Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neural Plast ; 2015: 472676, 2015.
Article in English | MEDLINE | ID: mdl-26113994

ABSTRACT

Striatal projection neurons (SPNs) process motor and cognitive information. Their activity is affected by Parkinson's disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Therefore, an important question is whether muscarinic G-protein coupled receptors and their signaling cascades are fast enough to intervene during synaptic responses to regulate synaptic integration and firing. One of the most known voltage dependent channels regulated by muscarinic receptors is the KV7/KCNQ channel. It is not known whether these channels regulate the integration of suprathreshold corticostriatal responses. Here, we study the impact of cholinergic muscarinic modulation on the synaptic response of SPNs by regulating KV7 channels. We found that KV7 channels regulate corticostriatal synaptic integration and that this modulation occurs in the dendritic/spines compartment. In contrast, it is negligible in the somatic compartment. This modulation occurs on sub- and suprathreshold responses and lasts during the whole duration of the responses, hundreds of milliseconds, greatly altering SPNs firing properties. This modulation affected the behavior of the striatal microcircuit.


Subject(s)
Action Potentials , GABAergic Neurons/physiology , KCNQ Potassium Channels/physiology , Neostriatum/physiology , Synapses/physiology , Action Potentials/drug effects , Animals , Cerebral Cortex/physiology , Cholinergic Neurons/physiology , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Intercellular Signaling Peptides and Proteins , Mice, Transgenic , Muscarine/pharmacology , Muscarinic Agonists/pharmacology , Neostriatum/cytology , Neostriatum/metabolism , Peptides/pharmacology , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism
2.
J Neurophysiol ; 113(3): 796-807, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25392165

ABSTRACT

The external globus pallidus (GPe) is central for basal ganglia processing. It expresses muscarinic cholinergic receptors and receives cholinergic afferents from the pedunculopontine nuclei (PPN) and other regions. The role of these receptors and afferents is unknown. Muscarinic M1-type receptors are expressed by synapses from striatal projection neurons (SPNs). Because axons from SPNs project to the GPe, one hypothesis is that striatopallidal GABAergic terminals may be modulated by M1 receptors. Alternatively, some M1 receptors may be postsynaptic in some pallidal neurons. Evidence of muscarinic modulation in any of these elements would suggest that cholinergic afferents from the PPN, or other sources, could modulate the function of the GPe. In this study, we show this evidence using striatopallidal slice preparations: after field stimulation in the striatum, the cholinergic muscarinic receptor agonist muscarine significantly reduced the amplitude of inhibitory postsynaptic currents (IPSCs) from synapses that exhibited short-term synaptic facilitation. This inhibition was associated with significant increases in paired-pulse facilitation, and quantal content was proportional to IPSC amplitude. These actions were blocked by atropine, pirenzepine, and mamba toxin-7, suggesting that receptors involved were M1. In addition, we found that some pallidal neurons have functional postsynaptic M1 receptors. Moreover, some evoked IPSCs exhibited short-term depression and a different kind of modulation: they were indirectly modulated by muscarine via the activation of presynaptic cannabinoid CB1 receptors. Thus pallidal synapses presenting distinct forms of short-term plasticity were modulated differently.


Subject(s)
Globus Pallidus/physiology , Inhibitory Postsynaptic Potentials , Receptor, Muscarinic M1/metabolism , Synapses/metabolism , Animals , Atropine/pharmacology , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Globus Pallidus/cytology , Intercellular Signaling Peptides and Proteins , Muscarine/pharmacology , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Peptides/pharmacology , Pirenzepine/pharmacology , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/metabolism , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/antagonists & inhibitors , Synapses/drug effects , Synapses/physiology
3.
Cytometry A ; 79(1): 77-83, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20814884

ABSTRACT

Proline-rich peptides from Bothrops jararaca venom (Bj-PRO) were characterized based on the capability to inhibit the somatic angiotensin-converting enzyme. The pharmacological action of these peptides resulted in the development of Captopril, one of the best examples of a target-driven drug discovery for treatment of hypertension. However, biochemical and biological properties of Bj-PROs were not completely elucidated yet, and many recent studies have suggested that their activity relies on angiotensin-converting enzyme-independent mechanisms. Here, we show that Bj-PRO-7a (

Subject(s)
Bothrops , Crotalid Venoms/chemistry , Oligopeptides/pharmacology , Receptor, Muscarinic M1/agonists , Amino Acid Sequence , Animals , CHO Cells , Calcium Signaling , Cricetinae , Cricetulus , Oligopeptides/chemistry , Rats , Receptor, Muscarinic M1/biosynthesis , Recombinant Proteins/agonists , Recombinant Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL