Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.401
1.
Eur J Med Chem ; 272: 116473, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38718625

Fibroblast growth factor receptor 2 (FGFR2) represents an appealing therapeutic target for multiple cancers, yet no selective FGFR2 inhibitors have been approved for clinical use to date. Here, we report the discovery of a series of new selective, irreversible FGFR2 inhibitors. The representative compound LHQ490 potently inhibited FGFR2 kinase activity with an IC50 of 5.2 nM, and was >61-, >34-, and >293-fold selective against FGFR1, FGFR3, and FGFR4, respectively. LHQ490 also exhibited high selectivity in a panel of 416 kinases. Cell-based studies revealed that LHQ490 efficiently suppressed the proliferation of BaF3-FGFR2 cells with an IC50 value of 1.4 nM, and displayed >70- and >714-fold selectivity against BaF3-FGFR1 and the parental BaF3 cells, respectively. More importantly, LHQ490 potently suppressed the FGFR2 signaling pathways, selectively inhibited FGFR2-driven cancer cell proliferation, and induced apoptosis of FGFR2-driven cancer cells. Taken together, this study provides a potent and highly selective FGFR2 inhibitor for further development of FGFR2-targeted therapeutic agents.


Cell Proliferation , Dose-Response Relationship, Drug , Drug Discovery , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Humans , Cell Proliferation/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Drug Screening Assays, Antitumor , Cell Line, Tumor
2.
Cell Mol Biol Lett ; 29(1): 71, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745155

BACKGROUND: Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS: The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS: We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS: This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.


Autophagy , Breast Neoplasms , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Autophagy/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cell Line, Tumor , MCF-7 Cells , Signal Transduction/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
3.
Taiwan J Obstet Gynecol ; 63(3): 387-390, 2024 May.
Article En | MEDLINE | ID: mdl-38802203

OBJECTIVE: We present perinatal imaging findings of a fetus with Pfeiffer syndrome and a heterozygous c.1019A>G, p.Tyr340Cys (Y340C) mutation in FGFR2 presenting a cloverleaf skull, craniosynostosis and short limbs on prenatal ultrasound mimicking thanatophoric dysplasia type II (TD2). CASE REPORT: A 37-year-old, gravida 2, para 1, woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY. However, craniofacial anomaly was found on prenatal ultrasound at 21 weeks of gestation, which showed a cloverleaf skull with severe craniosynostosis and relatively short straight long bones. Fetal magnetic resonance imaging (MRI) analysis at 22 weeks of gestation showed a cloverleaf skull, proptosis and relatively shallowing of the sylvian fissures. Prenatal ultrasound at 24 weeks of gestation showed a fetus with a cloverleaf skull with a biparietal diameter (BPD) of 6.16 cm (equivalent to 24 weeks), an abdominal circumference (AC) of 18.89 cm (equivalent to 24 weeks) and a femur length (FL) of 3.65 cm (equivalent to 21 weeks). A tentative diagnosis of TD2 was made. The pregnancy was subsequently terminated, and a 928-g malformed fetus was delivered with severe craniosynostosis, proptosis, midface retrusion, a cloverleaf skull, broad thumbs and broad big toes. The broad thumbs were medially deviated. Whole body X-ray showed a cloverleaf skull and straight long bones. However, molecular analysis of FGFR3 on the fetus revealed no mutation in the target regions. Subsequent whole exome sequencing (WES) on the DNA extracted from umbilical cord revealed a heterozygous c.1019A>G, p.Tyr340Cys (Y340C) mutation in the FGFR2 gene. CONCLUSION: Fetuses with a Y340C mutation in FGFR2 may present a cloverleaf skull on prenatal ultrasound, and WES is useful for a rapid differential diagnosis of Pfeiffer syndrome from TD2 under such a circumstance.


