include uptake inhibition and release assays in rat brain synaptosomes and in mammalian expression systems. Electrophysiological techniques include current measurements using the voltage clamp technique. We describe a Ca2+ mobilization assay wherein voltage-gated Ca2+ channels function as reporters to study the action of synthetic cathinones at monoamine transporters. We discuss results from systematic structure-activity relationship studies on simple and complex cathinones at monoamine transporters with an emphasis on identifying structural moieties that modulate potency and selectivity at these transporters. Moreover, different profiles of selectivity at monoamine transporters directly predict compounds associated with behavioral and subjective effects within animals and humans. In conclusion, clarification of the structural aspects of compounds which modulate potency and selectivity at monoamine transporters is critical to identify and predict potential addictive drugs. This knowledge may allow prompt allocation of resources toward drugs that represent the greatest threats after drugs are identified by forensic laboratories.


Subject(s)
Central Nervous System Stimulants , Synthetic Cathinone , Rats , Animals , Humans , Amphetamines , Central Nervous System Stimulants/chemistry , Central Nervous System Stimulants/pharmacology , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Mammals/metabolism
2.
Drug Test Anal ; 16(3): 309-313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37464572

ABSTRACT

New synthetic opioids are an increasing challenge for clinical and forensic toxicologists that developed over the recent years. Desmethylmoramide (DMM), a structural analogue of methadone, is one of the most recent appearances on the drug market. This study investigated its metabolic fate in rat and pooled human liver S9 fraction (pHLS9) to allow the identification of suitable urinary screening targets beyond the parent compound. The analysis of rat urine after the administration of DMM revealed five metabolites, which were the result of pyrrolidine ring or morpholine ring hydroxylation and combinations of them. Additionally, an N',N-bisdesalkyl metabolite was formed. Incubations of DMM using pHLS9 revealed a pyrrolidine hydroxy metabolite, as well as an N-oxide. No Phase II metabolites were detected in either rat urine or incubations using pHLS9. The metabolism of DMM did in part comply with that of its archetype dextromoramide (DXM). Although morpholine ring hydroxylation and N-oxidation were described for DXM and detected for DMM, phenyl ring hydroxylation was not found for DMM but described for DXM. An analysis of 24 h pooled rat urine samples after DMM administration identified the hydroxy and dihydroxy metabolite as the most abundant excretion products, and they may, thus, serve as screening targets, as the parent compound was barely detectable.


Subject(s)
Analgesics, Opioid , Microsomes, Liver , Humans , Rats , Animals , Analgesics, Opioid/metabolism , Chromatography, High Pressure Liquid , Microsomes, Liver/metabolism , Substance Abuse Detection , Morpholines , Pyrrolidines/metabolism
3.
Arch Toxicol ; 98(1): 289-301, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37870577

ABSTRACT

Changes in pharmacokinetics and endogenous metabolites may underlie additive biological effects of concomitant use of antipsychotics and opioids. In this study, we employed untargeted metabolomics analysis and targeted analysis to examine the changes in drug metabolites and endogenous metabolites in the prefrontal cortex (PFC), midbrain, and blood of rats following acute co-administration of quetiapine and methadone. Rats were divided into four groups and received cumulative increasing doses of quetiapine (QTP), methadone (MTD), quetiapine + methadone (QTP + MTD), or vehicle (control). All samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Our findings revealed increased levels of the quetiapine metabolites: Norquetiapine, O-dealkylquetiapine, 7-hydroxyquetiapine, and quetiapine sulfoxide, in the blood and brain when methadone was present. Our study also demonstrated a decrease in methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in the rat brain when quetiapine was present. Despite these findings, there were only small differences in the levels of 225-296 measured endogenous metabolites due to co-administration compared to single administrations. For example, N-methylglutamic acid, glutaric acid, p-hydroxyphenyllactic acid, and corticosterone levels were significantly decreased in the brain of rats treated with both compounds. Accumulation of serotonin in the midbrain was additionally observed in the MTD group, but not in the QTP + MTD group. In conclusion, this study in rats suggests a few but important additive metabolic effects when quetiapine and methadone are co-administered.


