Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 793
Filter
1.
J Enzyme Inhib Med Chem ; 39(1): 2395985, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39311475

ABSTRACT

Quinoxalines are benzopyrazine derivatives with significant therapeutic impact in the pharmaceutical industry. They proved to be useful against inflammation, bacterial, fungal, viral infection, diabetes and other applications. Very recently, in January 2024, the FDA approved new quinoxaline containing drug, erdafitinib for treatment of certain carcinomas. Despite the diverse biological activities exhibited by quinoxaline derivatives and the role of secretory phospholipase A2 (sPLA2) in diabetes-related complications, the potential of sPLA2-targeting quinoxaline-based inhibitors to effectively address these complications remains unexplored. Therefore, we designed novel sPLA2- and α-glucosidase-targeting quinoxaline-based heterocyclic inhibitors to regulate elevated post-prandial blood glucose linked to patients with diabetes-related cardiovascular complications. Compounds 5a-d and 6a-d were synthesised by condensing quinoxaline hydrazides with various aryl sulphonyl chlorides. Biological screening revealed compound 6a as a potent sPLA2 inhibitor (IC50 = 0.0475 µM), whereas compound 6c most effectively inhibited α-glucosidase (IC50 = 0.0953 µM), outperforming the positive control acarbose. Moreover, compound 6a was the best inhibitor for both enzymes. Molecular docking revealed pharmacophoric features, highlighting the importance of a sulfonohydrazide moiety in the structural design of these compounds, leading to the development of potent sPLA2 and α-glucosidase inhibitors. Collectively, our findings helped identify promising candidates for developing novel therapeutic agents for treating diabetes mellitus.


A small, focused library comprising 8 novel compounds was synthesised using a series of substituted quinoxaline sulfonohydrazide derivatives.All synthesised compounds were tested against phospholipase A2 (sPLA2) and α-glucosidase enzymes.The compounds exhibited activities against α-glucosidase and were potent at nanomolar concentrations against sPLA2 isozymes.Structure-based molecular modelling was employed to rationalise the SAR of the compounds.


Subject(s)
Diabetes Mellitus, Type 2 , Dose-Response Relationship, Drug , Hypoglycemic Agents , Quinoxalines , alpha-Glucosidases , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Humans , Structure-Activity Relationship , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Molecular Structure , alpha-Glucosidases/metabolism , Models, Molecular , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Molecular Docking Simulation
2.
Bioorg Chem ; 151: 107694, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151388

ABSTRACT

An unprecedented metal-free synthesis of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine hybrids have been reported under mild conditions through a domino intermolecular SNAr followed by an internal nucleophile-triggered intramolecular SNAr pathway. Our strategy offers the flexibility for the introduction of a broad variety of functionalities at the N-1 position of fused diazepine moiety by using suitable diamine tails to design structurally diverse scaffolds. The DNA binding properties of representative quinoxaline diazepine hybrids were studied using UV-vis absorbance and EtBr displacement assay and were found to be governed by the functionalities at the N-1 position. Interestingly, compound 11f containing the N-1 benzyl substitution demonstrated significant DNA binding (KBH âˆ¼ 2.15 ± 0.25 × 104 M-1 and Ksv âˆ¼ 12.6 ± 1.41 × 103 M-1) accompanied by a bathochromic shift (Δλ âˆ¼ 5 nm). In silico studies indicated possible binding of diazepine hybrid 11f at the GC-rich major groove in the ct-DNA hexamer duplex and showed comparable binding energies to that of ethidium bromide. The antiproliferative activity of compounds was observed in the given order in different cell lines: (HeLa > HT29 > SKOV 3 > HCT116 > HEK293). Lead compound 11f demonstrated maximum cytotoxicity (IC50 value of 13.30 µM) in HeLa cell lines and also caused early apoptosis-mediated cell death in cancer cell lines. We envision that our work will offer newer methodologies for the construction of fused quinoxaline 1,5-disubstituted-[1,4]-diazepine class of molecules.


Subject(s)
Antineoplastic Agents , DNA , Quinoxalines , Humans , Quinoxalines/chemistry , Quinoxalines/pharmacology , Quinoxalines/chemical synthesis , DNA/chemistry , DNA/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Azepines/chemistry , Azepines/pharmacology , Azepines/chemical synthesis , Binding Sites , Apoptosis/drug effects
3.
Eur J Med Chem ; 276: 116647, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38981337

ABSTRACT

Multi-drug resistance (MDR) is a serious challenge in contemporary clinical practice and is mostly responsible for the failure of cancer medication therapies. Several experimental evidence links MDR to the overexpression of the drug efflux transporter P-gp, therefore, the discovery of novel P-glycoprotein inhibitors is required to treat or prevent MDR and to improve the absorption of chemotherapy drugs via the gastrointestinal system. In this work, we explored a series of novel pyridoquinoxaline-based derivatives designed from parental compounds, previously proved active in enhancing anticancer drugs in MDR nasopharyngeal carcinoma (KB). Among them, derivative 10d showed the most potent and selective inhibition of fluorescent dye efflux, if compared to reference compounds (MK-571, Novobiocin, Verapamil), and the highest MDR reversal activity when co-administered with the chemotherapeutic agents Vincristine and Etoposide, at non-cytotoxic concentrations. Molecular modelling predicted the two compound 10d binding mode in a ratio of 2:1 with the target protein. No cytotoxicity was observed in healthy microglia cells and off-target investigations showed the absence of CaV1.2 channel blockade. In summary, our findings indicated that 10d could potentially be a novel therapeutic coadjutant by inhibiting P-gp transport function in vitro, thereby reversing cancer multidrug resistance.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Antineoplastic Agents , Drug Discovery , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Quinoxalines , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Multiple/drug effects , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Molecular Structure , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Models, Molecular
4.
Eur J Med Chem ; 276: 116675, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39004020

ABSTRACT

Antimicrobial resistance (AMR) has emerged as a long-standing global issue ever since the introduction of penicillin, the first antibiotic. Scientists are constantly working to develop innovative antibiotics that are more effective and superior. Unfortunately, the misuse of antibiotics has resulted in their declining effectiveness over the years. By 2050, it is projected that approximately 10 million lives could be lost annually due to antibiotic resistance. Gaining insight into the mechanisms behind the development and transmission of AMR in well-known bacteria including Escherichia coli, Bacillus pumilus, Enterobacter aerogenes, Salmonella typhimurium, and the gut microbiota is crucial for researchers. Environmental contamination in third world and developing countries also plays a significant role in the increase of AMR. Despite the availability of numerous recognized antibiotics to combat bacterial infections, their effectiveness is diminishing due to the growing problem of AMR. The overuse of antibiotics has led to an increase in resistance rates and negative impacts on global health. This highlights the importance of implementing strong antimicrobial stewardship and improving global monitoring, as emphasized by the World Health Organization (WHO) and other organizations. In the face of these obstacles, quinoxaline derivatives have emerged as promising candidates. They are characterized by their remarkable efficacy against a broad spectrum of harmful bacteria, including strains that are resistant to multiple drugs. These compounds are known for their strong structural stability and adaptability, making them a promising and creative solution to the AMR crisis. This review aims to assess the effectiveness of quinoxaline derivatives in treating drug-resistant infections, with the goal of making a meaningful contribution to the global fight against AMR.


Subject(s)
Anti-Bacterial Agents , Quinoxalines , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Molecular Structure , Bacteria/drug effects
5.
J Enzyme Inhib Med Chem ; 39(1): 2367128, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38913598

ABSTRACT

Inhibition of α-glucosidase and α-amylase are key tactics for managing blood glucose levels. Currently, stronger, and more accessible inhibitors are needed to treat diabetes. Indeno[1,2-b] quinoxalines-carrying thiazole hybrids 1-17 were created and described using NMR. All analogues were tested for hypoglycaemic effect against STZ-induced diabetes in mice. Compounds 4, 6, 8, and 16 were the most potent among the synthesised analogues. These hybrids were examined for their effects on plasma insulin, urea, creatinine, GSH, MDA, ALT, AST, and total cholesterol. Moreover, these compounds were tested against α-glucosidase and α-amylase enzymes in vitro. The four hybrids 4, 6, 8, and 16 represented moderate to potent activity with IC50 values 0.982 ± 0.04, to 10.19 ± 0.21 for α-glucosidase inhibition and 17.58 ± 0.74 to 121.6 ± 5.14 µM for α-amylase inhibition when compared to the standard medication acarbose with IC50=0.316 ± 0.02 µM for α-glucosidase inhibition and 31.56 ± 1.33 µM for α-amylase inhibition. Docking studies as well as in silico ADMT were done.


Subject(s)
Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Quinoxalines , Thiazoles , alpha-Amylases , alpha-Glucosidases , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Animals , Mice , Structure-Activity Relationship , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Diabetes Mellitus, Experimental/drug therapy , Streptozocin , Halogenation , Male , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
6.
Pestic Biochem Physiol ; 202: 105943, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879303

ABSTRACT

In this study, a new series of thiazolo[4,5-b]quinoxaline derivatives 3-8 were synthesized by treating 2,3-dichloroquinoxaline with thiosemicarbazone and thiourea derivatives under reflux conditions. The chemical structure of the newly designed derivatives was conducted using spectroscopic techniques. The insecticidal bioassay of the designed derivatives was evaluated against the 2nd and 4th larvae of S. litura after five days as toxicity agents via median lethal concentration (LC50) and the lethal time values (LT50). The results indicated that all the tested compounds had insecticidal effects against both instar larvae of S. litura with variable values. Among them, thiazolo[4,5-b]quinoxaline derivative 3 was the most toxic, with LC50 = 261.88 and 433.68 ppm against 2nd and 4th instar larvae, respectively. Moreover, the thiazolo[4,5-b]quinoxaline derivative 3 required the least time to kill the 50% population (LT50) of 2nd larvae were 20.88, 13.2, and 15.84 hs with 625, 1250, and 2500 ppm, respectively, while for the 4th larval instar were 2.75, 2.08, and 1.76 days with concentrations of 625, 1250, and 2500 ppm, respectively. Larvae's morphological and histological studies for the most active derivative 3 were investigated. According to SEM analysis, the exterior morphology of the cuticle and head capsule was affected. In addition, there were some histological alterations in the cuticle layers and the midgut tissues. Columnar cells began breaking down, and vacuolization occurred in the peritrophic membrane. Moreover, treating 4th S litura larvae hemolymph with compound 3 showed significant changes in biochemical analysis, such as total proteins, GPT, GOT, acetylcholinesterase (AChE), and alkaline phosphatase (AlP). Finally, the toxicity prediction of the most active derivative revealed non-corrosive, non-irritant to the eye, non-respiratory toxicity, non-sensitivity to the skin, non-hepatotoxic, and don't have toxicity on minnow toxicity and T. pyriformis indicating a good toxicity profile for human.


Subject(s)
Insecticides , Larva , Quinoxalines , Spodoptera , Animals , Insecticides/chemical synthesis , Insecticides/pharmacology , Insecticides/toxicity , Insecticides/chemistry , Quinoxalines/toxicity , Quinoxalines/pharmacology , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Larva/drug effects , Spodoptera/drug effects , Spodoptera/growth & development , Thiazoles/chemistry
7.
ChemMedChem ; 19(18): e202400305, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38871654

ABSTRACT

Fasciola hepatica is a parasitic trematode that infects livestock animals and humans, causing significant health and economic burdens worldwide. The extensive use of anthelmintic drugs has led to the emergence of resistant parasite strains, posing a threat to treatment success. The complex life cycle of the liver fluke, coupled with limited funding and research interest, have hindered progress in drug discovery. Our group has been working in drug development against this parasite using cathepsin proteases as molecular targets, finding promising compound candidates with in vitro and in vivo efficacy. Here, we evaluated hybrid molecules that combine two chemotypes, chalcones and quinoxaline 1,4-di- N-oxides, previously found to inhibit F. hepatica cathepsin Ls and tested their in vitro activity with the isolated targets and the parasites in culture. These molecules proved to be good cathepsin inhibitors and to kill the juvenile parasites at micromolar concentrations. Also, we performed molecular docking studies to analyze the compounds-cathepsins interface, finding that the best inhibitors interact at the active site cleft and contact the catalytic dyad and residues belonging to the substrate binding pockets. We conclude that the hybrid compounds constitute promising scaffolds for the further development of new fasciolicidal compounds.