Acrocephalosyndactylia , Craniosynostoses , Receptor, Fibroblast Growth Factor, Type 2 , Thanatophoric Dysplasia , Ultrasonography, Prenatal , Humans , Female , Acrocephalosyndactylia/genetics , Acrocephalosyndactylia/diagnostic imaging , Acrocephalosyndactylia/diagnosis , Pregnancy , Adult , Receptor, Fibroblast Growth Factor, Type 2/genetics , Craniosynostoses/genetics , Craniosynostoses/diagnostic imaging , Craniosynostoses/diagnosis , Thanatophoric Dysplasia/genetics , Thanatophoric Dysplasia/diagnostic imaging , Mutation , Diagnosis, Differential , Magnetic Resonance Imaging , Heterozygote , Infant, Newborn , Skull/diagnostic imaging , Skull/abnormalities , Skull/embryology
4.
Nat Commun ; 15(1): 3805, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714664

Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.


Bile Duct Neoplasms , Cholangiocarcinoma , Glucose , Glycolysis , NF-kappa B , Receptor, Fibroblast Growth Factor, Type 2 , Signal Transduction , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Humans , NF-kappa B/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Animals , Glycolysis/drug effects , Glucose/metabolism , Bile Duct Neoplasms/metabolism , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/drug therapy , Mice , Cell Line, Tumor , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mitochondria/metabolism , Mitochondria/drug effects , Pyrimidines/pharmacology , Autophagy/drug effects , Gene Expression Regulation, Neoplastic/drug effects
5.
Orphanet J Rare Dis ; 19(1): 141, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561822

BACKGROUND: Klippel-Feil syndrome (KFS) is a rare congenital disorder characterized by the fusion of two or more cervical vertebrae during early prenatal development. This fusion results from a failure of segmentation during the first trimester. Although six genes have previously been associated with KFS, they account for only a small proportion of cases. Among the distinct subtypes of KFS, "sandwich fusion" involving concurrent fusion of C0-1 and C2-3 vertebrae is particularly noteworthy due to its heightened risk for atlantoaxial dislocation. In this study, we aimed to investigate novel candidate mutations in patients with "sandwich fusion." METHODS: We collected and analyzed clinical data from 21 patients diagnosed with "sandwich fusion." Whole-exome sequencing (WES) was performed, followed by rigorous bioinformatics analyses. Our focus was on the six known KFS-related genes (GDF3, GDF6, MEOX1, PAX1, RIPPLY2, and MYO18). Suspicious mutations were subsequently validated through in vitro experiments. RESULTS: Our investigation revealed two novel exonic mutations in the FGFR2 gene, which had not previously been associated with KFS. Notably, the c.1750A > G variant in Exon 13 of FGFR2 was situated within the tyrosine kinase domain of the protein, in close proximity to several established post-translational modification sites. In vitro experiments demonstrated that this certain mutation significantly impacted the function of FGFR2. Furthermore, we identified four heterozygous candidate variants in two genes (PAX1 and MYO18B) in two patients, with three of these variants predicted to have potential clinical significance directly linked to KFS. CONCLUSIONS: This study encompassed the largest cohort of patients with the unique "sandwich fusion" subtype of KFS and employed WES to explore candidate mutations associated with this condition. Our findings unveiled novel variants in PAX1, MYO18B, and FGFR2 as potential risk mutations specific to this subtype of KFS.


Klippel-Feil Syndrome , Humans , Klippel-Feil Syndrome/genetics , Klippel-Feil Syndrome/complications , Klippel-Feil Syndrome/diagnosis , Exome Sequencing , Mutation/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics
6.
Cancer Res Commun ; 4(4): 1165-1173, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38602417

PURPOSE: Despite efficacy of approved FGFR inhibitors, emergence of polyclonal secondary mutations in the FGFR kinase domain leads to acquired resistance. KIN-3248 is a selective, irreversible, orally bioavailable, small-molecule inhibitor of FGFR1-4 that blocks both primary oncogenic and secondary kinase domain resistance FGFR alterations. EXPERIMENTAL DESIGN: A first-in-human, phase I study of KIN-3248 was conducted in patients with advanced solid tumors harboring FGFR2 and/or FGFR3 gene alterations (NCT05242822). The primary objective was determination of MTD/recommended phase II dose (RP2D). Secondary and exploratory objectives included antitumor activity, pharmacokinetics, pharmacodynamics, and molecular response by circulating tumor DNA (ctDNA) clearance. RESULTS: Fifty-four patients received doses ranging from 5 to 50 mg orally daily across six cohorts. Intrahepatic cholangiocarcinoma (48.1%), gastric (9.3%), and urothelial (7.4%) were the most common tumors. Tumors harbored FGFR2 (68.5%) or FGFR3 (31.5%) alterations-23 (42.6%) received prior FGFR inhibitors. One dose-limiting toxicity (hypersensitivity) occurred in cohort 1 (5 mg). Treatment-related, adverse events included hyperphosphatemia, diarrhea, and stomatitis. The MTD/RP2D was not established. Exposure was dose proportional and concordant with hyperphosphatemia. Five partial responses were observed; 4 in FGFR inhibitor naïve and 1 in FGFR pretreated patients. Pretreatment ctDNA profiling confirmed FGFR2/3 alterations in 63.3% of cases and clearance at cycle 2 associated with radiographic response. CONCLUSION: The trial was terminated early for commercial considerations; therefore, RP2D was not established. Preliminary clinical data suggest that KIN-3248 is a safe, oral FGFR1-4 inhibitor with favorable pharmacokinetic parameters, though further dose escalation was required to nominate the MTD/RP2D. SIGNIFICANCE: KIN-3248 was a rationally designed, next generation selective FGFR inhibitor, that was effective in interfering with both FGFR wild-type and mutant signaling. Clinical data indicate that KIN-3248 is safe with a signal of antitumor activity. Translational science support the mechanism of action in that serum phosphate was proportional with exposure, paired biopsies suggested phospho-ERK inhibition (a downstream target of FGFR2/3), and ctDNA clearance may act as a RECIST response surrogate.


Neoplasms , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Female , Male , Middle Aged , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Aged , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Adult , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Maximum Tolerated Dose , Mutation , Aged, 80 and over , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics
7.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38674107

The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2.


Receptor, Fibroblast Growth Factor, Type 2 , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Humans , Mutation , Machine Learning , Mutation, Missense , Models, Molecular , Protein Conformation , Protein Domains , Structure-Activity Relationship
8.
Cell Death Dis ; 15(4): 279, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637504

Cisplatin (DDP)-based chemoradiotherapy is one of the standard treatments for nasopharyngeal carcinoma (NPC). However, the sensitivity and side effects of DDP to patients remain major obstacles for NPC treatment. This research aimed to study DDP sensitivity regulated by cancer-associated fibroblasts (CAFs) through modulating ferroptosis. We demonstrated that DDP triggered ferroptosis in NPC cells, and it inhibited tumor growth via inducing ferroptosis in xenograft model. CAFs secreted high level of FGF5, thus inhibiting DDP-induced ferroptosis in NPC cells. Mechanistically, FGF5 secreted by CAFs directly bound to FGFR2 in NPC cells, leading to the activation of Keap1/Nrf2/HO-1 signaling. Rescued experiments indicated that FGFR2 overexpression inhibited DDP-induced ferroptosis, and CAFs protected against DDP-induced ferroptosis via FGF5/FGFR2 axis in NPC cells. In vivo data further showed the protective effects of FGF5 on DDP-triggered ferroptosis in NPC xenograft model. In conclusion, CAFs inhibited ferroptosis to decrease DDP sensitivity in NPC through secreting FGF5 and activating downstream FGFR2/Nrf2 signaling. The therapeutic strategy targeting FGF5/FGFR2 axis from CAFs might augment DDP sensitivity, thus decreasing the side effects of DDP in NPC treatment.


Cancer-Associated Fibroblasts , Ferroptosis , Nasopharyngeal Neoplasms , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Cancer-Associated Fibroblasts/metabolism , NF-E2-Related Factor 2/metabolism , Cell Line, Tumor , Nasopharyngeal Neoplasms/pathology , Drug Resistance, Neoplasm , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Fibroblast Growth Factor 5
9.
JNCI Cancer Spectr ; 8(3)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38627238

BACKGROUND: This Phase 1b/2 study assessed the efficacy in terms of objective response rate (ORR) of the FGFR1/2/3 kinase inhibitor derazantinib as monotherapy or in combination with atezolizumab in patients with metastatic urothelial cancer (mUC) and FGFR1-3 genetic aberrations (FGFR1-3GA). METHODS: This multicenter, open-label study comprised 5 substudies. In Substudies 1 and 5, patients with mUC with FGFR1-3GA received derazantinib monotherapy (300 mg QD in Substudy 1, 200 mg BID in Substudy 5). In Substudy 2, patients with any solid tumor received atezolizumab 1200 mg every 3 weeks plus derazantinib 200 or 300 mg QD. In Substudy 3, patients with mUC harboring FGFR1-3GA received derazantinib 200 mg BID plus atezolizumab 1200 mg every 3 weeks. In Substudy 4, patients with FGFR inhibitor-resistant mUC harboring FGFR1-3GA received derazantinib 300 mg QD monotherapy or derazantinib 300 mg QD plus atezolizumab 1200 mg every 3 weeks. RESULTS: The ORR for Substudies 1 and 5 combined was 4/49 (8.2%, 95% confidence interval = 2.3% to 19.6%), which was based on 4 partial responses. The ORR in Substudy 4 was 1/7 (14.3%, 95% confidence interval = 0.4% to 57.9%; 1 partial response for derazantinib 300 mg monotherapy, zero for derazantinib 300 mg plus atezolizumab 1200 mg). In Substudy 2, derazantinib 300 mg plus atezolizumab 1200 mg was identified as a recommended dose for Phase 2. Only 2 patients entered Substudy 3. CONCLUSIONS: Derazantinib as monotherapy or in combination with atezolizumab was well-tolerated but did not show sufficient efficacy to warrant further development in mUC. Clinicaltrials.gov NCT04045613, EudraCT 2019-000359-15.


Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Receptor, Fibroblast Growth Factor, Type 3 , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Male , Female , Aged , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Aged, 80 and over , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urologic Neoplasms/drug therapy , Urologic Neoplasms/pathology , Urologic Neoplasms/genetics , Adult , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/secondary
10.
Clin Cancer Res ; 30(10): 2181-2192, 2024 May 15.
Article En | MEDLINE | ID: mdl-38437671

PURPOSE: FGFR2 and FGFR3 show oncogenic activation in many cancer types, often through chromosomal fusion or extracellular domain mutation. FGFR2 and FGFR3 alterations are most prevalent in intrahepatic cholangiocarcinoma (ICC) and bladder cancers, respectively, and multiple selective reversible and covalent pan-FGFR tyrosine kinase inhibitors (TKI) have been approved in these contexts. However, resistance, often due to acquired secondary mutations in the FGFR2/3 kinase domain, limits efficacy. Resistance is typically polyclonal, involving a spectrum of different mutations that most frequently affect the molecular brake and gatekeeper residues (N550 and V565 in FGFR2). EXPERIMENTAL DESIGN: Here, we characterize the activity of the next-generation covalent FGFR inhibitor, KIN-3248, in preclinical models of FGFR2 fusion+ ICC harboring a series of secondary kinase domain mutations, in vitro and in vivo. We also test select FGFR3 alleles in bladder cancer models. RESULTS: KIN-3248 exhibits potent selectivity for FGFR1-3 and retains activity against various FGFR2 kinase domain mutations, in addition to being effective against FGFR3 V555M and N540K mutations. Notably, KIN-3248 activity extends to the FGFR2 V565F gatekeeper mutation, which causes profound resistance to currently approved FGFR inhibitors. Combination treatment with EGFR or MEK inhibitors potentiates KIN-3248 efficacy in vivo, including in models harboring FGFR2 kinase domain mutations. CONCLUSIONS: Thus, KIN-3248 is a novel FGFR1-4 inhibitor whose distinct activity profile against FGFR kinase domain mutations highlights its potential for the treatment of ICC and other FGFR-driven cancers.


Mutation , Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 2 , Urinary Bladder Neoplasms , Xenograft Model Antitumor Assays , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Animals , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mice , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cell Proliferation/drug effects
11.
Sci Rep ; 14(1): 6724, 2024 03 20.
Article En | MEDLINE | ID: mdl-38509118

The balance between Noggin and bone morphogenetic proteins (BMPs) is important during early development and skeletal regenerative therapies. Noggin binds BMPs in the extracellular space, thereby preventing BMP signaling. However, Noggin may affect cell response not necessarily through the modulation of BMP signaling, raising the possibility of direct Noggin signaling through yet unspecified receptors. Here we show that in osteogenic cultures of adipose-derived stem cells (ASCs), Noggin activates fibroblast growth factor receptors (FGFRs), Src/Akt and ERK kinases, and it stabilizes TAZ proteins in the presence of dexamethasone. Overall, this leads ASCs to increased expression of osteogenic markers and robust mineral deposition. Our results also indicate that Noggin can induce osteogenic genes expression in normal human bone marrow stem cells and alkaline phosphatase activity in normal human dental pulp stem cells. Besides, Noggin can specifically activate FGFR2 in osteosarcoma cells. We believe our findings open new research avenues to further explore the involvement of Noggin in cell fate modulation by FGFR2/Src/Akt/ERK signaling and potential applications of Noggin in bone regenerative therapies.


Mesenchymal Stem Cells , Osteogenesis , Humans , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Differentiation , Cells, Cultured , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Carrier Proteins/metabolism
12.
J Cutan Pathol ; 51(5): 338-344, 2024 May.
Article En | MEDLINE | ID: mdl-38328983

Calcified chondroid mesenchymal neoplasm is a recently recognized bone and soft tissue entity primarily found in the extremities and the temporomandibular joint. This neoplasm is typically driven by the fusion of the FN1 gene with a kinase. In this case report, we provide a detailed account of a rare superficial calcified chondroid mesenchymal neoplasm located on the left big toe, characterized by an FN1::FGFR2 fusion. The tumor exhibited a peripheral collarette and consisted of large intradermal histiocytoid to epithelioid cells with no mitotic activity. These cells displayed fine chromatin and abundant pale eosinophilic cytoplasm, forming a swirling syncytium. They were interspersed with localized areas of glassy chondromyxoid matrix containing randomly mineralized calcific material and isolated osteoclast-like giant cells. RNA sequencing confirmed the presence of an FN1 (exon 29)::FGFR2 (exon 7) gene fusion. Our report emphasizes the importance for dermatopathologists to consider this entity when evaluating superficial lesions displaying mesenchymal, chondroid, and calcified attributes.


Soft Tissue Neoplasms , Humans , Epithelioid Cells , Exons , Gene Fusion , Giant Cells , Receptor, Fibroblast Growth Factor, Type 2/genetics , Soft Tissue Neoplasms/genetics
13.
Proc Natl Acad Sci U S A ; 121(6): e2317756121, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38300868

Fibroblast growth factor receptor (FGFR) kinase inhibitors have been shown to be effective in the treatment of intrahepatic cholangiocarcinoma and other advanced solid tumors harboring FGFR2 alterations, but the toxicity of these drugs frequently leads to dose reduction or interruption of treatment such that maximum efficacy cannot be achieved. The most common adverse effects are hyperphosphatemia caused by FGFR1 inhibition and diarrhea due to FGFR4 inhibition, as current therapies are not selective among the FGFRs. Designing selective inhibitors has proved difficult with conventional approaches because the orthosteric sites of FGFR family members are observed to be highly similar in X-ray structures. In this study, aided by analysis of protein dynamics, we designed a selective, covalent FGFR2 inhibitor. In a key initial step, analysis of long-timescale molecular dynamics simulations of the FGFR1 and FGFR2 kinase domains allowed us to identify differential motion in their P-loops, which are located adjacent to the orthosteric site. Using this insight, we were able to design orthosteric binders that selectively and covalently engage the P-loop of FGFR2. Our drug discovery efforts culminated in the development of lirafugratinib (RLY-4008), a covalent inhibitor of FGFR2 that shows substantial selectivity over FGFR1 (~250-fold) and FGFR4 (~5,000-fold) in vitro, causes tumor regression in multiple FGFR2-altered human xenograft models, and was recently demonstrated to be efficacious in the clinic at doses that do not induce clinically significant hyperphosphatemia or diarrhea.


Bile Duct Neoplasms , Cholangiocarcinoma , Hyperphosphatemia , Humans , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/chemistry , Bile Ducts, Intrahepatic/metabolism , Diarrhea , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry
14.
Nat Commun ; 15(1): 1287, 2024 Feb 12.
Article En | MEDLINE | ID: mdl-38346946

Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.


Bile Duct Neoplasms , Cholangiocarcinoma , Phenylurea Compounds , Quinolines , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology
15.
Trends Cancer ; 10(5): 430-443, 2024 May.
Article En | MEDLINE | ID: mdl-38378317

Gene fusions and rearrangements play a crucial role in tumor biology. They are rare events typically detected in KRAS wild-type (WT) pancreatic tumors. Their identification can inform clinical management by enabling precision oncology, as fusions involving BRAF, FGFR2, RET, NTRK, NRG1, and ALK represent actionable targets in KRAS-WT cancers, and serve diagnostic purposes since fusions involving PRKACA/B represent the diagnostic hallmark of intraductal oncocytic papillary neoplasms (IOPNs). Although they are rare, the therapeutic and diagnostic importance of these genomic events should not be underestimated, highlighting the need for quality-ensured molecular diagnostics in the management of cancer. Herein we review the existing literature on the role of fusion genes in pancreatic tumors and their clinical potential as effective biomarkers and therapeutic targets.


Oncogene Proteins, Fusion , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics , Receptor, trkA/genetics , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins B-raf/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Neuregulin-1/genetics , Neuregulin-1/metabolism , Anaplastic Lymphoma Kinase/genetics , Gene Fusion
16.
Gastric Cancer ; 27(3): 558-570, 2024 05.
Article En | MEDLINE | ID: mdl-38308771

BACKGROUND: We report the final results of the randomized phase 2 FIGHT trial that evaluated bemarituzumab, a humanized monoclonal antibody selective for fibroblast growth factor receptor 2b (FGFR2b), plus mFOLFOX6 in patients with FGFR2b-positive (2 + /3 + membranous staining by immunohistochemistry), HER-2-negative gastric or gastroesophageal junction cancer (GC). METHODS: Patients received bemarituzumab (15 mg/kg) or placebo once every 2 weeks with an additional bemarituzumab (7.5 mg/kg) or placebo dose on cycle 1 day 8. All patients received mFOLFOX6. The primary endpoint was investigator-assessed progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate, and safety. Efficacy was evaluated after a minimum follow-up of 24 months. RESULTS: In the bemarituzumab-mFOLFOX6 (N = 77) and placebo-mFOLFOX6 (N = 78) arms, respectively, 59.7% and 66.7% of patients were FGFR2b-positive in ≥ 10% of tumor cells. The median PFS (95% confidence interval [CI]) was 9.5 months (7.3-13.7) with bemarituzumab-mFOLFOX6 and 7.4 months (5.7-8.4) with placebo-mFOLFOX6 (hazard ratio [HR], 0.72; 95% CI 0.49-1.08); median OS (95% CI) was 19.2 (13.6-24.2) and 13.5 (9.3-15.9) months, respectively (HR 0.77; 95% CI 0.52-1.14). Observed efficacy in FGFR2b-positive GC in ≥ 10% of tumor cells was: PFS: HR 0.43 (95% CI 0.26-0.73); OS: HR 0.52 (95% CI 0.31-0.85). No new safety findings were reported. CONCLUSIONS: In FGFR2b-positive advanced GC, the combination of bemarituzumab-mFOLFOX6 led to numerically longer median PFS and OS compared with mFOLFOX6 alone. Efficacy was more pronounced with FGFR2b overexpression in ≥ 10% of tumor cells. Confirmatory phase 3 trials are ongoing (NCT05052801, NCT05111626). CLINICAL TRIAL REGISTRATION: NCT03694522.


Adenocarcinoma , Antibodies, Monoclonal, Humanized , Esophageal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Fluorouracil , Receptor, Fibroblast Growth Factor, Type 2 , Adenocarcinoma/pathology , Esophagogastric Junction/pathology , Antineoplastic Combined Chemotherapy Protocols
17.
Mol Biol Rep ; 51(1): 253, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38302798

BACKGROUND: Gastric adenocarcinoma is a prevalent form of cancer that often remains undetected in its early stages due to the lack of specific symptoms. This delayed diagnosis leads to poor clinical outcomes, underscoring the need for an effective and non-invasive method for early detection. Recent advances in cancer epigenetics have led to the identification of biomarkers that have the potential to revolutionize the early detection and monitoring of this disease. One such promising biomarker is the methylation of the FGFR2 promoter. This study aims to measure the methylation levels of a specific CpG site in the FGFR2 promoter gene in DNA extracted from blood leukocytes from patients with intestinal metaplasia, gastric cancer, and healthy control. MATERIAL AND METHODS: The CpG site of the FGFR2 gene promoter was identified in its control region. Methylation alteration of the selected FGFR2 CpG site was determined through the (methylation-sensitive restriction enzyme) MSRE-qPCR. Genomic DNA was extracted from one hundred twenty-five participants. RESULTS: The normal group had mean methylation levels of 93.23 ± 4.929%, while the IM group had a level of 69.85 ± 27.15%. In GC patients, the levels varied, with 25.96 ± 18.98% in the intestinal type and 28.30 ± 16.07% in the diffuse type. The methylation levels in the IM and GC patients were significantly lower than those in the normal control group. However, no significant difference was observed between the methylation status of the intestinal type of GC and the diffuse type. The Receiver operating characteristic (ROC) curve analysis showed that FGFR2 CpG methylation levels in GC patients compared to normal controls had a high sensitivity of 100% and specificity of 100%, with a cut-off of < 74.25%; when GC patients were compared to IM patients, the sensitivity was 85%, and the specificity was 80%, with a cut-off < 44.45%. CONCLUSIONS: The potential of the FGFR2 methylation status as a non-invasive biomarker lies in its ability to be detected in blood leukocytes, which makes it a promising tool for the early detection of intestinal metaplasia and gastric cancer. This could significantly improve the detection and management of these gastric conditions.


DNA Methylation , Stomach Neoplasms , Humans , DNA Methylation/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Epigenesis, Genetic/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA , Metaplasia , CpG Islands/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics
18.
Eur J Cancer ; 200: 113587, 2024 Mar.
Article En | MEDLINE | ID: mdl-38340384

BACKGROUND: Pemigatinib is approved for patients with pretreated, locally advanced or metastatic CCA harboring FGFR2 rearrangements or fusions. We aim to assess the effectiveness and safety of pemigatinib in real-world setting. MATERIAL AND METHODS: A joint analysis of two multicentre observational retrospective cohort studies independently conducted in France and Italy was performed. All consecutive FGFR2-positive patients affected by CCA and treated with pemigatinib as second- or further line of systemic treatment in clinical practice, within or outside the European Expanded Access Program, were included. RESULTS: Between July 2020 and September 2022, 72 patients were treated with pemigatinib in 14 Italian and 25 French Centres. Patients had a median age of 57 years, 76% were female, 81% had ECOG-PS 0-1, 99% had intrahepatic CCA, 74% had ≥ 2 metastatic sites, 67% had metastatic disease at diagnosis, while 38.8% received ≥ 2 previous lines of systemic treatment. At data cut-off analysis (April 2023), ORR and DCR were 45.8% and 84.7%, respectively. Median DoR was 7 months (IQR: 5.8-9.3). Over a median follow-up time of 19.5 months, median PFS and 1-year PFS rate were 8.7 months and 32.8%. Median OS and 1-year OS rate were 17.1 months and 60.6%. Fatigue (69.4%), ocular toxicity (68%), nail toxicities (61.1%), dermatologic toxicity (41.6%) hyperphosphataemia (55.6%), stomatitis (48.6%), and diarrhea (36.1%) were the most frequent, mainly G1-G2 AEs. Overall incidence of G3 AEs was 22.2%, while no patient experienced G4 AE. Dose reduction and temporary discontinuation were needed in 33.3% and 40.3% of cases, with 1 permanent discontinuation due to AEs. CONCLUSIONS: These results confirm the effectiveness and safety of pemigatinib in a real-world setting.


Bile Duct Neoplasms , Cholangiocarcinoma , Morpholines , Pyrimidines , Pyrroles , Humans , Female , Middle Aged , Male , Retrospective Studies , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cohort Studies , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 2/genetics
19.
Environ Int ; 184: 108477, 2024 Feb.
Article En | MEDLINE | ID: mdl-38340406

Nickel, a common environmental hazard, is a risk factor for craniosynostosis. However, the underlying biological mechanism remains unclear. Here, we found that early-life nickel exposure induced craniosynostosis in mice. In vitro, nickel promoted the osteogenic differentiation of human mesenchymal stem cells (hMSCs), and its osteogenic ability in vivo was confirmed by an ectopic osteogenesis model. Further mRNA sequencing showed that ERK1/2 signaling and FGFR2 were aberrantly activated. FGFR2 was identified as a key regulator of ERK1/2 signaling. By promoter methylation prediction and methylation-specific PCR (MSP) assays, we found that nickel induced hypomethylation in the promoter of FGFR2, which increased its binding affinity to the transcription factor Sp1. During pregnancy and postnatal stages, AZD4547 rescued nickel-induced craniosynostosis by inhibiting FGFR2 and ERK1/2. Compared with normal individuals, nickel levels were increased in the serum of individuals with craniosynostosis. Further logistic and RCS analyses showed that nickel was an independent risk factor for craniosynostosis with a nonlinear correlation. Mediated analysis showed that FGFR2 mediated 30.13% of the association between nickel and craniosynostosis risk. Collectively, we demonstrate that early-life nickel exposure triggers the hypomethylation of FGFR2 and its binding to Sp1, thereby promoting the osteogenic differentiation of hMSCs by ERK1/2 signaling, leading to craniosynostosis.


Craniosynostoses , MAP Kinase Signaling System , Female , Pregnancy , Mice , Humans , Animals , MAP Kinase Signaling System/physiology , Nickel/toxicity , Osteogenesis , Craniosynostoses/genetics , Signal Transduction , Receptor, Fibroblast Growth Factor, Type 2
20.
Sci Rep ; 14(1): 3136, 2024 02 07.
Article En | MEDLINE | ID: mdl-38326380

FGFR inhibitors have been developed to inhibit FGFR activation and signal transduction; notwithstanding, currently the selection of intrahepatic cholangiocarcinoma (iCCA) patients for these drugs only relies on the detection of FGFR2 genetic alterations (GAs) in tumor tissues or circulating tumor DNAs, without concomitant assessment of FGFR2 signalling status. Accordingly, we performed multi-omic analyses of FGFR2 genes and FGFR2 signalling molecules in the tissue samples from 36 iCCA naïve patients. Gain-of-function FGFR2 GAs were detected in 7 patients, including missense mutations (n = 3; p.F276C, p.C382R and p.Y375C), translocations (n = 1) and copy number gain (n = 4; CNV ≥ 4). In contrast, among 29 patients with wild-type FGFR2, 4 cases showed activation of FGFR2 signalling, as they expressed the FGFR2 ligand FGF10 and phosphorylated FGFR2/FRS2α proteins; the remaining 25 cases resulted negative for activated FGFR2 signalling, as they lacked FGFR2 (n = 8) or phosphorylated FRS2α (n = 17) expression. Overall, we found that activation of FGFR2 signalling occurs not only in iCCA naïve patients with FGFR2 GAs, but also in a subgroup carrying wild-type FGFR2. This last finding entails that also this setting of patients could benefit from FGFR targeted therapies, widening indication of these drugs for iCCA patients beyond current approval. Future clinical studies are therefore encouraged to confirm this hypothesis.


Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction , Biomarkers , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism
...