Subject(s)
Antipsychotic Agents , Methadone , Rats , Animals , Methadone/toxicity , Quetiapine Fumarate , Analgesics, Opioid/metabolism , Brain/metabolism , Antipsychotic Agents/toxicity , Pyrrolidines/metabolism
4.
New Phytol ; 237(5): 1810-1825, 2023 03.
Article in English | MEDLINE | ID: mdl-36451537

ABSTRACT

Plant-specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant-specialized metabolic networks are poorly characterized. The N-methyl Δ1 -pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N-methyl Δ1 -pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich-like decarboxylative condensation of the N-methyl Δ1 -pyrrolinium cation with 2-O-malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono- and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids.


Subject(s)
Alkaloids , Atropa belladonna , Atropa belladonna/metabolism , Alkaloids/metabolism , Tropanes/chemistry , Tropanes/metabolism , Pyrrolidines/metabolism
5.
J Med Chem ; 66(1): 752-765, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36539349

ABSTRACT

Osteoclasts have an additional demand for cholesterol compared to normal cells. Liver X receptors (LXRs) are famous for regulation of lipid and cholesterol metabolism. Therefore, we propose that the LXR ß agonist can regulate the cholesterol balance in osteoclasts to inhibit osteoclast differentiation. Here, we designed and synthesized a novel LXRß agonist by introduction of the privileged fragments from anti-osteoporosis agents to the spiro[pyrrolidine-3,3'-oxindole] scaffold which is a novel scaffold of LXR agonists in our previous research. As a result, seven LXRß agonists inhibited osteoclastogenesis with IC50 values ranging from 0.078 to 0.36 µM. Especially, the most potent LXRß agonist B9 significantly inhibited RANKL-induced osteoclast differentiation and bone resorption in vitro and in vivo. Furthermore, B9 selectively activated LXRß to promote intracellular cholesterol exclusion in osteoclasts and reduce extracellular cholesterol uptake and thereby inhibited osteoclast production. This study provides a new strategy to develop LXRß agonists for osteoporosis.


Subject(s)
Orphan Nuclear Receptors , Osteoporosis , Humans , Orphan Nuclear Receptors/agonists , Oxindoles , Osteoclasts/metabolism , Liver X Receptors/metabolism , Osteoporosis/drug therapy , Pyrrolidines/metabolism , Cholesterol/metabolism
6.
Mol Neurobiol ; 59(11): 6956-6970, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36057709

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopamine(DA)rgic neurons in the substantia nigra of the midbrain, and primarily causes motor symptoms. While the pathological cause of PD remains uncertain, oxidative damage, neuroinflammation, and energy metabolic perturbation have been implicated. Pyruvate has been shown neuroprotective in animal models for many neurological disorders, presumably owing to its potent anti-oxidative, anti-inflammatory, and energy metabolic properties. We therefore investigated whether exogenous pyruvate could also protect nigral DA neurons from degeneration and reverse the associated motor deficits in an animal model of PD using the DA neuron-specific toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was injected four times every 2 h into the peritoneum of mice, which resulted in a massive loss of DA neurons as well as an increase in neuronal death and cytosolic labile zinc overload. There were rises in inflammatory and oxidative responses, a drop in the striatal DA level, and the emergence of PD-related motor deficits. In comparison, when sodium pyruvate was administered intraperitoneally at a daily dose of 250 mg/kg for 7 days starting 2 h after the final MPTP treatment, significant relief in the MPTP-induced neuropathology, neurodegeneration, DA depletion, and motor symptoms was observed. Equiosmolar dose of NaCl had no neuroprotective effect, and lower doses of sodium pyruvate did not have any statistically significant effects. These findings suggest that pyruvate has therapeutic potential for the treatment of PD and related neurodegenerative diseases.


