Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Behav Genet ; 47(5): 552-563, 2017 09.
Article in English | MEDLINE | ID: mdl-28822047

ABSTRACT

The SHR and SLA16 inbred strains present behavioral differences in anxiety/emotionality that could be under the influence of dopaminergic neurotransmission. In order to investigate the role of D2 receptors in modulating such differences, an agonist (quinpirole) and an antagonist (haloperidol) of this receptor were administered, either via systemic injection (IP), or microinjected into the ventral area of the hippocampus (vHIP). Quinpirole and haloperidol IP decreased locomotor activity, only in SLA16 rats in the open-field (OF), and in both strains in the elevated plus-maze (EPM). Quinpirole also increased the preference for the aversive areas of the EPM. Quinpirole vHIP decreased locomotor activity in both strains. Haloperidol vHIP did not elicit behavioural changes and no differences in the levels of D2 receptors and of dopamine transporter in the hippocampus were found. Results indicate that systemic activation/blocking of D2 receptors caused a strain-dependent hypolocomotion, whereas activation of D2 receptors in the vHIP, but not D2 receptor antagonism, regardless of dose, decreased general locomotor activity in the two strains. Therefore, we suggest that genomic differences in the chromosome 4 can influence the locomotor activity regulated by the D2 dopaminergic receptor, especially in the vHIP.


Subject(s)
Behavior, Animal/drug effects , Locomotion/drug effects , Rats, Mutant Strains/metabolism , Animals , Anxiety , Dopamine/metabolism , Dopamine D2 Receptor Antagonists/metabolism , Drug Administration Routes , Haloperidol/pharmacology , Hippocampus/drug effects , Male , Motor Activity/physiology , Quinpirole/metabolism , Quinpirole/pharmacology , Rats , Rats, Inbred SHR/genetics , Rats, Inbred SHR/metabolism , Rats, Mutant Strains/genetics , Receptors, Dopamine D2/drug effects , Receptors, Dopamine D2/metabolism
2.
Eur J Neurosci ; 25(7): 2131-44, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17439497

ABSTRACT

There is a debate as to what modifications of neuronal activity underlie the clinical manifestations of Parkinson's disease and the efficacy of antiparkinsonian pharmacotherapy. Previous studies suggest that release of GABAergic striatopallidal neurons from D2 receptor-mediated inhibition allows spreading of cortical rhythms to the globus pallidus (GP) in rats with 6-hydroxydopamine-induced nigrostriatal lesions. Here this abnormal spreading was thoroughly investigated. In control urethane-anaesthetized rats most GP neurons were excited during the active part of cortical slow waves ('direct-phase' neurons). Two neuronal populations having opposite phase relationships with cortical and striatal activity coexisted in the GP of 6-hydroxydopamine-lesioned rats. 'Inverse-phase' GP units exhibited reduced firing coupled to striatal activation during slow waves, suggesting that this GP oscillation was driven by striatopallidal hyperactivity. Half of the pallidonigral neurons identified by antidromic stimulation exhibited inverse-phase activity. Therefore, spreading of inverse-phase oscillations through pallidonigral axons might contribute to the abnormal direct-phase cortical entrainment of basal ganglia output described previously. Systemic administration of the D2 agonist quinpirole to 6-hydroxydopamine-lesioned rats reduced GP inverse-phase coupling with slow waves, and this effect was reversed by the D2 antagonist eticlopride. Because striatopallidal hyperactivity was only slightly reduced by quinpirole, other mechanisms might have contributed to the effect of quinpirole on GP oscillations. These results suggest that antiparkinsonian efficacy may rely on other actions of D2 agonists on basal ganglia activity. However, abnormal slow rhythms may promote enduring changes in functional connectivity along the striatopallidal axis, contributing to D2 agonist-resistant clinical signs of parkinsonism.


Subject(s)
Basal Ganglia/physiology , Corpus Striatum/pathology , Dopamine/metabolism , Receptors, Dopamine D2/metabolism , Substantia Nigra/pathology , Action Potentials/physiology , Animals , Dopamine Agonists/metabolism , Electrophysiology , Male , Neurons/physiology , Quinpirole/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL