Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Commun Biol ; 3(1): 782, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335291

ABSTRACT

Protease-activated receptor-2 (PAR2) has been implicated in multiple pathophysiologies but drug discovery is challenging due to low small molecule tractability and a complex activation mechanism. Here we report the pharmacological profiling of a potent new agonist, suggested by molecular modelling to bind in the putative orthosteric site, and two novel PAR2 antagonists with distinctly different mechanisms of inhibition. We identify coupling between different PAR2 binding sites. One antagonist is a competitive inhibitor that binds to the orthosteric site, while a second antagonist is a negative allosteric modulator that binds at a remote site. The allosteric modulator shows probe dependence, more effectively inhibiting peptide than protease activation of PAR2 signalling. Importantly, both antagonists are active in vivo, inhibiting PAR2 agonist-induced acute paw inflammation in rats and preventing activation of mast cells and neutrophils. These results highlight two distinct mechanisms of inhibition that potentially could be targeted for future development of drugs that modulate PAR2.


Subject(s)
Allosteric Regulation , Allosteric Site , Ligands , Receptor, PAR-2/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Binding Sites , Dose-Response Relationship, Drug , Models, Molecular , Molecular Conformation , Molecular Structure , Receptor, PAR-2/antagonists & inhibitors , Receptor, PAR-2/metabolism , Signal Transduction
2.
ACS Chem Biol ; 14(9): 1913-1920, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31329413

ABSTRACT

Demonstration of target binding is a key requirement for understanding the mode of action of new therapeutics. The cellular thermal shift assay (CETSA) has been introduced as a powerful label-free method to assess target engagement in physiological environments. Here, we present the application of live-cell CETSA to different classes of integral multipass transmembrane proteins using three case studies, the first showing a large and robust stabilization of the outer mitochondrial five-pass transmembrane protein TSPO, the second being a modest stabilization of SERCA2, and the last describing an atypical compound-driven stabilization of the GPCR PAR2. Our data demonstrated that using modified protocols with detergent extraction after the heating step, CETSA can reliably be applied to several membrane proteins of different complexity. By showing examples with distinct CETSA behaviors, we aim to provide the scientific community with an overview of different scenarios to expect during CETSA experiments, especially for challenging, membrane bound targets.


Subject(s)
Receptor, PAR-2/metabolism , Receptors, GABA/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Aminoquinolines/pharmacology , Benzamides/pharmacology , Benzimidazoles/pharmacology , Benzodiazepinones/pharmacology , Benzodioxoles/pharmacology , Benzyl Alcohols/pharmacology , Biological Assay , Cell Line, Tumor , GABA Antagonists/pharmacology , HEK293 Cells , Hot Temperature , Humans , Imidazoles/pharmacology , Phase Transition/drug effects , Protein Multimerization/drug effects , Pyridines/pharmacology , Receptor, PAR-2/antagonists & inhibitors , Receptor, PAR-2/chemistry , Receptors, GABA/chemistry , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry , Thapsigargin/pharmacology
3.
Int J Mol Sci ; 18(11)2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29165389

ABSTRACT

The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-ß (TGF-ß) signaling to promote TGF-ß1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-ß responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-ß signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-ß signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-ß signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Receptor, PAR-2/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Transformation, Neoplastic/metabolism , Disease Progression , Humans , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor, PAR-2/chemistry , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism
4.
Nat Commun ; 8(1): 311, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827518

ABSTRACT

Graft-vs.-host disease (GvHD) is a major complication of allogenic hematopoietic stem-cell(HSC) transplantation. GvHD is associated with loss of endothelial thrombomodulin, but the relevance of this for the adaptive immune response to transplanted HSCs remains unknown. Here we show that the protease-activated protein C (aPC), which is generated by thrombomodulin, ameliorates GvHD aPC restricts allogenic T-cell activation via the protease activated receptor (PAR)2/PAR3 heterodimer on regulatory T-cells (Tregs, CD4+FOXP3+). Preincubation of pan T-cells with aPC prior to transplantation increases the frequency of Tregs and protects from GvHD. Preincubation of human T-cells (HLA-DR4-CD4+) with aPC prior to transplantation into humanized (NSG-AB°DR4) mice ameliorates graft-vs.-host disease. The protective effect of aPC on GvHD does not compromise the graft vs. leukaemia effect in two independent tumor cell models. Ex vivo preincubation of T-cells with aPC, aPC-based therapies, or targeting PAR2/PAR3 on T-cells may provide a safe and effective approach to mitigate GvHD.Graft-vs.-host disease is a complication of allogenic hematopoietic stem cell transplantation, and is associated with endothelial dysfunction. Here the authors show that activated protein C signals via PAR2/PAR3 to expand Treg cells, mitigating the disease in mice.


Subject(s)
Graft vs Host Disease/immunology , Protein C/immunology , Receptor, PAR-2/immunology , Receptors, Proteinase-Activated/immunology , Receptors, Thrombin/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Kaplan-Meier Estimate , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Protein C/metabolism , Protein Multimerization , Receptor, PAR-2/chemistry , Receptor, PAR-2/metabolism , Receptors, Proteinase-Activated/chemistry , Receptors, Proteinase-Activated/metabolism , Receptors, Thrombin/chemistry , Receptors, Thrombin/metabolism , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism , Transplantation, Homologous
5.
Nature ; 545(7652): 112-115, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28445455

ABSTRACT

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Subject(s)
Receptor, PAR-2/chemistry , Receptor, PAR-2/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Antibodies, Blocking/chemistry , Antibodies, Blocking/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Benzyl Alcohols/chemistry , Benzyl Alcohols/pharmacology , Crystallography, X-Ray , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/pharmacology , Kinetics , Ligands , Models, Molecular , Receptor, PAR-2/antagonists & inhibitors , Signal Transduction/drug effects
6.
J Comput Aided Mol Des ; 30(8): 625-37, 2016 08.
Article in English | MEDLINE | ID: mdl-27600555

ABSTRACT

Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe243(5.39) is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na(+) allosteric site in contrast to PAR2 agonist that showed Na(+) relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.


Subject(s)
Receptor, PAR-2/antagonists & inhibitors , Receptor, PAR-2/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Amino Acid Sequence , Animals , CHO Cells , Cricetulus , Drug Discovery , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptor, PAR-2/chemistry , Sequence Alignment
8.
Mol Pharmacol ; 89(5): 606-14, 2016 May.
Article in English | MEDLINE | ID: mdl-26957205

ABSTRACT

Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringß-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.


Subject(s)
Calcium Signaling , MAP Kinase Signaling System , Receptor, PAR-2/agonists , Thrombin/metabolism , Vasodilation , Amino Acid Substitution , Animals , Aorta , Arrestins/metabolism , Calcium Signaling/drug effects , Cell Line , Endothelium, Vascular/physiology , Humans , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , MAP Kinase Signaling System/drug effects , Mice , Mutation , Oligopeptides/pharmacology , Peptide Fragments/agonists , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Transport/drug effects , Proteolysis , Rabbits , Receptor, PAR-2/chemistry , Receptor, PAR-2/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Vasodilation/drug effects , beta-Arrestins
9.
J Biomol Struct Dyn ; 34(6): 1363-76, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26295578

ABSTRACT

Protease activated receptor 2 (PAR2) has emerged as one of the promising therapeutic targets to inhibit rapidly metastasizing breast cancer cells. However, its elusive molecular mechanism of activation and signaling has made it a difficult target for drug development. In this study, in silico methods were used to unfold PAR2 molecular mechanism of signaling based on the concept of GPCR receptor plasticity. Although, there are no conclusive evidences of the presence of specific endogenous ligands for PAR2, the efficacy of synthetic agonist and antagonist in PAR2 signaling has opened up the possibilities of ligand-mediated signaling. Furthermore, it has been proved that ligands specific for one GPCR can induce signaling in GPCRs belonging to other subfamilies. Therefore, the aim of this study was to identify potential agonists and antagonists from the GPCR ligand library (GLL), which may induce biased signaling in PAR2 using the concept of existence of multiple ligand-stabilized receptor conformations. The results of our in silico study suggest that PAR2 may show biased signaling mainly with agonists of serotonin type 1, ß-adrenergic type 1,3 and antagonists of substance K (NK1), serotonin type 2, dopamine type 4, and thromboxane receptors. Further, this study also throws light on the putative ligand-specific conformations of PAR2. Thus, the results of this study provide structural insights to putative conformations of PAR2 and also gives initial clues to medicinal chemists for rational drug design targeting this challenging receptor.


Subject(s)
Drug Discovery , Ligands , Models, Molecular , Receptor, PAR-2/chemistry , Binding Sites , Drug Design , Drug Discovery/methods , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Receptor, PAR-2/agonists , Receptor, PAR-2/antagonists & inhibitors , Signal Transduction/drug effects
10.
J Chem Inf Model ; 55(6): 1181-91, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26000704

ABSTRACT

Protease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor (GPCR) involved in inflammation and metabolism. It is activated through cleavage of its N-terminus by proteases. The new N-terminus functions as a tethered ligand that folds back and intramolecularly activates PAR2, initiating multiple downstream signaling pathways. The only compounds reported to date to inhibit PAR2 activation are of moderate potency. Three structural models for PAR2 have been constructed based on sequence homology with known crystal structures for bovine rhodopsin, human ORL-1 (also called nociceptin/orphanin FQ receptor), and human PAR1. The three PAR2 model structures were compared and used to predict potential interactions with ligands. Virtual screening for ligands using the Chembridge database, and either ORL-1 or PAR1 derived PAR2 models led to identification of eight new small molecule PAR2 antagonists (IC50 10-100 µM). Notably, the most potent compound 1 (IC50 11 µM) was derived from the less homologous template protein, human ORL-1. The results suggest that virtual screening against multiple homology models of the same GPCR can produce structurally diverse antagonists and that this may be desirable even when some models have less sequence homology with the target protein.


Subject(s)
Drug Discovery/methods , Molecular Docking Simulation , Receptor, PAR-2/antagonists & inhibitors , Receptor, PAR-2/chemistry , Sequence Homology, Amino Acid , Animals , Binding Sites , Cattle , Cell Membrane/metabolism , Databases, Protein , Drug Evaluation, Preclinical , HT29 Cells , Humans , Ligands , Protein Structure, Tertiary , Receptor, PAR-2/metabolism
11.
Immunobiology ; 220(4): 525-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25468564

ABSTRACT

BACKGROUND: Protease activity of Per a 10 has been shown to modulate dendritic cells toward Th-2 polarization and to induce airway inflammation. OBJECTIVE: To elucidate the role of serine protease activity of Per a 10 in inducing biochemical responses in epithelial cells. METHODS: Per a 10 was inactivated by heat treatment (ΔPer a 10) or AEBSF (iPer a 10). A549 cells were exposed to either enzymatically active/inactive Per a 10. The supernatant was analyzed for the secretion of proinflammatory cytokines by ELISA. Ca(2+) mobilization was analyzed by flow cytometry. A PAR-2 derived synthetic peptide 28GTNRSSKGRSLIGKVDGTSHVTGKGVTC54 was incubated with Per a 10 and the resultant cleaved products were analyzed by LC-MS. PAR-2 activation was inhibited by PAR-2 cleavage inhibiting antibody. RESULTS: ΔPer a 10 was completely inactivated whereas iPer a 10 showed some residual activity. nPer a 10 having protease activity increased the secretion of IL-6, IL-8 and GMCSF from A549 in a dose and time dependent manner whereas iPer a 10 has reduced cytokine secretion. ΔPer a 10 and rPer a 10 were unable to activate the cells. nPer a 10 mobilized intracellular Ca(2+). nPer a 10 cleaved the PAR-2 derived peptide between arginine and serine residues (36R-S37) to expose PAR-2 ligand SLIGKV, as determined by LC-MS. Incubating with anti-PAR-2 cleavage antibody showed diminished cytokine secretion when treated with nPer a 10. CONCLUSION: Serine protease activity of Per a 10 activates A549 cells to secrete proinflammatory cytokines by PAR-2 activation and Ca(2+)mobilization and can be exploited therapeutically.