Subject(s)
Neuroprotective Agents , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice , Mice, Inbred C57BL , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Parkinson Disease/pathology , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Pyruvic Acid/pharmacology , Pyruvic Acid/therapeutic use , Sodium/metabolism , Sodium Chloride/therapeutic use , Substantia Nigra/pathology , Zinc/metabolism
7.
Nutrients ; 14(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145248

ABSTRACT

Ganoderma lucidum, one of the most valued medicinal mushrooms, has been used for health supplements and medicine in China. Our previous studies have proved that Ganoderma lucidum extract (GLE) could inhibit activation of microglia and protect dopaminergic neurons in vitro. In the present study, we investigated the anti-neuroinflammatory potential of GLE in vivo on Parkinsonian-like pathological dysfunction. Male C57BL/6J mice were subjected to acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion, and a treatment group was administered intragastrically with GLE at a dose of 400 mg/kg. Immunohistochemistry staining showed that GLE efficiently repressed MPTP-induced microglia activation in nigrostriatal region. Accordingly, Bio-plex multiple cytokine assay indicated that GLE treatment modulates abnormal cytokine expression levels. In microglia BV-2 cells incubated with LPS, increased expression of iNOS and NLRP3 were effectively inhibited by 800 µg/mL GLE. Furthermore, GLE treatment decreased the expression of LC3II/I, and further enhanced the expression of P62. These results indicated that the neuroprotection of GLE in an experimental model of PD was partially related to inhibition of microglia activation in vivo and vitro, possibly through downregulating the iNOS/NLRP3 pathway, inhibiting abnormal microglial autophagy and lysosomal degradation, which provides new evidence for Ganoderma lucidum in PD treatment.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Reishi , Animals , Cytokines/metabolism , Disease Models, Animal , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrrolidines/metabolism , Pyrrolidines/pharmacology
8.
Glia ; 70(12): 2409-2425, 2022 12.
Article in English | MEDLINE | ID: mdl-35959803

ABSTRACT

Inflammasome involvement in Parkinson's disease (PD) has been intensively investigated. Absent in melanoma 2 (AIM2) is an essential inflammasome protein known to contribute to the development of several neurological diseases. However, a specific role for AIM2 in PD has not been reported. In this study, we investigated the effect of AIM2 in the N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model by use of various knockout and bone marrow chimeric mice. The mechanism of action for AIM2 in PD was assessed by RNA-sequencing and in vitro primary microglial transfection. Results were validated in the A30P transgenic mouse model of PD. In the MPTP mouse model, AIM2 activation was found to negatively regulate neuro-inflammation independent of the inflammasome. Microglial AIM2 deficiency exacerbated behavioral and pathological features of both MPTP-induced and transgenic PD mouse models. Mechanistically, AIM2 reduced cyclic GMP-AMP synthase (cGAS)-mediated antiviral-related inflammation by inhibition of AKT-interferon regulatory factor 3 (IRF3) phosphorylation. These results demonstrate microglial AIM2 to inhibit the antiviral-related neuro-inflammation associated with PD and provide for a foundation upon which to identify new therapeutic targets for treatment of the disease.


Subject(s)
Melanoma , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Antiviral Agents/pharmacology , DNA-Binding Proteins , Disease Models, Animal , Dopaminergic Neurons/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/pharmacology , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , RNA/metabolism
9.
Drug Test Anal ; 14(1): 169-174, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34224639

ABSTRACT

SR-9009 is a synthetic compound widely available to purchase online as 'supplement' products due to its potential performance-enhancing effects, presenting a significant threat with regard to doping control in sport. In vitro metabolism with equine liver microsomes was performed to identify potential targets for detection of SR-9009. Six metabolites were identified, with the most abundant consisting of N-dealkylated metabolites (M1-M3). The addition of the identified metabolites to high-resolution accurate mass databases resulted in a positive finding for the N-dealkylated metabolite M1 of SR-9009 in an associated plasma and urine doping sample. Liquid chromatography-high-resolution mass spectrometry was used to verify the presence of the N-dealkylated metabolite (M1) in both matrices, with a low concentration of the parent compound and additional N-desalkyl metabolites (M2 and M3) detected in the plasma sample as supporting evidence of administration. To the best of the authors' knowledge, this is the first report of an adverse analytical finding in an equine sample for SR-9009 or its metabolites in equine doping control.


