Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.332
Filter
1.
Nat Commun ; 15(1): 4521, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806452

ABSTRACT

Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.


Subject(s)
Chromatin , Fibroblasts , Mast Cells , Melanocytes , Proto-Oncogene Proteins c-kit , Animals , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Mice , Mast Cells/metabolism , Melanocytes/metabolism , Fibroblasts/metabolism , Chromatin/metabolism , Chromatin/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Promoter Regions, Genetic/genetics , Enhancer Elements, Genetic/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Epigenesis, Genetic , Genetic Loci , Mice, Inbred C57BL , Organ Specificity/genetics , Gene Editing , Ectopic Gene Expression , Male
2.
Cell Stem Cell ; 31(6): 904-920.e6, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38703771

ABSTRACT

Mesenchymal stem cells (MSCs) reside in niches to maintain tissue homeostasis and contribute to repair and regeneration. Although the physiological functions of blood and lymphatic vasculature are well studied, their regulation of MSCs as niche components remains largely unknown. Using adult mouse incisors as a model, we uncover the role of Trp53 in regulating vascular composition through THBS2 to maintain mesenchymal tissue homeostasis. Loss of Trp53 in GLI1+ progeny increases arteries and decreases other vessel types. Platelet-derived growth factors from arteries deposit in the MSC region and interact with PDGFRA and PDGFRB. Significantly, PDGFRA+ and PDGFRB+ cells differentially contribute to defined cell lineages in the adult mouse incisor. Collectively, our results highlight Trp53's importance in regulating the vascular niche for MSCs. They also shed light on how different arterial cells provide unique cues to regulate MSC subpopulations and maintain their heterogeneity. Furthermore, they provide mechanistic insight into MSC-vasculature crosstalk.


Subject(s)
Incisor , Mesenchymal Stem Cells , Signal Transduction , Tumor Suppressor Protein p53 , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mice , Tumor Suppressor Protein p53/metabolism , Incisor/cytology , Incisor/metabolism , Platelet-Derived Growth Factor/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism
3.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38781967

ABSTRACT

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Subject(s)
Extracellular Matrix , Intestinal Mucosa , Animals , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Extracellular Matrix/metabolism , Myosin Type II/metabolism , Mesoderm/metabolism , Mesoderm/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Morphogenesis , Matrix Metalloproteinases/metabolism
4.
Reproduction ; 168(1)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718815

ABSTRACT

In brief: Progenitor cells with ovulation-related tissue repair activity were identified with defined markers (LGR5, EPCR, LY6A, and PDGFRA), but their potentials to form steroidogenic cells were not known. This study shows that the cells can generate progenies with different steroidogenic activities. Abstract: Adult mammalian ovaries contain stem/progenitor cells necessary for folliculogenesis and ovulation-related tissue rupture repair. Theca cells are recruited and developed from progenitors during the folliculogenesis. Theca cell progenitors were not well defined. The aim of current study is to compare the potentials of four ovarian progenitors with defined markers (LY6A, EPCR, LGR5, and PDGFRA) to form steroidogenic theca cells in vitro. The location of the progenitors with defined makers was determined by immunohistochemistry and immunofluorescence staining of ovarian sections of adult mice. Different progenitor populations were purified by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) techniques from ovarian cell preparation and were tested for their abilities to generate steroidogenic theca cells in vitro. The cells were differentiated with a medium containing LH, ITS, and DHH agonist for 12 days. The results showed that EPCR+ and LGR5+ cells primarily distributed along the ovarian surface epithelium (OSE), while LY6A+ cells distributed in both the OSE and parenchyma. However, PDGFRA+ cells were exclusively located in interstitial compartment. When the progenitors were purified by these markers and differentiated in vitro, LY6A+ and PDGFRA+ cells formed steroidogenic cells expressing both CYP11A1 and CYP17A1 and primarily producing androgens, showing characteristics of theca-like cells, while LGR5+ cells generated steroidogenic cells devoid of CYP17A1 expression and androgen production, showing a characteristic of progesterone-producing cells (granulosa- or lutea-like cells). In conclusion, progenitors from both OSE and parenchyma of adult mice are capable of generating steroidogenic cells with different steroidogenic capacities, showing a possible lineage preference.


Subject(s)
Cell Differentiation , Receptors, G-Protein-Coupled , Stem Cells , Theca Cells , Animals , Female , Theca Cells/metabolism , Theca Cells/cytology , Mice , Stem Cells/metabolism , Stem Cells/cytology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Antigens, Ly/metabolism , Cells, Cultured , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Ovary/cytology , Ovary/metabolism , Mice, Inbred C57BL , Biomarkers/metabolism
5.
Aging (Albany NY) ; 16(9): 8070-8085, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38728249

ABSTRACT

BACKGROUND: Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS: The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-ß-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS: Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS: Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-ß-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.


Subject(s)
Cellular Senescence , Endothelial Cells , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Lipoproteins, LDL , Mitochondria , Reactive Oxygen Species , Receptor, Platelet-Derived Growth Factor alpha , Kruppel-Like Factor 4/metabolism , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Mitochondria/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Humans , Endothelial Cells/metabolism , Cytokines/metabolism , Phenotype , Mice, Knockout , Human Umbilical Vein Endothelial Cells/metabolism , Male , Signal Transduction
6.
Stem Cell Reports ; 19(5): 654-672, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38579710

ABSTRACT

Here, we used single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq), and single-cell spatial transcriptomics to characterize murine cortical OPCs throughout postnatal life. During development, we identified two groups of differentially localized PDGFRα+ OPCs that are transcriptionally and epigenetically distinct. One group (active, or actOPCs) is metabolically active and enriched in white matter. The second (homeostatic, or hOPCs) is less active, enriched in gray matter, and predicted to derive from actOPCs. In adulthood, these two groups are transcriptionally but not epigenetically distinct, and relative to developing OPCs are less active metabolically and have less open chromatin. When adult oligodendrogenesis is enhanced during experimentally induced remyelination, adult OPCs do not reacquire a developmental open chromatin state, and the oligodendrogenesis trajectory is distinct from that seen neonatally. These data suggest that there are two OPC groups subserving distinct postnatal functions and that neonatal and adult OPC-mediated oligodendrogenesis are fundamentally different.


Subject(s)
Oligodendrocyte Precursor Cells , Single-Cell Analysis , Animals , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/cytology , Mice , Cell Differentiation/genetics , Oligodendroglia/metabolism , Oligodendroglia/cytology , Epigenesis, Genetic , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Transcriptome , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , White Matter/metabolism , White Matter/cytology
7.
Cell Tissue Res ; 397(1): 1-12, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587529

ABSTRACT

The epididymal duct exhibits spontaneous phasic contractions (SPCs) to store and transport sperm. Here, we explored molecular identification of pacemaker cells driving SPCs in the caudal epididymal duct and also investigated properties of pacemaker currents underlying SPCs focusing on ANO1 Ca2+-activated Cl- channels (CaCCs). Immunohistochemistry was performed to visualise the distribution of platelet-derived growth factor receptor α (PDGFRα)- or ANO1-positive cells in the rat caudal epididymal duct. Perforated whole-cell patch clamp technique was applied to enzymatically isolated epididymal cells, while SPCs were recorded with video edge-tracking technique. Immunohistochemistry revealed the distribution of α-smooth muscle actin (α-SMA)-positive cells co-expressing both PDGFRα and ANO1 in the innermost smooth muscle layer. Approximately one-third of isolated epididymis cells exhibited spontaneous transient inward currents (STICs) at the holding potential -60 mV. The reversal potential for STICs was close to the calculated chloride equivalent potential depending on intracellular Cl- concentrations. Ani9 (3 µM), the ANO1 specific inhibitor, decreased both amplitude and frequency of STICs, while cyclopiazonic acid (CPA, 30 µM), a sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor, abolished STICs. Ani9 (3 or 10 µM) reduced the frequency of SPCs without changing their amplitude. Thus, PDGFRα+, ANO1+ specialised smooth muscle cells (SMCs) appear to function as pacemaker cells to electrically drive epididymal SPCs by generating ANO1-dependnet STICs. STICs arising from spontaneous Ca2+ release from intracellular Ca2+ store and subsequent opening of ANO1 result in depolarisations that spread into adjacent SMCs where L-type voltage-dependent Ca2+ channels are activated to develop SPCs.


Subject(s)
Anoctamin-1 , Epididymis , Myocytes, Smooth Muscle , Receptor, Platelet-Derived Growth Factor alpha , Animals , Male , Anoctamin-1/metabolism , Epididymis/metabolism , Epididymis/cytology , Myocytes, Smooth Muscle/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Rats , Chloride Channels/metabolism , Rats, Sprague-Dawley , Rats, Wistar
8.
Int J Cancer ; 155(6): 1112-1127, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38648387

