Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.735
Filter
1.
Sci Rep ; 14(1): 15577, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971857

ABSTRACT

Alzheimer's disease is the most prevalent neurodegenerative disorder characterized by significant memory loss and cognitive impairments. Studies have shown that the expression level and activity of the butyrylcholinesterase enzyme increases significantly in the late stages of Alzheimer's disease, so butyrylcholinesterase can be considered as a promising therapeutic target for potential Alzheimer's treatments. In the present study, a novel series of 2,4-disubstituted quinazoline derivatives (6a-j) were synthesized and evaluated for their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinestrase (BuChE) enzymes, as well as for their antioxidant activities. The biological evaluation revealed that compounds 6f, 6h, and 6j showed potent inhibitory activities against eqBuChE, with IC50 values of 0.52, 6.74, and 3.65 µM, respectively. These potent compounds showed high selectivity for eqBuChE over eelAChE. The kinetic study demonstrated a mixed-type inhibition pattern for both enzymes, which revealed that the potent compounds might be able to bind to both the catalytic active site and peripheral anionic site of eelAChE and eqBuChE. In addition, molecular docking studies and molecular dynamic simulations indicated that potent compounds have favorable interactions with the active sites of BuChE. The antioxidant screening showed that compounds 6b, 6c, and 6j displayed superior scavenging capabilities compared to the other compounds. The obtained results suggest that compounds 6f, 6h, and 6j are promising lead compounds for the further development of new potent and selective BuChE inhibitors.


Subject(s)
Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Quinazolines , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Humans , Structure-Activity Relationship , Catalytic Domain , Animals , Kinetics , Electrophorus
2.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893295

ABSTRACT

Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.


Subject(s)
Anti-Inflammatory Agents , Quinazolines , Humans , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , THP-1 Cells
3.
Bioorg Med Chem ; 109: 117799, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38897138

ABSTRACT

Natural products as starting templates have shown historically major contribution to development of drugs. Inspired by the structure-function of an anticancer natural alkaloid Rutaecarpine, the Scaffold-hopped Acyclic Analogues of Rutaecarpine (SAAR) with 'N'-atom switch (1°-hop) and ring-opening (2°-hop) were investigated. A new synthetic route was developed for an effective access to the analogues, i.e. 2-indolyl-pyrido[1,2-a]pyrimidinones, which involved preparation of N-Boc-N'-phthaloyltryptamine/mexamine-bromides and pyridopyrmidinon-2-yl triflate, a nickel/palladium-catalysed Ullmann cross-coupling of these bromides and triflate, deprotection of phthalimide followed by N-aroylation, and Boc-deprotection. Fourteen novel SAAR-compounds were prepared, and they showed characteristic antiproliferative activity against various cancer cells. Three most active compounds (11a, 11b, and 11c) exhibited good antiproliferative activity, IC50 7.7-15.8 µM against human breast adenocarcinoma cells (MCF-7), lung cancer cells (A549), and colon cancer cells (HCT-116). The antiproliferative property was also observed in the colony formation assay. The SAAR compound 11b was found to have superior potency than original natural product Rutaecarpine and an anticancer drug 5-FU in antiproliferative activities with relatively lower cytotoxicity towards normal breast epithelial cells (MCF10A) and significantly higher inhibitory effect on cancer cells' migration. The compound 11b was found to possess favourable in silico physicochemical characteristics (lipophilicity-MLOGP, TPSA, and water solubility-ESOL, and others), bioavailability score, and pharmacokinetic properties (GI absorption, BBB non-permeant, P-gp, and CYP2D6). Interestingly, the compound 11b did not show any medicinal chemistry structural alert of PAINS and Brenk filter. The study represents for the first time the successful discovery of new potent anticancer chemotypes using Rutaecarpine natural alkaloid as starting template and reaffirms the significance of natural product-inspired scaffold-hopping technique in drug discovery research.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Indole Alkaloids , Quinazolines , Humans , Quinazolines/chemistry , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Indole Alkaloids/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Cell Line, Tumor , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Dose-Response Relationship, Drug , Quinazolinones
4.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38701714

ABSTRACT

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cholinesterase Inhibitors , Drug Design , Quinazolines , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Rats , Structure-Activity Relationship , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Molecular Structure , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Dose-Response Relationship, Drug , Butyrylcholinesterase/metabolism , Male
5.
Bioorg Chem ; 148: 107449, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759356