Subject(s)
Doping in Sports/prevention & control , Performance-Enhancing Substances/analysis , Pyrrolidines/analysis , Substance Abuse Detection/methods , Thiophenes/analysis , Animals , Chromatography, Liquid/methods , Chromatography, Liquid/veterinary , Horses , Mass Spectrometry/methods , Mass Spectrometry/veterinary , Microsomes, Liver/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/agonists , Performance-Enhancing Substances/metabolism , Pyrrolidines/metabolism , Substance Abuse Detection/veterinary , Thiophenes/metabolism
10.
Drug Chem Toxicol ; 45(2): 947-954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32693643

ABSTRACT

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that damages dopaminergic neurons. Zebrafish has been shown to be a suitable model organism to investigate the molecular pathways in the pathogenesis of Parkinson's disease and also for potential therapeutic agent research. Boron has been shown to play an important role in the neural activity of the brain. Boronic acids are used in combinatorial approaches in drug design and discovery. The effect of 3-pyridinylboronic acid which is an important sub-class of heterocyclic boronic acids has not been evaluated in case of MPTP exposure in zebrafish embryos. Accordingly, this study was designed to investigate the effects of 3-pyridinylboronic acid on MPTP exposed zebrafish embryos focusing on the molecular pathways related to neurodegeneration and apoptosis by RT-PCR. Zebrafish embryos were exposed to MPTP (800 µM); MPTP + Low Dose 3-Pyridinylboronic acid (50 µM) (MPTP + LB) and MPTP + High Dose 3-Pyridinylboronic acid (100 µM) (MPTP + HB) in well plates for 72 hours post fertilization. Results of our study showed that MPTP induced a P53 dependent and Bax mediated apoptosis in zebrafish embryos and 3-pyridinylboronic acid restored the locomotor activity and gene expressions related to mitochondrial dysfunction and oxidative stress due to the deleterious effects of MPTP, in a dose-dependent manner.


Subject(s)
MPTP Poisoning , Zebrafish , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Boronic Acids/metabolism , Boronic Acids/therapeutic use , Disease Models, Animal , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Mice , Mice, Inbred C57BL , Pyridines , Pyrrolidines/metabolism , Pyrrolidines/therapeutic use , Zebrafish/metabolism
11.
Acta Chim Slov ; 68(3): 667-682, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34897536

ABSTRACT

The activation of caspases is central to apoptotic process in living systems. Defects in apoptosis have been implicated with carcinogenesis. Need to develop smart agents capable of inducing apoptosis in tumor cells is obvious. With this motive, diversity oriented synthesis of 1-benzylpyrrolidin-3-ol analogues was envisaged. The multi component Ugi reaction synthesized library of electronically diverse analogues was explored for cytotoxic propensity towards a panel of human cancer cell lines at 10 µM. The lead compounds exhibit a selective cytotoxicity towards HL-60 cells as compared to cell lines derived from solid tumors. Besides, their milder cytotoxic effect on non-cancerous cell lines reaffirm their selective action towards cancer cells only. The lead molecules were tested for their ability to target caspase-3, as a vital protease triggering apoptosis. The lead compounds were observed to induce apoptosis in HL-60 cells around 10 µM concentration. The lead compounds exhibited various non-covalent supra type interactions with caspase-3 key residues around the active site. The binding ability of lead compounds with caspase-3 was studied via molecular docking and molecular dynamic (MD) simulations. MD simulations indicated the stability of compound-caspase-3 complex throughout the 50 ns simulation run. The stability and bio-availability of the lead compounds under physiological conditions was assessed by their interaction with Bovine Serum Albumin (BSA) as model protein. BSA interactions of lead compounds were studied by various bio-physical methods and further substantiated with in silico MD simulations.