Subject(s)
Allergens/immunology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Insect Proteins/immunology , Receptor, PAR-2/metabolism , Serine Proteases/immunology , Amino Acid Sequence , Calcium/metabolism , Cell Line , Cytokines/biosynthesis , Humans , Inflammation Mediators/metabolism , Intracellular Space/metabolism , Proteolysis , Receptor, PAR-2/chemistry
12.
J Biomol Struct Dyn ; 33(9): 2003-22, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25386994

ABSTRACT

The use of phytochemicals either singly or in combination with other anticancer drugs comes with an advantage of less toxicity and minimal side effects. Signaling pathways play central role in cell cycle, cell growth, metabolism, etc. Thus, the identification of phytochemicals with promising antagonistic effect on the receptor/s playing key role in single transduction may have better therapeutic application. With this background, phytochemicals were screened against protease-activated receptor 2 (PAR2). PAR2 belongs to the superfamily of GPCRs and is an important target for breast cancer. Using in silico methods, this study was able to identify the phytochemicals with promising binding affinity suggesting their therapeutic potential in the treatment of breast cancer. The findings from this study acquires importance as the information on the possible agonists and antagonists of PAR2 is limited due its unique mechanism of activation.


Subject(s)
Breast Neoplasms/chemistry , Cell Proliferation/drug effects , Phytochemicals/chemistry , Receptor, PAR-2/chemistry , Binding Sites , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Cycle/drug effects , Computer Simulation , Female , Humans , Phytochemicals/pharmacology , Protein Binding , Receptor, PAR-2/genetics , Signal Transduction/drug effects
13.
Cell Tissue Res ; 359(3): 817-27, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25519044

ABSTRACT

The protease-activated receptors are a group of unique G protein-coupled receptors, including PAR-1, PAR-2, PAR-3 and PAR-4. PAR-2 is activated by multiple trypsin-like serine proteases, including trypsin, tryptase and coagulation proteases. The clusters of phosphorylation sites in the PAR-2 carboxyl tail are suggested to be important for the binding of adaptor proteins to initiate intracellular signaling to Ca(2+) and mitogen-activated protein kinases. To explore the functional role of PAR-2 carboxyl tail in controlling intracellular Ca(2+), ERK and AKT signaling, a series of truncated mutants containing different clusters of serines/threonines were generated and expressed in HEK293 cells. Firstly, we observed that lack of the complete C-terminus of PAR-2 in a mutated receptor gave a relatively low level of localization on the cell plasma membrane. Secondly, the shortened carboxyl tail containing 13 amino acids was sufficient for receptor internalization. Thirdly, the cells expressing truncation mutants showed deficits in their capacity to couple to intracellular Ca(2+) and ERK and AKT signaling upon trypsin challenge. In addition, HEK293 cells carrying different PAR-2 truncation mutants displayed decreased levels of cell survival after long-lasting trypsin stimulation. In summary, the PAR-2 carboxyl tail was found to control the receptor localization, internalization, intracellular Ca(2+) responses and signaling to ERK and AKT. The latter can be considered to be important for cell death control.


Subject(s)
Intracellular Space/metabolism , Receptor, PAR-2/chemistry , Receptor, PAR-2/metabolism , Signal Transduction , Animals , Calcium/metabolism , Cell Death/drug effects , Cell Survival/drug effects , Endocytosis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation/drug effects , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Receptor, PAR-2/antagonists & inhibitors , Signal Transduction/drug effects , Structure-Activity Relationship , Trypsin/pharmacology
14.
J Biol Chem ; 290(6): 3529-41, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25519908

ABSTRACT

Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface.


Subject(s)
Proteolysis , Receptor, PAR-2/metabolism , Serine Endopeptidases/metabolism , Calcium Signaling , Cell Membrane/metabolism , GPI-Linked Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , MAP Kinase Signaling System , NF-kappa B/metabolism , Receptor, PAR-2/chemistry , Response Elements
15.
J Mol Graph Model ; 53: 179-199, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25173751

ABSTRACT

Experimental evidences have observed enhanced expression of protease activated receptor 2 (PAR2) in breast cancer consistently. However, it is not yet recognized as an important therapeutic target for breast cancer as the primary molecular mechanisms of its activation are not yet well-defined. Nevertheless, recent reports on the mechanism of GPCR activation and signaling have given new insights to GPCR functioning. In the light of these details, we attempted to understand PAR2 structure & function using molecular modeling techniques. In this work, we generated averaged representative stable models of PAR2, using protease activated receptor 1 (PAR1) as a template and selected conformation based on their binding affinity with PAR2 specific agonist, GB110. Further, the selected model was used for studying the binding affinity of putative ligands. The selected ligands were based on a recent publication on phylogenetic analysis of Class A rhodopsin family of GPCRs. This study reports putative ligands, their interacting residues, binding affinity and molecular dynamics simulation studies on PAR2-ligand complexes. The results reported from this study would be useful for researchers and academicians to investigate PAR2 function as its physiological role is still hypothetical. Further, this information may provide a novel therapeutic scheme to manage breast cancer.


Subject(s)
Isoxazoles/chemistry , Oligopeptides/chemistry , Receptor, PAR-2/chemistry , Amino Acid Sequence , Antineoplastic Agents/chemistry , Binding Sites , Breast Neoplasms/drug therapy , Female , Humans , Hydrogen Bonding , Ligands , Molecular Dynamics Simulation , Molecular Sequence Data , Molecular Targeted Therapy , Phylogeny , Protein Binding , Protein Structure, Tertiary , Receptor, PAR-2/genetics , Signal Transduction , Structural Homology, Protein
16.
PLoS One ; 9(6): e99702, 2014.
Article in English | MEDLINE | ID: mdl-24964046

ABSTRACT

Protease-activated receptor-2 is widely expressed in mammalian epithelial, immune and neural tissues. Cleavage of PAR2 by serine proteases leads to self-activation of the receptor by the tethered ligand SLIGRL. The contribution of other classes of proteases to PAR activation has not been studied in detail. Cathepsin S is a widely expressed cysteine protease that is upregulated in inflammatory conditions. It has been suggested that cathepsin S activates PAR2. However, cathepsin S activation of PAR2 has not been demonstrated directly nor has the potential mechanism of activation been identified. We show that cathepsin S cleaves near the N-terminus of PAR2 to expose a novel tethered ligand, KVDGTS. The hexapeptide KVDGTS generates downstream signaling events specific to PAR2 but is weaker than SLIGRL. Mutation of the cathepsin S cleavage site prevents receptor activation by the protease while KVDGTS retains activity. In conclusion, the range of actions previously ascribed to cysteine cathepsins in general, and cathepsin S in particular, should be expanded to include molecular signaling. Such signaling may link together observations that had been attributed previously to PAR2 or cathepsin S individually. These interactions may contribute to inflammation.


Subject(s)
Cathepsins/physiology , Receptor, PAR-2/physiology , Amino Acid Sequence , Cathepsins/genetics , Cathepsins/metabolism , HeLa Cells , Humans , Keratinocytes/metabolism , Protein Interaction Mapping , Receptor, PAR-2/chemistry , Receptor, PAR-2/genetics , Signal Transduction
17.
J Biol Chem ; 288(5): 3265-74, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23235155

ABSTRACT

ß-Arrestins are multifunctional adaptor proteins that, upon recruitment to an activated G-protein-coupled receptor, can promote desensitization of G-protein signaling and receptor internalization while simultaneously eliciting an independent signal. The result of ß-arrestin signaling depends upon the activating receptor. For example, activation of two Gα(q)-coupled receptors, protease-activated receptor-2 (PAR(2)) and neurokinin-1 receptor (NK1R), results in drastically different signaling events. PAR(2) promotes ß-arrestin-dependent membrane-sequestered extracellular signal-regulated kinase (ERK1/2) activation, cofilin activation, and cell migration, whereas NK1R promotes nuclear ERK1/2 activation and proliferation. Using bioluminescence resonance energy transfer to monitor receptor/ß-arrestin interactions in real time, we observe that PAR(2) has a higher apparent affinity for both ß-arrestins than does NK1R, recruits them at a faster rate, and exhibits more rapid desensitization of the G-protein signal. Furthermore, recruitment of ß-arrestins to PAR(2) does not require prior Gα(q) signaling events, whereas inhibition of Gα(q) signaling intermediates inhibits recruitment of ß-arrestins to NK1R. Using chimeric receptors in which the C terminus of PAR(2) is fused to the N terminus of NK1R and vice versa and a critical Ser/Thr mutant of PAR(2), we demonstrate that interactions between ß-arrestins and specific phosphoresidues in the C termini of each receptor are crucial for determining the rate and magnitude of ß-arrestin recruitment as well as the ultimate signaling outcome.


Subject(s)
Arrestins/metabolism , Receptor, PAR-2/chemistry , Receptor, PAR-2/metabolism , Receptors, Neurokinin-1/chemistry , Receptors, Neurokinin-1/metabolism , Signal Transduction , Actin Depolymerizing Factors/metabolism , Amino Acid Sequence , Animals , CHO Cells , Calcium/metabolism , Cell Movement , Cricetinae , Endocytosis , Enzyme Activation , Extracellular Signal-Regulated MAP Kinases/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , HEK293 Cells , Humans , Intracellular Space/metabolism , Kinetics , Mice , Mutant Proteins/metabolism , Neurokinin-1 Receptor Antagonists , Phosphorylation , Receptor, PAR-2/antagonists & inhibitors , Structure-Activity Relationship , Subcellular Fractions/metabolism , beta-Arrestins
18.
J Cell Biochem ; 113(3): 977-84, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22034092

ABSTRACT

Factor Xa (FXa) elicits intracellular signaling responses through the activation of protease-activated receptor 2 (PAR2) and possibly also through PAR1 in endothelial cells. In this study, we investigated FXa signaling in endothelial cells when the protease was either in free form or assembled into the prothrombinase complex. Furthermore, we prepared several wild-type and mutant PAR1 and PAR2 cleavage-reporter constructs in which their exodomains were fused to cDNA encoding for a soluble alkaline phosphatase (ALP). In the mutants, P2 residues were exchanged between PAR1 and PAR2 cleavage-reporter constructs and the hirudin-like binding site (HLBS) of PAR1 was inserted into the homologous site of PAR2. In non-transfected cells, FXa elicited a protective response which could be blocked by a specific anti-PAR2 but not by an anti-PAR1 antibody. A similar protective activity was observed for FXa in the prothrombinase complex. Further studies revealed that neither the Gla- nor EGF1-domain of FXa is required for its signaling activity, however, the N-terminus Arg-86 and Lys-87 of the EGF2-domain were essential. In the cleavage-reporter transfected cells, FXa cleaved the PAR2 construct effectively, however, replacing its P2-Gly with P2-Pro of PAR1 impaired its cleavage by FXa but improved it by thrombin. A PAR2 construct containing both P2-Pro and HLBS of PAR1 was poorly cleaved by FXa, but effectively by thrombin. A PAR1 construct containing P2 and P3 residues of PAR2 was poorly cleaved by thrombin but effectively by FXa. These results provide new insight into mechanisms through which coagulation proteases specifically interact with their target PAR receptors.