ABSTRACT

Mitotic kinesin Eg5 isozyme as a motor protein plays a critical role in cell division of tumor cells. Kinesin Eg5 selective inhibitors and Colchicine binding site suppressors are essential targets for many anticancer drugs and radio chemotherapies. On this work, a new series of octahydroquinazoline as anti-mitotic candidates 2-13 has been synthesized with dual inhibition of tubulin polymerization/Eg5 against HCC cell line. All octahydroquinazolines have been in vitro assayed against HepG-2 cytotoxicity, Eg5 inhibitory and anti-tubulin polymerization activities. The most active analogues 7, 8, 9, 10, and 12 against HepG-2 were further subjected to in vitro cytotoxic assay against HCT-116 and MCF-7 cell lines. Chalcones 9, 10, and 12 displayed the most cytotoxic potency and anti-tubulin aggregation in comparable with reference standard colchicine and potential anti-mitotic Eg5 inhibitory activity in comparison with Monastrol as well. Besides, they exhibited cell cycle arrest at the G2/M phase. Moreover, good convinced apoptotic activities have been concluded as overexpression of caspase-3 levels and tumor suppressive gene p53 in parallel with higher induction of Bax and inhibition of Bcl-2 biomarkers. Octahydroquinazoline 10 displayed an increase in caspase-3 by 1.12 folds compared to standard colchicine and induce apoptosis and demonstrated cell cycle arrest in G2/M phase arrest by targeting p53 pathway. Analogue 10 has considerably promoted cytotoxic radiation activity and boosted apoptotic induction in HepG-2 cells by 1.5 fold higher than standard colchicine.


Subject(s)
Antineoplastic Agents , Apoptosis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Kinesins , Polymerization , Quinazolines , Tubulin Modulators , Tubulin , Humans , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Tubulin/metabolism , Structure-Activity Relationship , Molecular Structure , Tubulin Modulators/pharmacology , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Polymerization/drug effects , Cell Proliferation/drug effects , Drug Discovery , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism
6.
Bioorg Chem ; 148: 107437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749114

ABSTRACT

In our study, a series of quinazoline-1,2,3-triazole hybrids (14a-r) have been designed and synthesized as multi-target EGFR, VEGFR-2, and Topo II inhibitors. All synthesized hybrids were assessed for their anticancer capacity. MTT assay revealed that compounds 14a, 14d, and 14k were the most potent hybrids against four cancer cell lines, HeLa, HePG-2, MCF-7, and HCT-116 at low micromolar range while exhibiting good selectivity against normal cell line WI-38. Sequentially, the three compounds were evaluated for EGFR, VEGFR-2, and Topo II inhibition. Compound 14d was moderate EGFR inhibitor (IC50 0.103 µM) compared to Erlotinib (IC50 0.049 µM), good VEGFR-2 inhibitor (IC50 0.069 µM) compared to Sorafenib (IC50 0.031 µM), and stronger Topo II inhibitor (IC50 19.74 µM) compared to Etoposide (IC50 34.19 µM) by about 1.7 folds. Compounds 14k and 14a represented strong inhibitory activity against Topo II with (IC50 31.02 µM and 56.3 µM) respectively, compared to Etoposide. Additionally, cell cycle analysis and apoptotic induction were performed. Compound 14d arrested the cell cycle on HeLa at G2/M phase by 17.53 % and enhanced apoptosis by 44.08 %. A molecular Docking study was implemented on the three hybrids and showed proper binding interaction with EGFR, VEGFR-2, and Topo II active sites.


Subject(s)
Antineoplastic Agents , Cell Proliferation , DNA Topoisomerases, Type II , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Molecular Docking Simulation , Triazoles , Vascular Endothelial Growth Factor Receptor-2 , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Structure-Activity Relationship , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Cell Proliferation/drug effects , Molecular Structure , DNA Topoisomerases, Type II/metabolism , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/chemical synthesis
7.
Bioorg Med Chem Lett ; 108: 129796, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38754563

ABSTRACT

In this work, we report 14 novel quinazoline derivatives as immune checkpoint inhibitors, IDO1 and PD-L1. The antitumor screening of synthesized compounds on ovarian cancer cells indicated that compound V-d and V-l showed the most activity with IC50 values of about 5 µM. Intriguingly, compound V-d emerges as a stand out, triggering cell death through caspase-dependent and caspase-independent manners. More importantly, V-d presents its ability to hinder tumor sphere formation and re-sensitized cisplatin-resistant A2780 cells to cisplatin treatment. These findings suggest that compound V-d emerges as a promising lead candidate for the future development of immuno anticancer agents.


Subject(s)
Antineoplastic Agents , Drug Design , Drug Screening Assays, Antitumor , Immune Checkpoint Inhibitors , Quinazolines , Humans , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Structure-Activity Relationship , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/chemical synthesis , Immune Checkpoint Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism
8.
J Med Chem ; 67(9): 7373-7384, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38646851

ABSTRACT

Natural product evodiamine is a multitargeting antitumor lead compound. However, clinical development of evodiamine derivatives was hampered by poor water solubility and limited in vivo antitumor potency. Herein, a series of evodiamine-glucose conjugates were designed by additional targeting glucose transporter-1 (GLUT1). Compared with the lead compound, conjugate 8 exhibited obvious enhancement in water solubility and in vivo antitumor efficacy. Furthermore, the effect of GLUT1 targeting also led to lower cytotoxicity to normal cells. Antitumor mechanism studies manifested that conjugate 8 acted by Top1/Top2 dual inhibition, apoptosis induction, and G2/M cell cycle arrest, which selectively targeted tumor cells with a high expression level of GLUT1. Thus, evodiamine-glucose conjugates showed promising features as potential antitumor agents.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Design , Glucose , Quinazolines , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Glucose/metabolism , Apoptosis/drug effects , Mice , Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/metabolism , Structure-Activity Relationship , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Mice, Nude , Mice, Inbred BALB C
9.
Eur J Med Chem ; 271: 116411, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38669910

ABSTRACT

This review covers article and patent data obtained mostly within the period 2013-2023 on the synthesis and biological activity of quinazolines [c]-annelated by five- and six-membered heterocycles. Pyrazolo-, benzimidazo-, triazolo- and pyrimido- [c]quinazoline systems have shown multiple potential activities against numerous targets. We highlight that most research efforts are directed to design of anticancer and antibacterial agents of azolo[c]quinazoline nature. This review emphases both on the medicinal chemistry aspects of pyrrolo[c]-, azolo[c]- and azino[c]quinazolines and comprehensive synthetic strategies of quinazolines annelated at N(3)-C(4) bond in the perspective of drug development and discovery.


Subject(s)
Antineoplastic Agents , Quinazolines , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Molecular Structure , Structure-Activity Relationship , Animals , Microbial Sensitivity Tests
10.
Chem Biodivers ; 21(5): e202301776, 2024 May.
Article in English | MEDLINE | ID: mdl-38602834

ABSTRACT

A novel series of trifluoromethyl-containing quinazoline derivatives with a variety of functional groups was designed, synthesized, and tested for their antitumor activity by following a pharmacophore hybridization strategy. Most of the 20 compounds displayed moderate to excellent antiproliferative activity against five different cell lines (PC3, LNCaP, K562, HeLa, and A549). After three rounds of screening and structural optimization, compound 10 b was identified as the most potent one, with IC50 values of 3.02, 3.45, and 3.98 µM against PC3, LNCaP, and K562 cells, respectively, which were comparable to the effect of the positive control gefitinib. To further explore the mechanism of action of 10 b against cancer, experiments focusing on apoptosis induction, cell cycle arrest, and cell migration assay were conducted. The results showed that 10 b was able to induce apoptosis and prevent tumor cell migration, but had no effect on the cell cycle of tumor cells.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Movement , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Quinazolines , Humans , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Molecular Structure , Dose-Response Relationship, Drug , Cell Cycle Checkpoints/drug effects
11.
Arch Pharm (Weinheim) ; 357(7): e2300627, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593298

ABSTRACT

Novel triazoloquinazolines carrying the 2-[thio]acetamide entity (4 and 5a-d) and triazoloquinazoline/chalcone hybrids incorporating the 2-[thio]acetamide linker (8a-b and 9a-f) were developed as anticancer candidates. NCI screening of the synthesized compounds at 10 µM concentration displayed growth inhibition not only up to 99.74% as observed for 9a but also a lethal effect could be achieved as stated for compounds 9c (RPMI-8226 and HCT-116) and 8b, 9a, and 9e on the HCT-116 cell line. The antiproliferative activity was determined for the chalcone series on three cell lines: RPMI-8226, HCT-116, and MCF-7. Compounds 8b, 9a, 9b, and 9f were the most active ones. To understand the mechanistic study, the inhibitory effect on the epidermal growth factor receptor (EGFR) kinase was evaluated. The results stated that the activity of compound 8b (IC50 = 0.07 µM) was near that of the reference drug erlotinib (IC50 = 0.052 µM) whereas compound 9b (IC50 = 0.045 µM) was found to be more potent than erlotinib. Both compounds 8b and 9b were selected for cell cycle analysis and apoptotic assays. Moreover, molecular docking results of the selected chalcone hybrids showed high binding scores and good binding affinities especially for 8b and 9b, which were consistent with the biological activity (EGFR).


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors , Molecular Docking Simulation , Protein Kinase Inhibitors , Quinazolines , Triazoles , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Triazoles/pharmacology , Triazoles/chemistry , Triazoles/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor , Molecular Structure , Dose-Response Relationship, Drug , Chalcones/pharmacology , Chalcones/chemical synthesis , Chalcones/chemistry , HCT116 Cells , Acetamides/pharmacology , Acetamides/chemistry , Acetamides/chemical synthesis , MCF-7 Cells , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis
12.
Future Med Chem ; 16(10): 929-948, 2024.
Article in English | MEDLINE | ID: mdl-38661115

ABSTRACT

Aim: New quinazoline benzenesulfonamide hybrids 4a-n were synthesized to determine their cytotoxicity and effect on the miR-34a/MDM4/p53 apoptotic pathway. Materials & methods: Cytotoxicity against hepatic, breast, lung and colon cancer cell lines was estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Compound 4d was the most potent against HepG2 and MCF-7 cancer cells, with potential apoptotic activity verified by a significant upregulation of miR-34a and p53 gene expressions. The apoptotic effect of 4d was further investigated and showed downregulation of miR-21, VEGF, STAT3 and MDM4 gene expression. Conclusion: The anticancer and apoptotic activities of 4d were enhanced post irradiation by a single dose of 8 Gy γ-radiation. Docking analysis demonstrated a valuable affinity of 4d toward VEGFR2 and MDM4 active sites.


[Box: see text].


Subject(s)
Antineoplastic Agents , Apoptosis , MicroRNAs , Proto-Oncogene Proteins , Quinazolines , Radiation-Sensitizing Agents , Sulfonamides , Tumor Suppressor Protein p53 , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , MicroRNAs/antagonists & inhibitors , Apoptosis/drug effects , Tumor Suppressor Protein p53/metabolism , Sulfonamides/pharmacology , Sulfonamides/chemistry , Sulfonamides/chemical synthesis , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/chemical synthesis , Molecular Docking Simulation , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Molecular Structure , Cell Line, Tumor , Cell Cycle Proteins
13.
Bioorg Chem ; 147: 107340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593532

ABSTRACT

In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.


Subject(s)
Anti-HIV Agents , Biphenyl Compounds , Drug Design , HIV Reverse Transcriptase , HIV-1 , Quinazolines , Reverse Transcriptase Inhibitors , Solubility , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Viral/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , HIV-1/enzymology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Structure-Activity Relationship
14.
J Asian Nat Prod Res ; 26(7): 812-823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38477295

ABSTRACT

Nineteen isosteviol derivatives were designed and synthesized by C-16, C-19 and D-ring modifications of isosteviol. These compounds were screened for their cytotoxic activities against Hela and A549 cells in vitro. Among them, the inhibitory effect of compounds 3b and 16 on Hela cells was comparable to that of the positive control gefitinib, and the compounds 3b (IC50=7.84 ± 0.84 µM) and 7a (IC50=6.89 ± 0.33 µM) exhibited significant cytotoxicity superior to gefitinib (IC50=11.02 ± 3.27 µM) against A549 cells.


Subject(s)
Diterpenes, Kaurane , Drug Screening Assays, Antitumor , Humans , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/chemical synthesis , Diterpenes, Kaurane/chemistry , Molecular Structure , HeLa Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , A549 Cells , Gefitinib/pharmacology , Structure-Activity Relationship , Cell Proliferation/drug effects , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis
15.
ChemMedChem ; 19(10): e202300651, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38354370

ABSTRACT

In this research work, a series of 16 quinazoline derivatives bearing ibuprofen and an amino acid were designed as inhibitors of epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) and cyclooxygenase-2 (COX-2) with the intention of presenting dual action in their biological behavior. The designed compounds were synthesized and assessed for cytotoxicity on epithelial cancer cells lines (AGS, A-431, MCF-7, MDA-MB-231) and epithelial non-tumorigenic cell line (HaCaT). From this evaluation, derivative 6 was observed to exhibit higher cytotoxic potency (IC50) than gefitinib (reference drug) on three cancer cell lines (0.034 µM in A-431, 2.67 µM in MCF-7, and 3.64 µM in AGS) without showing activity on the non-tumorigenic cell line (>100 µM). Furthermore, assessment of EGFR-TKD inhibition by 6 showed a discreet difference compared to gefitinib. Additionally, 6 was used to conduct an in vivo anti-inflammatory assay using the 12-O-tetradecanoylphorbol-3-acetate (TPA) method, and it was shown to be 5 times more potent than ibuprofen. Molecular dynamics studies of EGFR-TKD revealed interactions between compound 6 and M793. On the other hand, one significant interaction was observed for COX-2, involving S531. The RMSD graph indicated that the ligand remained stable in 50 ns.


Subject(s)
Amino Acids , Antineoplastic Agents , Cyclooxygenase 2 , Drug Screening Assays, Antitumor , ErbB Receptors , Ibuprofen , Quinazolines , Ibuprofen/pharmacology , Ibuprofen/chemistry , Ibuprofen/chemical synthesis , Humans , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Cyclooxygenase 2/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Amino Acids/chemistry , Amino Acids/pharmacology , Amino Acids/chemical synthesis , Molecular Structure , Cell Line, Tumor , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Tetradecanoylphorbol Acetate/pharmacology , Cell Proliferation/drug effects , Animals , Dose-Response Relationship, Drug , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Cell Survival/drug effects
16.
Anticancer Agents Med Chem ; 24(7): 514-532, 2024.
Article in English | MEDLINE | ID: mdl-38288814

ABSTRACT

BACKGROUND: Cancer is one of the most common reasons for mortality in the world. A continuous effort to develop effective anti-cancer drugs with minimum side effects has become necessary. The use of small-molecule drugs has revolutionized cancer research by inhibiting cancer cell survival and proliferation. Quinazolines are a class of bioactive heterocyclic compounds with active pharmacophores in several anti-cancer drugs. Such small molecule inhibitors obstruct the significant signals responsible for cancer cell development, thus blocking these cell signals to prevent cancer development and spread. OBJECTIVE: In the current study, novel quinazoline derivatives structurally similar to erlotinib were synthesized and explored as novel anti-cancer agents. METHODS: All the synthesized molecules were confirmed by spectroscopic techniques like 1H NMR, 13C NMR, and ESI-MS. Various techniques were applied to study the protein-drug interaction, DFT analysis, Hirshfeld surface, and target prediction. The molecules were screened in vitro for their anti-cancer properties against 60 human tumor cell lines. The growth inhibitory properties of a few compounds were studied against the MCF7 breast cancer cell line. RESULTS: The activity of compounds 9f, 9o, and 9s were found to be active. However, compound 9f is more active when compared with other compounds. CONCLUSION: Some synthesized compounds were active against different cancer cell lines. The in-vitro study results were found to be in agreement with the predictions from in-silico data. The selected molecules were further subjected to get the possible mechanism of action against different cancer cells.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Density Functional Theory , Drug Screening Assays, Antitumor , Quinazolines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Quinazolines/pharmacology , Quinazolines/chemistry , Quinazolines/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Cell Survival/drug effects , Cell Line, Tumor , Molecular Docking Simulation
17.
Nature ; 623(7985): 77-82, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37914946

ABSTRACT

When searching for the ideal molecule to fill a particular functional role (for example, a medicine), the difference between success and failure can often come down to a single atom1. Replacing an aromatic carbon atom with a nitrogen atom would be enabling in the discovery of potential medicines2, but only indirect means exist to make such C-to-N transmutations, typically by parallel synthesis3. Here, we report a transformation that enables the direct conversion of a heteroaromatic carbon atom into a nitrogen atom, turning quinolines into quinazolines. Oxidative restructuring of the parent azaarene gives a ring-opened intermediate bearing electrophilic sites primed for ring reclosure and expulsion of a carbon-based leaving group. Such a 'sticky end' approach subverts existing atom insertion-deletion approaches and as a result avoids skeleton-rotation and substituent-perturbation pitfalls common in stepwise skeletal editing. We show a broad scope of quinolines and related azaarenes, all of which can be converted into the corresponding quinazolines by replacement of the C3 carbon with a nitrogen atom. Mechanistic experiments support the critical role of the activated intermediate and indicate a more general strategy for the development of C-to-N transmutation reactions.


Subject(s)
Carbon , Chemistry Techniques, Synthetic , Nitrogen , Quinazolines , Quinolines , Carbon/chemistry , Nitrogen/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinolines/chemistry , Oxidation-Reduction , Drug Design , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
18.
J Med Chem ; 65(4): 3359-3370, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35148092

ABSTRACT

Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are emerging as attractive therapeutic targets in diseases, such as cancer, immunological disorders, and neurodegeneration, owing to their central role in regulating cell signaling pathways that are either dysfunctional or can be modulated to promote cell survival. Different modes of binding may enhance inhibitor selectivity and reduce off-target effects in cells. Here, we describe efforts to improve the physicochemical properties of the selective PI5P4Kγ inhibitor, NIH-12848 (1). These improvements enabled the demonstration that this chemotype engages PI5P4Kγ in intact cells and that compounds from this series do not inhibit PI5P4Kα or PI5P4Kß. Furthermore, the first X-ray structure of PI5P4Kγ bound to an inhibitor has been determined with this chemotype, confirming an allosteric binding mode. An exemplar from this chemical series adopted two distinct modes of inhibition, including through binding to a putative lipid interaction site which is 18 Å from the ATP pocket.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Allosteric Regulation/drug effects , Binding, Competitive , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Docking Simulation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Substrate Specificity
19.
Bioorg Med Chem Lett ; 59: 128531, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35007723

ABSTRACT

Bacterial resistance to currently used antibiotics demands the development of novel antibacterial agents with good safety margins and sufficient efficacy against multi-drug resistant isolates. We have previously described the synthesis of N-butyl-2-(butylthio)quinazolin-4-amine (I) as an optimized hit with broad-spectrum antibacterial activity and low cytotoxicity. In addition, we have identified a potential growing vector for this series of compounds. Herein, we describe further hit optimization which includes systematic diversifications of both the benzenoid part and the substituents at position 6 and 7 of compound I. Growing of the molecule beside the core modifications yielded several compounds with remarkable anti(myco)bacterial activity against a panel of pathogenic bacteria, including drug-resistant strains. Compound 12 showed a 2-4 fold improvement in activity than I against S. aureus Newman, S. pneumoniae DSM-20566 and E. faecalis DSM-20478. The compounds also showed a good safety profile towards human HepG2 cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzene Derivatives/pharmacology , Enterococcus faecalis/drug effects , Quinazolines/pharmacology , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzene Derivatives/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
20.
J Enzyme Inhib Med Chem ; 37(1): 573-591, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35012403

ABSTRACT

Based on quinazoline, quinoxaline, and nitrobenzene scaffolds and on pharmacophoric features of VEGFR-2 inhibitors, 17 novel compounds were designed and synthesised. VEGFR-2 IC50 values ranged from 60.00 to 123.85 nM for the new derivatives compared to 54.00 nM for sorafenib. Compounds 15a, 15b, and 15d showed IC50 from 17.39 to 47.10 µM against human cancer cell lines; hepatocellular carcinoma (HepG2), prostate cancer (PC3), and breast cancer (MCF-7). Meanwhile, the first in terms of VEGFR-2 inhibition was compound 15d which came second with regard to antitumor assay with IC50 = 24.10, 40.90, and 33.40 µM against aforementioned cell lines, respectively. Furthermore, Compound 15d increased apoptosis rate of HepG2 from 1.20 to 12.46% as it significantly increased levels of Caspase-3, BAX, and P53 from 49.6274, 40.62, and 42.84 to 561.427, 395.04, and 415.027 pg/mL, respectively. Moreover, 15d showed IC50 of 253 and 381 nM against HER2 and FGFR, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Nitrobenzenes/chemical synthesis , Nitrobenzenes/chemistry , Nitrobenzenes/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolines/pharmacology , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Quinoxalines/pharmacology , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...