Subject(s)
Antineoplastic Agents/pharmacology , Caspase 3/metabolism , Enzyme Activators/pharmacology , Pyrrolidines/pharmacology , Animals , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cattle , Cell Line, Tumor , Drug Screening Assays, Antitumor , Enzyme Activators/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Pyrrolidines/metabolism , Serum Albumin, Bovine/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
12.
Nat Commun ; 12(1): 7190, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34907165

ABSTRACT

Interrogation of cellular metabolism with high-throughput screening approaches can unravel contextual biology and identify cancer-specific metabolic vulnerabilities. To systematically study the consequences of distinct metabolic perturbations, we assemble a comprehensive metabolic drug library (CeMM Library of Metabolic Drugs; CLIMET) covering 243 compounds. We, next, characterize it phenotypically in a diverse panel of myeloid leukemia cell lines and primary patient cells. Analysis of the drug response profiles reveals that 77 drugs affect cell viability, with the top effective compounds targeting nucleic acid synthesis, oxidative stress, and the PI3K/mTOR pathway. Clustering of individual drug response profiles stratifies the cell lines into five functional groups, which link to specific molecular and metabolic features. Mechanistic characterization of selective responses to the PI3K inhibitor pictilisib, the fatty acid synthase inhibitor GSK2194069, and the SLC16A1 inhibitor AZD3965, bring forth biomarkers of drug response. Phenotypic screening using CLIMET represents a valuable tool to probe cellular metabolism and identify metabolic dependencies at large.


Subject(s)
Leukemia, Myeloid/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Survival/drug effects , Cluster Analysis , Fatty Acids/biosynthesis , Genotype , Humans , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Monocarboxylic Acid Transporters/genetics , Phenotype , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Pyrimidinones/metabolism , Pyrimidinones/pharmacology , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Signal Transduction , Small Molecule Libraries/classification , Symporters/genetics , Systems Analysis , Thiophenes/metabolism , Thiophenes/pharmacology , Triazoles/metabolism , Triazoles/pharmacology , Tumor Cells, Cultured
13.
Sci Rep ; 11(1): 19998, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620963

ABSTRACT

Understanding the effects of metabolism on the rational design of novel and more effective drugs is still a considerable challenge. To the best of our knowledge, there are no entirely computational strategies that make it possible to predict these effects. From this perspective, the development of such methodologies could contribute to significantly reduce the side effects of medicines, leading to the emergence of more effective and safer drugs. Thereby, in this study, our strategy is based on simulating the electron ionization mass spectrometry (EI-MS) fragmentation of the drug molecules and combined with molecular docking and ADMET models in two different situations. In the first model, the drug is docked without considering the possible metabolic effects. In the second model, each of the intermediates from the EI-MS results is docked, and metabolism occurs before the drug accesses the biological target. As a proof of concept, in this work, we investigate the main antiviral drugs used in clinical research to treat COVID-19. As a result, our strategy made it possible to assess the biological activity and toxicity of all potential by-products. We believed that our findings provide new chemical insights that can benefit the rational development of novel drugs in the future.


Subject(s)
Antiviral Agents/metabolism , COVID-19 Drug Treatment , Drug Discovery , SARS-CoV-2/drug effects , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/metabolism , Adenine/pharmacology , Adenosine/adverse effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Amides/adverse effects , Amides/metabolism , Amides/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Chloroquine/adverse effects , Chloroquine/analogs & derivatives , Chloroquine/metabolism , Chloroquine/pharmacology , Drug Design , Humans , Metabolic Networks and Pathways , Molecular Docking Simulation , Nitro Compounds/adverse effects , Nitro Compounds/metabolism , Nitro Compounds/pharmacology , Pyrazines/adverse effects , Pyrazines/metabolism , Pyrazines/pharmacology , Pyrrolidines/adverse effects , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Ribavirin/adverse effects , Ribavirin/metabolism , Ribavirin/pharmacology , SARS-CoV-2/metabolism , Thiazoles/adverse effects , Thiazoles/metabolism , Thiazoles/pharmacology
14.
Aging Cell ; 20(10): e13483, 2021 10.
Article in English | MEDLINE | ID: mdl-34587364

ABSTRACT

The senescence-associated secretory phenotype (SASP) is a striking characteristic of senescence. Accumulation of SASP factors causes a pro-inflammatory response linked to chronic disease. Suppressing senescence and SASP represents a strategy to prevent or control senescence-associated diseases. Here, we identified a small molecule SR9009 as a potent SASP suppressor in therapy-induced senescence (TIS) and oncogene-induced senescence (OIS). The mechanism studies revealed that SR9009 inhibits the SASP and full DNA damage response (DDR) activation through the activation of the NRF2 pathway, thereby decreasing the ROS level by regulating the expression of antioxidant enzymes. We further identified that SR9009 effectively prevents cellular senescence and suppresses the SASP in the livers of both radiation-induced and oncogene-induced senescence mouse models, leading to alleviation of immune cell infiltration. Taken together, our findings suggested that SR9009 prevents cellular senescence via the NRF2 pathway in vitro and in vivo, and activation of NRF2 may be a novel therapeutic strategy for preventing cellular senescence.


Subject(s)
Cellular Senescence/genetics , DNA Damage/genetics , NF-E2-Related Factor 2/metabolism , Pyrrolidines/metabolism , Thiophenes/metabolism , Animals , Humans , Mice , Signal Transduction
15.
Clin Pharmacol Ther ; 110(5): 1250-1260, 2021 11.
Article in English | MEDLINE | ID: mdl-34510420

ABSTRACT

Givosiran (trade name GIVLAARI) is a small interfering ribonucleic acid that targets hepatic delta-aminolevulinic acid synthase 1 (ALAS1) messenger RNA for degradation through RNA interference (RNAi) that has been approved for the treatment of acute hepatic porphyria (AHP). RNAi therapeutics, such as givosiran, have a low liability for drug-drug interactions (DDIs) because they are not metabolized by cytochrome 450 (CYP) enzymes, and do not directly inhibit or induce CYP enzymes in the liver. The pharmacodynamic effect of givosiran (lowering of hepatic ALAS1, the first and rate limiting enzyme in the heme biosynthesis pathway) presents a unique scenario where givosiran could potentially impact heme-dependent activities in the liver, such as CYP enzyme activity. This study assessed the impact of givosiran on the pharmacokinetics of substrates of 5 major CYP450 enzymes in subjects with acute intermittent porphyria (AIP), the most common type of AHP, by using the validated "Inje cocktail," comprised of caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A4). We show that givosiran treatment had a differential inhibitory effect on CYP450 enzymes in the liver, resulting in a moderate reduction in activity of CYP1A2 and CYP2D6, a minor effect on CYP3A4 and CYP2C19, and a similar weak effect on CYP2C9. To date, this is the first study evaluating the DDI for an oligonucleotide therapeutic and highlights an atypical drug interaction due to the pharmacological effect of givosiran. The results of this study suggest that givosiran does not have a large effect on heme-dependent CYP enzyme activity in the liver.


Subject(s)
Acetylgalactosamine/analogs & derivatives , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions/physiology , Enzyme Activation/physiology , Liver/metabolism , Pyrrolidines/metabolism , RNA, Small Interfering/metabolism , 5-Aminolevulinate Synthetase/metabolism , Acetylgalactosamine/administration & dosage , Acetylgalactosamine/metabolism , Adult , Caffeine/administration & dosage , Caffeine/metabolism , Cross-Over Studies , Enzyme Activation/drug effects , Female , Humans , Liver/drug effects , Male , Metabolic Clearance Rate/drug effects , Metabolic Clearance Rate/physiology , Midazolam/administration & dosage , Midazolam/metabolism , Middle Aged , Omeprazole/administration & dosage , Omeprazole/metabolism , Porphyrias, Hepatic/drug therapy , Porphyrias, Hepatic/metabolism , Pyrrolidines/administration & dosage
16.
Int J Mol Sci ; 22(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067708

ABSTRACT

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Bronchi/drug effects , Bronchi/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Epithelial Cells/metabolism , Humans , Indoles/pharmacology , Protein Folding/drug effects , Pyrazoles/metabolism , Pyridines/metabolism , Pyrrolidines/metabolism , Quinolines/pharmacology
17.
Pharm Res ; 38(6): 1067-1079, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34100216

ABSTRACT

PURPOSE: Glioblastoma (GBM) is a malignant brain tumor with a poor long-term prognosis due to recurrence from highly resistant GBM cancer stem cells (CSCs), for which the current standard of treatment with temozolomide (TMZ) alone will unlikely produce a viable cure. In addition, CSCs regenerate rapidly and overexpress methyl transferase which overrides the DNA-alkylating mechanism of TMZ, leading to resistance. The objective of this research was to apply the concepts of nanotechnology to develop a multi-drug therapy, TMZ and idasanutlin (RG7388, a potent mouse double minute 2 (MDM2) antagonist), loaded in functionalized nanoparticles (NPs) that target the GBM CSC subpopulation, reduce the cell viability and provide possibility of in vivo preclinical imaging. METHODS: Polymer-micellar NPs composed of poly(styrene-b-ethylene oxide) (PS-b-PEO) and poly(lactic-co-glycolic) acid (PLGA) were developed by a double emulsion technique loading TMZ and/or RG7388. The NPs were covalently bound to a 15-nucleotide base-pair CD133 aptamer to target the CD133 antigen expressed on the surfaces of GBM CSCs. For diagnostic functionality, the NPs were labelled with radiotracer Zirconium-89 (89Zr). RESULTS: NPs maintained size range less than 100 nm, a low negative charge and exhibited the ability to target and kill the CSC subpopulation when TMZ and RG7388 were used in combination. The targeting function of CD133 aptamer promoted killing in GBM CSCs providing impetus for further development of targeted nanosystems for localized therapy in future in vivo models. CONCLUSIONS: This work has provided a potential clinical application for targeting GBM CSCs with simultaneous diagnostic imaging.


Subject(s)
AC133 Antigen/metabolism , Brain Neoplasms/metabolism , Drug Delivery Systems/methods , Glioblastoma/metabolism , Nanoparticles/metabolism , Neoplastic Stem Cells/metabolism , Animals , Brain Neoplasms/drug therapy , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Development/methods , Drug Evaluation, Preclinical/methods , Glioblastoma/drug therapy , Humans , Mice , Micelles , Nanoparticles/administration & dosage , Neoplastic Stem Cells/drug effects , Polymers/administration & dosage , Polymers/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidines/administration & dosage , Pyrrolidines/metabolism , Temozolomide/administration & dosage , Temozolomide/metabolism , para-Aminobenzoates/administration & dosage , para-Aminobenzoates/metabolism
18.
Eur J Med Chem ; 222: 113584, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34118724

ABSTRACT

Replication of SARS-CoV-2, the coronavirus causing COVID-19, requires a main protease (Mpro) to cleave viral proteins. Consequently, Mpro is a target for antiviral agents. We and others previously demonstrated that GC376, a bisulfite prodrug with efficacy as an anti-coronaviral agent in animals, is an effective inhibitor of Mpro in SARS-CoV-2. Here, we report structure-activity studies of improved GC376 derivatives with nanomolar affinities and therapeutic indices >200. Crystallographic structures of inhibitor-Mpro complexes reveal that an alternative binding pocket in Mpro, S4, accommodates the P3 position. Alternative binding is induced by polar P3 groups or a nearby methyl. NMR and solubility studies with GC376 show that it exists as a mixture of stereoisomers and forms colloids in aqueous media at higher concentrations, a property not previously reported. Replacement of its Na+ counter ion with choline greatly increases solubility. The physical, biochemical, crystallographic, and cellular data reveal new avenues for Mpro inhibitor design.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Pyrrolidines/pharmacology , SARS-CoV-2/drug effects , Sulfonic Acids/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Binding Sites , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Humans , Micelles , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , SARS-CoV-2/enzymology , Solubility , Structure-Activity Relationship , Sulfonic Acids/chemical synthesis , Sulfonic Acids/metabolism , Vero Cells
19.
J Med Chem ; 64(12): 8246-8262, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34107215

ABSTRACT

Adenosine A1/A2A receptors (A1R/A2AR) represent targets in nondopaminergic treatment of motor disorders such as Parkinson's disease (PD). As an innovative strategy, multitargeting ligands (MTLs) were developed to achieve comprehensive PD therapies simultaneously addressing comorbid symptoms such as sleep disruption. Recognizing the wake-promoting capacity of histamine H3 receptor (H3R) antagonists in combination with the "caffeine-like effects" of A1R/A2AR antagonists, we designed A1R/A2AR/H3R MTLs, where a piperidino-/pyrrolidino(propyloxy)phenyl H3R pharmacophore was introduced with overlap into an adenosine antagonist arylindenopyrimidine core. These MTLs showed distinct receptor binding profiles with overall nanomolar H3R affinities (Ki < 55 nM). Compound 4 (ST-2001, Ki (A1R) = 11.5 nM, Ki (A2AR) = 7.25 nM) and 12 (ST-1992, Ki (A1R) = 11.2 nM, Ki (A2AR) = 4.01 nM) were evaluated in vivo. l-DOPA-induced dyskinesia was improved after administration of compound 4 (1 mg kg-1, i.p. rats). Compound 12 (2 mg kg-1, p.o. mice) increased wakefulness representing novel pharmacological tools for PD therapy.


Subject(s)
Adenosine A1 Receptor Antagonists/therapeutic use , Adenosine A2 Receptor Antagonists/therapeutic use , Histamine H3 Antagonists/therapeutic use , Parkinson Disease, Secondary/drug therapy , Adenosine A1 Receptor Antagonists/chemical synthesis , Adenosine A1 Receptor Antagonists/metabolism , Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/metabolism , Animals , Dyskinesias/drug therapy , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/metabolism , Humans , Levodopa/pharmacology , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Piperidines/chemical synthesis , Piperidines/metabolism , Piperidines/therapeutic use , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/therapeutic use , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Pyrrolidines/therapeutic use , Rats, Sprague-Dawley , Receptor, Adenosine A2A/metabolism , Receptors, Histamine H3/metabolism , Wakefulness/drug effects
20.
Cell Biochem Biophys ; 79(2): 189-200, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33954893

ABSTRACT

Breast cancer resistance protein (ABCG2) is a human ATP-binding cassette (ABC) that plays a paramount role in multidrug resistance (MDR) in cancer therapy. The discovery of ABCG2 inhibitors could assist in designing unprecedented therapeutic strategies for cancer treatment. There is as yet no approved drug targeting ABCG2, although a large number of drug candidates have been clinically investigated. In this work, binding affinities of 181 drug candidates in clinical-trial or investigational stages as ABCG2 inhibitors were inspected using in silico techniques. Based on available experimental data, the performance of AutoDock4.2.6 software was first validated to predict the inhibitor-ABCG2 binding mode and affinity. Combined molecular docking calculations and molecular dynamics (MD) simulations, followed by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations, were then performed to filter out the studied drug candidates. From the estimated docking scores and MM-GBSA binding energies, six auspicious drug candidates-namely, pibrentasvir, venetoclax, ledipasvir, avatrombopag, cobicistat, and revefenacin-exhibited auspicious binding energies with value < -70.0 kcal/mol. Interestingly, pibrentasvir, venetoclax, and ledipasvir were observed to show even higher binding affinities with the ABCG2 transporter with binding energies of < -80.0 kcal/mol over long MD simulations of 100 ns. The stabilities of these three promising candidates in complex with ABCG2 transporter were demonstrated by their energetics and structural analyses throughout the 100 ns MD simulations. The current study throws new light on pibrentasvir, venetoclax, and ledipasvir as curative options for multidrug resistant cancers by inhibiting ABCG2 transporter.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Benzimidazoles/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Fluorenes/chemistry , Neoplasm Proteins/antagonists & inhibitors , Pyrrolidines/chemistry , Sulfonamides/chemistry , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Benzimidazoles/metabolism , Binding Sites , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Databases, Chemical , Drug Discovery , Drug Resistance, Neoplasm , Female , Fluorenes/metabolism , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Neoplasm Proteins/metabolism , Protein Binding , Pyrrolidines/metabolism , Sulfonamides/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...