Subject(s)
Factor Xa/metabolism , Receptor, PAR-1/chemistry , Receptor, PAR-1/metabolism , Receptor, PAR-2/chemistry , Receptor, PAR-2/metabolism , Thrombin/metabolism , Alkaline Phosphatase/analysis , Alkaline Phosphatase/genetics , Amino Acid Sequence , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Factor Xa/chemistry , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Receptor, PAR-1/genetics , Receptor, PAR-2/genetics , Sequence Alignment , Signal Transduction
19.
PLoS One ; 6(11): e28018, 2011.
Article in English | MEDLINE | ID: mdl-22140500

ABSTRACT

Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. This irreversible activation mechanism leads to rapid receptor desensitization by internalisation and degradation. We have explored the role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Experiments using the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling using two approaches, which showed that PAR2 stably expressed by CHO-K1 cells is palmitoylated and that palmitoylation occurs on cysteine 361. Palmitoylation is required for optimal PAR2 signalling as Ca²âº flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ∼9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. We also show that receptor palmitoylation occurs within the Golgi apparatus and is required for efficient agonist-induced rab11a-mediated trafficking of PAR2 to the cell surface. Palmitoylation is also required for receptor desensitization, as agonist-induced ß-arrestin recruitment and receptor endocytosis and degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. These data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor.


Subject(s)
Cell Membrane/metabolism , Lipoylation , Receptor, PAR-2/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Arrestins/metabolism , CHO Cells , Cricetinae , Cricetulus , Cysteine/metabolism , Endocytosis , Golgi Apparatus/metabolism , Humans , Models, Biological , Molecular Sequence Data , Mutation/genetics , Palmitates/metabolism , Protein Transport , Proteolysis , Receptor, PAR-2/agonists , Receptor, PAR-2/chemistry , Secretory Pathway , beta-Arrestins , rab GTP-Binding Proteins/metabolism
20.
J Allergy Clin Immunol ; 128(6): 1326-1334.e3, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21839502

ABSTRACT

BACKGROUND: Atopic diseases are the most common chronic diseases of childhood, and the genetics of atopy are complex and heterogeneous. Protease-activated receptor-2 (PAR-2) is involved in various inflammatory diseases, but the association of PAR-2 with allergic diseases remains unclear. OBJECTIVE: To examine the contribution of genetic variation of PAR-2 to atopic phenotypes in the Korean childhood cohort. METHODS: We identified PAR-2 variations in a Korean population and conducted association analyses by using 316 unrelated atopic and 210 nonatopic subjects. We analyzed serum IgE and total eosinophil count levels and examined PAR-2 mRNA and protein expression levels. RESULTS: In the case-control association analysis, atopy was significantly associated with a single c.621C>T (p.I207I, rs631465) polymorphism of PAR-2 (P = .001, odds ratio = 1.95). Subjects with the c.621T risk allele had significantly higher serum IgE (P = .004) and total eosinophil count (P = .03) levels. Moreover, the positive association of c.621T was reproduced in the replication study (P = .01, joint P value of the replication < .001). An in silico analysis of RNA secondary structure prediction revealed that the C to T conversion at c.621 greatly increased predicted PAR-2 mRNA stability. This was also confirmed by an in vitro assay for mRNA stability. Furthermore, following an in vivo approach on gene expression in PBMCs showed that the expression levels of PAR-2 mRNA and protein in subjects with the c.621CT or TT genotype were significantly higher than in those with the c.621CC genotype. CONCLUSIONS: These results indicate that the synonymous c.621C>T polymorphism in PAR-2 might be associated with the risk of atopy, potentially by altering PAR-2 gene expression.


Subject(s)
Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Hypersensitivity, Immediate/genetics , Receptor, PAR-2/genetics , Asian People/genetics , Base Sequence , Blotting, Western , Case-Control Studies , Child , Female , Gene Expression , Gene Expression Profiling , Genome-Wide Association Study , Genotype , Humans , Immunoglobulin E/blood , Immunoglobulin E/genetics , Korea , Male , Molecular Sequence Data , Phenotype , Polymorphism, Single Nucleotide , Protein Structure, Secondary , RNA Stability , Real-Time Polymerase Chain Reaction , Receptor, PAR-2/chemistry , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...