Subject(s)
Cathepsins , Fasciola hepatica , Molecular Docking Simulation , Quinoxalines , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Animals , Fasciola hepatica/drug effects , Fasciola hepatica/enzymology , Structure-Activity Relationship , Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Molecular Structure , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/chemical synthesis , Dose-Response Relationship, Drug , Fascioliasis/drug therapy , Parasitic Sensitivity Tests , Anthelmintics/pharmacology , Anthelmintics/chemical synthesis , Anthelmintics/chemistry , Humans
8.
Arch Pharm (Weinheim) ; 357(9): e2400225, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38822393

ABSTRACT

The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.


Subject(s)
Antineoplastic Agents , Apoptosis , Neoplasms , Quinoxalines , Quinoxalines/pharmacology , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Humans , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Structure-Activity Relationship , Animals , Molecular Structure , Molecular Targeted Therapy , Cell Line, Tumor
9.
Molecules ; 29(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893377

ABSTRACT

Plant pathogenic fungi pose a major threat to global food security, ecosystem services, and human livelihoods. Effective and broad-spectrum fungicides are needed to combat these pathogens. In this study, a novel antifungal 2-oxyacetate hydrazide quinoxaline scaffold as a simple analogue was designed and synthesized. Their antifungal activities were evaluated against Botrytis cinerea (B. cinerea), Altemaria solani (A. solani), Gibberella zeae (G. zeae), Rhizoctonia solani (R. solani), Colletotrichum orbiculare (C. orbiculare), and Alternaria alternata (A. alternata). These results demonstrated that most compounds exhibited remarkable inhibitory activities and possessed better efficacy than ridylbacterin, such as compound 15 (EC50 = 0.87 µg/mL against G. zeae, EC50 = 1.01 µg/mL against C. orbiculare) and compound 1 (EC50 = 1.54 µg/mL against A. alternata, EC50 = 0.20 µg/mL against R. solani). The 3D-QSAR analysis of quinoxaline-2-oxyacetate hydrazide derivatives has provided new insights into the design and optimization of novel antifungal drug molecules based on quinoxaline.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Quantitative Structure-Activity Relationship , Quinoxalines , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , Drug Design , Alternaria/drug effects , Rhizoctonia/drug effects , Botrytis/drug effects , Molecular Structure , Colletotrichum/drug effects , Gibberella/drug effects
10.
Eur J Med Chem ; 274: 116536, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38805936

ABSTRACT

G-quadruplexes (G4s) are commonly formed in the G-rich strand of telomeric DNA. Ligands targeting telomeric G4 induce DNA damage and telomere dysfunction, which makes them potential antitumor drugs. New telomeric G4 ligands with drug-likeness are still needed to be exploited, especially with their antitumor mechanisms thoroughly discussed. In this study, a novel series of quinoxaline analogs were rationally designed and synthesized. Among them, R1 was the most promising ligand for its cytotoxic effects on tumor cells and stabilizing ability with telomeric G4. Cellular assays illustrated that R1 stabilized G4 and induced R-loop accumulation in the telomeric regions, subsequently triggering DNA damage responses, cell cycle arrest in G2/M phase, apoptosis and antiproliferation. Moreover, R1 evoked immunogenic cell death (ICD) in tumor cells, which promoted the maturation of bone marrow derived dendritic cells (BMDCs). In breast cancer mouse model, R1 exhibited a significant decrease in tumor burden through the immunomodulatory effects, including the increase of CD4+ and CD8+ T cells in tumors and cytokine levels in sera. Our research provides a new idea that targeting telomeric G4 induces DNA damage responses, causing antitumor effects both in vitro and in vivo, partially due to the enhancement of immunomodulation.


Subject(s)
Antineoplastic Agents , Cell Proliferation , G-Quadruplexes , Quinoxalines , Telomere , G-Quadruplexes/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Quinoxalines/chemistry , Quinoxalines/pharmacology , Quinoxalines/chemical synthesis , Animals , Humans , Telomere/drug effects , Ligands , Mice , Cell Proliferation/drug effects , Molecular Structure , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Dose-Response Relationship, Drug , Female , Immunomodulation/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Mice, Inbred BALB C , DNA Damage/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL