Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.881
Filter
1.
Clin Transl Med ; 14(7): e1759, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38997803

ABSTRACT

BACKGROUND: CircRNA-encoded proteins (CEPs) are emerging as new players in health and disease, and function as baits for the common partners of their cognate linear-spliced RNA encoded proteins (LEPs). However, their prevalence across human tissues and biological roles remain largely unexplored. The placenta is an ideal model for identifying CEPs due to its considerable protein diversity that is required to sustain fetal development during pregnancy. The aim of this study was to evaluate circRNA translation in the human placenta, and the potential roles of the CEPs in placental development and dysfunction. METHODS: Multiomics approaches, including RNA sequencing, ribosome profiling, and LC-MS/MS analysis, were utilised to identify novel translational events of circRNAs in human placentas. Bioinformatics methods and the protein bait hypothesis were employed to evaluate the roles of these newly discovered CEPs in placentation and associated disorders. The pathogenic role of a recently identified CEP circPRKCB119aa in preeclampsia was investigated through qRT-PCR, Western blotting, immunofluorescence imaging and phenotypic analyses. RESULTS: We found that 528 placental circRNAs bound to ribosomes with active translational elongation, and 139 were translated to proteins. The CEPs showed considerable structural homology with their cognate LEPs, but are more stable, hydrophobic and have a lower molecular-weight than the latter, all of which are conducive to their function as baits. On this basis, CEPs are deduced to be closely involved in placental function. Furthermore, we focused on a novel CEP circPRKCB119aa, and illuminated its pathogenic role in preeclampsia; it enhanced trophoblast autophagy by acting as a bait to inhibit phosphorylation of the cognate linear isoform PKCß. CONCLUSIONS: We discovered a hidden circRNA-encoded proteome in the human placenta, which offers new insights into the mechanisms underlying placental development, as well as placental disorders such as preeclampsia. Key points A hidden circRNA-encoded proteome in the human placenta was extensively identified and systematically characterised. The circRNA-encoded proteins (CEPs) are potentially related to placental development and associated disorders. A novel conserved CEP circPRKCB119aa enhanced trophoblast autophagy by inhibiting phosphorylation of its cognate linear-spliced isoform protein kinase C (PKC) ß in preeclampsia.


Subject(s)
Placenta , Pre-Eclampsia , Proteome , RNA, Circular , Humans , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pregnancy , Female , RNA, Circular/genetics , RNA, Circular/metabolism , Placenta/metabolism , Proteome/metabolism , Proteome/genetics
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000149

ABSTRACT

Gestational diabetes mellitus (GDM) is an intolerance of carbohydrate of any degree, which appears for the first time or is diagnosed during pregnancy. The objective of this study is to assess the differences in circular RNA (circRNA) in a Polish pregnant population with and without GDM. A total of 62 pregnant women, 34 with GDM and 28 controls, were enrolled in the study. Total RNAs were extracted from plasma and reverse transcription to complementary DNA (cDNA) was performed. A panel covering 271 amplicons, targeting both linear and circular as well as negative control gene transcripts, was used. Next-generation sequencing was used to evaluate the circRNA quantity. Data analysis was performed using the Coverage Analysis plugin in the Torrent Suite Software (Torrent Suite 5.12.3). A two-step normalization was performed by dividing each transcript read count by the total number of reads generated for the sample, followed by dividing the quantity of each transcript by ß-actin gene expression. Both circular and linear forms of RNAs were independently evaluated. A total of 57 transcripts were dysregulated between pregnant women with GDM and controls. Most of the targets (n = 25) were downregulated (cut-off ratio below 0.5), and one target showed a trend toward strong upregulation (ratio 1.45). A total of 39 targets were positively correlated with fasting plasma glucose (FPG), but none of the tested targets were correlated with insulin, CRP or HOMA-IR levels. Among the pregnant women with gestational diabetes, the relative quantity of hsa_circ_0002268 (PHACTR1) was approximately 120% higher than among healthy pregnant women: 0.046 [0.022-0.096] vs. 0.021 [0.007-0.047], respectively, (p = 0.0029). Elevated levels of hsa_circ_0002268 (PHACTR1) might be specific to the Polish population of pregnant women with GDM, making it useful as a potential molecular biomarker in the management of GDM in Poland.


Subject(s)
Diabetes, Gestational , RNA, Circular , Humans , Female , Diabetes, Gestational/genetics , Pregnancy , RNA, Circular/genetics , Poland , Adult , Case-Control Studies , Biomarkers/blood , High-Throughput Nucleotide Sequencing/methods , Blood Glucose
3.
Autoimmunity ; 57(1): 2361749, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39007896

ABSTRACT

BACKGROUND: Dysregulated circular RNAs (circRNAs) are involved in osteoarthritis (OA) progression. OBJECTIVE: We aimed to explore the effect of hsa_circ_0044719 (circTRIM25) on the ferroptosis of chondrocytes. METHODS: Chondrocytes were treated with interleukin (IL)-1ß to generate cell model. Cellular behaviours were measured using cell counting kit-8, enzyme-linked immunosorbent assay, relevant kits, propidium iodide staining, and immunofluorescence assay. Quantitative real-time polymerase chain reaction was performed to examine the expression of circTRIM25, miR-138-5p, and cAMP responsive element binding protein 1 (CREB1), and their interactions were assessed using luciferase reporter analysis and RNA pull-down assay. RESULTS: CircTRIM25 was upregulated in OA tissues and IL-1ß-stimulated chondrocytes. Knockdown of circTRIM25 facilitated the viability and suppressed ferroptosis and inflammation of IL-1ß-induced cells. CircTRIM25 served as a sponge of miR-138-5p, which directly targets CREB1. Downregulation of miR-138-5p abrogated the effect induced by knockdown of circTRIM25. Furthermore, enforced CREB1 reversed the miR-138-5p induced effect. Moreover, knockdown of circTRIM25 attenuated cartilage injury in vivo. CONCLUSION: Silencing of circTRIM25 inhibited ferroptosis of chondrocytes via the miR-138-5p/CREB axis and thus attenuated OA progression.


Subject(s)
Chondrocytes , Chondrogenesis , Cyclic AMP Response Element-Binding Protein , MicroRNAs , Osteoarthritis , RNA, Circular , MicroRNAs/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , RNA, Circular/genetics , Humans , Chondrocytes/metabolism , Chondrocytes/pathology , Chondrogenesis/genetics , Male , Mice , Animals , Interleukin-1beta/metabolism , Signal Transduction , Female , Gene Expression Regulation , Gene Silencing
4.
Curr Gene Ther ; 24(5): 395-409, 2024.
Article in English | MEDLINE | ID: mdl-39005062

ABSTRACT

Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , RNA, Circular , RNA, Circular/genetics , Humans , Pulmonary Fibrosis/genetics , Biomarkers , Animals , MicroRNAs/genetics , Lung/pathology , Lung/metabolism
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 872-880, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946376

ABSTRACT

With the advance of research, non-coding RNA has been found to surpass the traditional definition to directly code functional proteins by coding sequence elements and binding with ribosomes. Among the non-coding RNAs, the function of circRNA encoded proteins has been most extensively studied. This study has used "circRNA", "encoded", and "translation" as the key words to search the PubMed and Web of Science databases. The retrieved literature was screened and traced, with the translation mechanism, related research methods, and correlation with diseases of circRNA reviewed. CircRNA can translate proteins through a non-cap-dependent pathway. Multiple molecular techniques, in particular mass spectrometry analysis, have important value in identifying unique peptide segments of circRNA encoded proteins for confirming their existence. The proteins encoded by the circRNA are involved in the pathogenesis of diseases of the digestive, neurological, urinary systems and the breast, and have the potential to serve as novel targets for disease diagnosis and treatment. This article has provided a comprehensive review for the basic theory, experimental methods, and disease-related research in the field of circRNA translation, which may provide clues for the identification of new diagnostic and therapeutic targets.


Subject(s)
RNA, Circular , RNA, Circular/genetics , Humans , RNA/genetics , Proteins/genetics , Animals , Protein Biosynthesis , Disease/genetics
6.
Ren Fail ; 46(2): 2371059, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946402

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been shown to play critical roles in the initiation and progression of chronic glomerulonephritis (CGN), while their role from mesangial cells in contributing to the pathogenesis of CGN is rarely understood. Our study aims to explore the potential functions of mesangial cell-derived circRNAs using RNA sequencing (RNA-seq) and bioinformatics analysis. METHODS: Mouse mesangial cells (MMCs) were stimulated by lipopolysaccharide (LPS) to establish an in vitro model of CGN. Pro-inflammatory cytokines and cell cycle stages were detected by Enzyme-linked immunosorbent assay (ELISA) and Flow Cytometry experiment, respectively. Subsequently, differentially expressed circRNAs (DE-circRNAs) were identified by RNA-seq. GEO microarrays were used to identify differentially expressed mRNAs (DE-mRNAs) between CGN and healthy populations. Weighted co-expression network analysis (WGCNA) was utilized to explore clinically significant modules of CGN. CircRNA-associated CeRNA networks were constructed by bioinformatics analysis. The hub mRNAs from CeRNA network were identified using LASSO algorithms. Furthermore, utilizing protein-protein interaction (PPI), gene ontology (GO), pathway enrichment (KEGG), and GSEA analyses to explore the potential biological function of target genes from CeRNA network. In addition, we investigated the relationships between immune cells and hub mRNAs from CeRNA network using CIBERSORT. RESULTS: The expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was drastically increased in LPS-induced MMCs. The number of cells decreased significantly in the G1 phase but increased significantly in the S/G2 phase. A total of 6 DE-mRNAs were determined by RNA-seq, including 4 up-regulated circRNAs and 2 down-regulated circRNAs. WGCNA analysis identified 1747 DE-mRNAs of the turquoise module from CGN people in the GEO database. Then, the CeRNA networks, including 6 circRNAs, 38 miRNAs, and 80 mRNAs, were successfully constructed. The results of GO and KEGG analyses revealed that the target mRNAs were mainly enriched in immune, infection, and inflammation-related pathways. Furthermore, three hub mRNAs (BOC, MLST8, and HMGCS2) from the CeRNA network were screened using LASSO algorithms. GSEA analysis revealed that hub mRNAs were implicated in a great deal of immune system responses and inflammatory pathways, including IL-5 production, MAPK signaling pathway, and JAK-STAT signaling pathway. Moreover, according to an evaluation of immune infiltration, hub mRNAs have statistical correlations with neutrophils, plasma cells, monocytes, and follicular helper T cells. CONCLUSIONS: Our findings provide fundamental and novel insights for further investigations into the role of mesangial cell-derived circRNAs in CGN pathogenesis.


Subject(s)
Computational Biology , Glomerulonephritis , Mesangial Cells , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Animals , Mice , Mesangial Cells/metabolism , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Sequence Analysis, RNA , Gene Regulatory Networks , RNA, Messenger/metabolism , RNA, Messenger/genetics , Protein Interaction Maps/genetics , Chronic Disease , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Gene Expression Profiling , Disease Models, Animal
8.
World J Gastroenterol ; 30(22): 2843-2848, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38947286

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common and deadliest subtype of liver cancer worldwide and, therefore, poses an enormous threat to global health. Understanding the molecular mechanisms underlying the development and progression of HCC is central to improving our clinical approaches. PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that bind to PIWI family proteins to regulate gene expression at transcriptional and post-transcriptional levels. A growing body of work shows that the dysregulation of piRNAs plays a crucial role in the progression of various human cancers. In this editorial, we report on the current knowledge of HCC-associated piRNAs and their potential clinical utility. Based on the editorial by Papadopoulos and Trifylli, on the role and clinical evaluation of exosomal circular RNAs in HCC, we highlight this other emerging class of non-coding RNAs.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Small Interfering , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , RNA, Small Interfering/metabolism , Exosomes/metabolism , Exosomes/genetics , RNA, Circular/metabolism , RNA, Circular/genetics , Disease Progression , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
9.
RNA Biol ; 21(1): 52-74, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38989833

ABSTRACT

The aim of this study was to compare the circular transcriptome of divergent tissues in order to understand: i) the presence of circular RNAs (circRNAs) that are not exonic circRNAs, i.e. originated from backsplicing involving known exons and, ii) the origin of artificial circRNA (artif_circRNA), i.e. circRNA not generated in-vivo. CircRNA identification is mostly an in-silico process, and the analysis of data from the BovReg project (https://www.bovreg.eu/) provided an opportunity to explore new ways to identify reliable circRNAs. By considering 117 tissue samples, we characterized 23,926 exonic circRNAs, 337 circRNAs from 273 introns (191 ciRNAs, 146 intron circles), 108 circRNAs from small non-coding genes and nearly 36.6K circRNAs classified as other_circRNAs. Furthermore, for 63 of those samples we analysed in parallel data from total-RNAseq (ribosomal RNAs depleted prior to library preparation) with paired mRNAseq (library prepared with poly(A)-selected RNAs). The high number of circRNAs detected in mRNAseq, and the significant number of novel circRNAs, mainly other_circRNAs, led us to consider all circRNAs detected in mRNAseq as artificial. This study provided evidence of 189 false entries in the list of exonic circRNAs: 103 artif_circRNAs identified by total RNAseq/mRNAseq comparison using two circRNA tools, 26 probable artif_circRNAs, and 65 identified by deep annotation analysis. Extensive benchmarking was performed (including analyses with CIRI2 and CIRCexplorer-2) and confirmed 94% of the 23,737 reliable exonic circRNAs. Moreover, this study demonstrates the effectiveness of a panel of highly expressed exonic circRNAs (5-8%) in analysing the tissue specificity of the bovine circular transcriptome.


Subject(s)
Exons , RNA, Circular , RNA, Circular/genetics , Animals , Cattle , Introns , Computational Biology/methods , Transcriptome , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods
10.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000605

ABSTRACT

Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.


Subject(s)
Neoplasms , RNA, Untranslated , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Cell Division/genetics , Animals , Mitochondria/metabolism , Mitochondria/genetics , Gene Expression Regulation, Neoplastic , RNA, Circular/genetics , RNA, Circular/metabolism , Genome, Mitochondrial , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Int J Biol Sci ; 20(9): 3570-3589, 2024.
Article in English | MEDLINE | ID: mdl-38993556

ABSTRACT

Background: Cisplatin (DDP) based combination chemotherapy is a vital method for the treatment of bladder cancer (BLca). Chemoresistance easily occurs in the course of cisplatin chemotherapy, which is one of the important reasons for the unfavorable prognosis of BLca patients. Circular RNAs (circRNAs) are widely recognized for their role in the development and advancement of BLca. Nevertheless, the precise role of circRNAs in DDP resistance for BLca remains unclear. Methods: To study the properties of circATIC, sanger sequencing, agarose gel electrophoresis and treatment with RNase R/Actinomycin D were utilized. RT-qPCR assay was utilized to assess the expression levels of circRNA, miRNA and mRNA in BLca tissues and cells. Functional experiments were conducted to assess the function of circATIC in BLca progression and chemosensitivity in vitro. Various techniques such as FISH, Dual-luciferase reporter assay, TRAP, RNA digestion assay, RIP and ChIRP assay were used to investigate the relationships between PTBP1, circATIC, miR-1247-5p and RCC2. Orthotopic bladder cancer model, xenograft subcutaneous tumor model and xenograft lung metastasis tumor model were performed to indicate the function and mechanism of circATIC in BLca progression and chemosensitivity in vivo. Results: In our study, we observed that circATIC expression was significantly enhanced in BLca tissues and cells and DDP resistant cells. Patients with higher circATIC expression have larger tumor diameter, higher incidence of postoperative metastasis and lower overall survival rate. Further experiments showed that circATIC accelerated BLca cell growth and metastasis and induced DDP resistance. Mechanistically, alternative splicing enzyme PTBP1 mediated the synthesis of circATIC. circATIC could enhance RCC2 mRNA stability via sponging miR-1247-5p or constructing a circATIC/LIN28A/RCC2 RNA-protein ternary complex. Finally, circATIC promotes RCC2 expression to enhance Epithelial-Mesenchymal Transition (EMT) progression and activate JNK signal pathway, thus strengthening DDP resistance in BLca cells. Conclusion: Our study demonstrated that circATIC promoted BLca progression and DDP resistance, and could serve as a potential target for BLca treatment.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Heterogeneous-Nuclear Ribonucleoproteins , Polypyrimidine Tract-Binding Protein , RNA, Circular , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Cisplatin/therapeutic use , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Animals , Cell Line, Tumor , Mice , Mice, Nude , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Female , Disease Progression , Gene Expression Regulation, Neoplastic , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Cell Proliferation/drug effects
12.
Theranostics ; 14(10): 4058-4075, 2024.
Article in English | MEDLINE | ID: mdl-38994030

ABSTRACT

Background: Knowledge about the pathogenesis of depression and treatments for this disease are lacking. Epigenetics-related circRNAs are likely involved in the mechanism of depression and have great potential as treatment targets, but their mechanism of action is still unclear. Methods: Circular RNA UBE2K (circ-UBE2K) was screened from peripheral blood of patients with major depressive disorder (MDD) and brain of depression model mice through high-throughput sequencing. Microinjection of circ-UBE2K overexpression lentivirus and adeno-associated virus for interfering with microglial circ-UBE2K into the mouse hippocampus was used to observe the role of circ-UBE2K in MDD. Sucrose preference, forced swim, tail suspension and open filed tests were performed to evaluate the depressive-like behaviors of mice. Immunofluorescence and Western blotting analysis of the effects of circ-UBE2K on microglial activation and immune inflammation. Pull-down-mass spectrometry assay, RNA immunoprecipitation (RIP) test and fluorescence in situ hybridization (FISH) were used to identify downstream targets of circ-UBE2K/ HNRNPU (heterogeneous nuclear ribonucleoprotein U) axis. Results: In this study, through high-throughput sequencing and large-scale screening, we found that circ-UBE2K levels were significantly elevated both in the peripheral blood of patients with MDD and in the brains of depression model mice. Functionally, circ-UBE2K-overexpressing mice exhibited worsened depression-like symptoms, elevated brain inflammatory factor levels, and abnormal microglial activation. Knocking down circ-UBE2K mitigated these changes. Mechanistically, we found that circ-UBE2K binds to heterogeneous nuclear ribonucleoprotein U (HNRNPU) to form a complex that upregulates the expression of the parental gene ubiquitin conjugating enzyme E2 K (UBE2K), leading to abnormal microglial activation and neuroinflammation and promoting the occurrence and development of depression. Conclusions: The findings of the present study revealed that the expression of circUBE2K, which combines with HNRNPU to form the circUBE2K/HNRNPU complex, is increased in microglia after external stress, thus regulating the expression of the parental gene UBE2K and mediating the abnormal activation of microglia to induce neuroinflammation, promoting the development of MDD. These results indicate that circ-UBE2K plays a newly discovered role in the pathogenesis of depression.


Subject(s)
Depressive Disorder, Major , Disease Models, Animal , Microglia , RNA, Circular , Ubiquitin-Conjugating Enzymes , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Microglia/metabolism , Humans , Mice , Male , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Female , Depression/genetics , Depression/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Adult , Middle Aged
13.
FASEB J ; 38(14): e23808, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38994637

ABSTRACT

Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.


Subject(s)
Cell Differentiation , Cell Proliferation , Muscle Development , Myoblasts , RNA, Circular , Animals , Muscle Development/physiology , Mice , Myoblasts/metabolism , Myoblasts/cytology , RNA, Circular/genetics , RNA, Circular/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Signal Transduction , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Mice, Inbred C57BL , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Male , Cell Line
14.
Theor Appl Genet ; 137(7): 176, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969812

ABSTRACT

Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Herbicide Resistance , Herbicides , RNA, Circular , RNA, Plant , Brassica napus/genetics , Brassica napus/drug effects , Brassica napus/growth & development , RNA, Circular/genetics , Herbicides/pharmacology , Gene Expression Regulation, Plant/drug effects , RNA, Plant/genetics , Herbicide Resistance/genetics , Seedlings/genetics , Seedlings/drug effects , Seedlings/growth & development , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Genome, Plant
15.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956466

ABSTRACT

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , Core Binding Factor Alpha 2 Subunit , ELAV-Like Protein 1 , MicroRNAs , RNA, Circular , RNA-Binding Protein FUS , Stomach Neoplasms , p21-Activated Kinases , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Cell Proliferation/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Cell Movement/genetics , Cell Line, Tumor , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Invasiveness , Mice, Inbred BALB C
16.
J Immunol Res ; 2024: 9527268, 2024.
Article in English | MEDLINE | ID: mdl-38966668

ABSTRACT

Aberrant accumulation of circulating follicular helper T cells (cTfh) has been found in the peripheral blood mononuclear cells (PBMCs) of Graves' disease (GD) patients. However, the underlying mechanism that contributes to the imbalance of cTfh cells remains unknown. Previously, studies described a GD-related circular RNAs (circRNAs)-circZNF644 that might be associated with cTfh cells. This study aimed to investigate the role of circZNF644 on cTfh cells in GD patients. Here, we found that circZNF644 was highly stable expression in the PBMCs of GD patients, which was positively correlated with the serum levels of TSH receptor autoantibodies (TRAb). Knockdown of circZNF644 caused a reduction of the proportion of cTfh cells in vitro. Mechanistically, circZNF644 served as a ceRNA for miR-29a-3p to promote ICOS expression, resulting in increased cTfh cells. In the PBMCs of GD patients, circZNF644 expression was positively correlated with ICOS expression and the percentage of cTfh cells, but negatively related to miR-29a-3p expression. Additionally, a strong relationship between circZNF644 and IL-21 was revealed in GD patients, and silencing of circZNF644 inhibited IL-21 expression. Our study elucidated that elevated expression of circZNF644 is a key feature in the development of GD and may contribute to the pathogenic role of cTfh cells in GD.


Subject(s)
Graves Disease , MicroRNAs , RNA, Circular , T Follicular Helper Cells , Humans , Graves Disease/genetics , Graves Disease/immunology , RNA, Circular/genetics , Male , Female , T Follicular Helper Cells/immunology , Adult , MicroRNAs/genetics , Middle Aged , Autoantibodies/immunology , Autoantibodies/blood , Inducible T-Cell Co-Stimulator Protein/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Interleukins/genetics , Interleukins/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Gene Expression Regulation
17.
Gen Physiol Biophys ; 43(4): 273-289, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953571

ABSTRACT

Chronic obstructive pulmonary disease (COPD), characterized by clinical sub-phenotypes such as emphysema (E) and chronic bronchitis (CB), is associated with a greater risk of lung cancer (LC). This study aimed to assess the expression patterns of circRNA and their potential functional involvement in LC patients with COPD. A circRNA microarray was used to characterize differentially expressed circRNAs (DEcircRNAs) profiles. A total of 176, 240, 163, and 243 DEcircRNAs were identified in comparisons between CB vs. LC patients (Con), E vs. Con, E vs. CB, and CBE vs. Con, respectively. DEcircRNAs in all comparison groups were primarily associated with immune-related GO terms and were also enriched in immune and inflammatory pathways. In total, 49 DEcircRNAs were significantly correlated with the infiltration of multiple immune cells. Among them, hsa-MROH9_0001 and hsa-RP11-35J10_0013 were positively and negatively correlated with plasma cells and T-cell CD4 memory resting cells, respectively; these two DEcircRNA-sponged miRNAs have good diagnostic performance. WGCNA identified six key circRNAs associated with CB progression. The expression patterns of hsa-MROH9_0001 and circRNA_21729 in E and CB groups were confirmed by RT-qPCR. In conclusion, we reported circRNA profiles and the findings demonstrated that hsa-MROH9_0001 and circRNA_21729 may be potential therapeutic targets for LC with COPD.


Subject(s)
Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , RNA, Circular , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Pilot Projects , Male , Female , Aged , Gene Expression Profiling , Middle Aged , Transcriptome/genetics , Gene Expression Regulation, Neoplastic
18.
Cardiovasc Diabetol ; 23(1): 227, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951895

ABSTRACT

In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.


Subject(s)
Diabetic Cardiomyopathies , RNA, Circular , RNA, Long Noncoding , Humans , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/metabolism , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction , Myocardium/pathology , Myocardium/metabolism
19.
Neoplasma ; 71(3): 279-288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38958715

ABSTRACT

Osteosarcoma (OS) is a common primary bone tumor in children and adolescents. Circular RNA (circRNA)-IARS acts as an oncogene in multiple human tumors. However, the circ-IARS function in OS is unclear. This research aimed to elucidate the roles and mechanisms of circ-IARS in OS. In this study, circ-IARS expressions were raised in OS tissues and cells. circ-IARS expressions were closely related to clinical stage and distant metastasis. Furthermore, overall survival rates were reduced in OS patients with high circ-IARS levels. Also, silencing circ-IARS weakened OS cell proliferation and invasion, yet enhanced cell ferroptosis. Mechanistically, circ-IARS targeted miR-188-5p to regulate RAB14 expressions in OS cells. Moreover, circ-IARS knockdown repressed OS cell proliferation, invasion, and induced ferroptosis, yet these impacts were abolished by co-transfection with anti-miR-188-5p or pcDNA-RAB14. Meanwhile, interference with circ-IARS reduced OS cell proliferation, and decreased RAB14 (a member of the RAS oncogene family), GPX4, and xCT (crucial ferroptosis regulators) expressions in vivo. In conclusion, circ-IARS facilitated OS progression via miR-188-5p/RAB14.


Subject(s)
Bone Neoplasms , Cell Proliferation , Ferroptosis , MicroRNAs , Osteosarcoma , RNA, Circular , rab GTP-Binding Proteins , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , MicroRNAs/genetics , RNA, Circular/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Ferroptosis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Male , Cell Line, Tumor , Female , Disease Progression , Mice , Animals , Gene Expression Regulation, Neoplastic
20.
BMC Cancer ; 24(1): 827, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992592

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths globally, influenced by aberrant circRNA expression. Investigating circRNA-miRNA-mRNA interactions can unveil underlying mechanisms of HCC and identify potential therapeutic targets. METHODS: In this study, we conducted differential analyses of mRNAs, miRNAs, and circRNAs, and established their relationships using various databases such as miRanda, miRDB, and miTarBase. Additionally, functional enrichment and immune infiltration analyses were performed to evaluate the roles of key genes. We also conducted qPCR assays and western blotting (WB) to examine the expression levels of circRNA, CCL25, and MAP2K1 in both HCC cells and clinical samples. Furthermore, we utilized overexpression and knockdown techniques for circ_0000069 and conducted wound healing, transwell invasion assays, and a tumorigenesis experiment to assess the migratory and invasive abilities of HCC cells. RESULTS: Our findings revealed significant differential expression of 612 upregulated genes and 1173 downregulated genes in HCC samples compared to normal liver tissue. Additionally, 429 upregulated circRNAs and 453 downregulated circRNAs were identified. Significantly, circ_0000069 exhibited upregulation in HCC tissues and cell lines. The overexpression of circ_0000069 notably increased the invasion and migration capacity of Huh7 cells, whereas the downregulation of circ_0000069 reduced this capability in HepG2 cells. Furthermore, this effect was counteracted by CCL25 silencing or overexpression, separately. Animal studies further confirmed that the overexpression of hsa_circ_0000069 facilitated tumor growth in xenografted nude mice, while the inhibition of CCL25 attenuated this effect. CONCLUSION: Circ_0000069 appears to promote HCC progression by regulating CCL25, suggesting that both circ_0000069 and CCL25 can serve as potential therapeutic targets.


Subject(s)
Carcinoma, Hepatocellular , Chemokines, CC , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Circular , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , RNA, Circular/genetics , Animals , Mice , Chemokines, CC/genetics , Chemokines, CC/metabolism , Cell Line, Tumor , Cell Movement/genetics , Mice, Nude , MicroRNAs/genetics , Cell Proliferation/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...