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer and the metastatic disease is associated with poor prognosis. Cancer-associated fibroblasts (CAFs) promote progression of cancer, but their role in cSCC is largely unknown. We examined the potential of CAF markers in the assessment of metastasis risk and prognosis of primary cSCC. We utilized multiplexed fluorescence immunohistochemistry for profiling CAF landscape in metastatic and non-metastatic primary human cSCCs, in metastases, and in premalignant epidermal lesions. Quantitative high-resolution image analysis was performed with two separate panels of antibodies for CAF markers and results were correlated with clinical and histopathological parameters including disease-specific mortality. Increased stromal expression of fibroblast activation protein (FAP), α-smooth muscle actin, and secreted protein acidic and rich in cysteine (SPARC) were associated with progression to invasive cSCC. Elevation of FAP and platelet-derived growth factor receptor-ß (PDGFRß) expression was associated with metastasis risk of primary cSCCs. High expression of PDGFRß and periostin correlated with poor prognosis. Multimarker combination defined CAF subset, PDGFRα-/PDGFRß+/FAP+, was associated with invasion and metastasis, and independently predicted poor disease-specific survival. These results identify high PDGFRß expression alone and multimarker combination PDGFRα-/PDGFRß+/FAP+ by CAFs as potential biomarkers for risk of metastasis and poor prognosis.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Squamous Cell , Disease Progression , Membrane Proteins , Receptor, Platelet-Derived Growth Factor beta , Serine Endopeptidases , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/mortality , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Prognosis , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Serine Endopeptidases/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Membrane Proteins/metabolism , Female , Male , Biomarkers, Tumor/metabolism , Gelatinases/metabolism , Endopeptidases , Cell Adhesion Molecules/metabolism , Osteonectin/metabolism , Neoplasm Metastasis , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Aged , Actins/metabolism , Middle Aged
9.
Cancer Cell ; 42(4): 682-700.e12, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38428409

ABSTRACT

Cancer-associated fibroblasts (CAFs) exhibit considerable heterogeneity in advanced cancers; however, the functional annotation and mechanism of CAFs in early-stage cancers remain elusive. Utilizing single-cell RNA sequencing and spatial transcriptomic, we identify a previously unknown PDGFRα+ITGA11+ CAF subset in early-stage bladder cancer (BCa). Multicenter clinical analysis of a 910-case cohort confirms that PDGFRα+ITGA11+ CAFs are associated with lymphovascular invasion (LVI) and poor prognosis in early-stage BCa. These CAFs facilitate LVI and lymph node (LN) metastasis in early-stage BCa, as evidenced in a PDGFRα+ITGA11+ CAFs-specific deficient mouse model. Mechanistically, PDGFRα+ITGA11+ CAFs promote lymphangiogenesis via recognizing ITGA11 surface receptor SELE on lymphatic endothelial cells to activate SRC-p-VEGFR3-MAPK pathway. Further, CHI3L1 from PDGFRα+ITGA11+ CAFs aligns the surrounding matrix to assist cancer cell intravasation, fostering early-stage BCa LVI and LN metastasis. Collectively, our study reveals the crucial role of PDGFRα+ITGA11+ CAFs in shaping metastatic landscape, informing the treatment of early-stage BCa LVI.


Subject(s)
Cancer-Associated Fibroblasts , Receptor, Platelet-Derived Growth Factor alpha , Animals , Humans , Mice , Cancer-Associated Fibroblasts/pathology , Endothelial Cells , Fibroblasts/metabolism , Integrin alpha Chains , Lymphatic Metastasis/pathology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism
10.
Sci Rep ; 14(1): 7204, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38532028

ABSTRACT

Myxoid glioneuronal tumors (MGNT) are low-grade glioneuronal neoplasms composed of oligodendrocyte-like cells in a mucin-rich stroma. These tumors feature a unique dinucleotide change at codon 385 in the platelet-derived growth factor receptor α (encoded by the PDGFRA gene), resulting in the substitution of lysine 385 into leucine or isoleucine. The functional consequences of these mutations remain largely unexplored. Here, we demonstrated their oncogenic potential in fibroblast and Ba/F3 transformation assays. We showed that the K385I and K385L mutants activate STAT and AKT signaling in the absence of ligand. Co-immunoprecipitations and BRET experiments suggested that the mutations stabilized the active dimeric conformation of the receptor, pointing to a new mechanism of oncogenic PDGF receptor activation. Furthermore, we evaluated the sensitivity of these mutants to three FDA-approved tyrosine kinase inhibitors: imatinib, dasatinib, and avapritinib, which effectively suppressed the constitutive activity of the mutant receptors. Finally, K385 substitution into another hydrophobic amino acid also activated the receptor. Interestingly, K385M was reported in a few cases of brain tumors but not in MGNT. Our results provide valuable insights into the molecular mechanism underlying the activation of PDGFRα by the K385I/L mutations, highlighting their potential as actionable targets in the treatment of myxoid glioneuronal tumors.


Subject(s)
Neoplasms , Signal Transduction , Humans , Dimerization , Imatinib Mesylate , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Mutation
11.
Int J Legal Med ; 138(4): 1351-1356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520552

ABSTRACT

Immunohistochemical analysis of platelet-derived growth factor receptor-α (PDGFR-α) was performed on human skin wounds obtained from forensic autopsy cases. Thirty human skin wounds were collected at different post-infliction intervals as follows: Group I, 4 h to 3 days (n = 16); Group II, 4 to 7 days (n = 7); Group III, 9 to 10 days (n = 3); and Group IV, 14 to 20 days (n = 4). Immunopositive reactions for PDGFR-α were not observed in the uninjured human skin specimens. In a semi-quantitative morphometrical analysis, the number of PDGFR-α-positive cells was observed increased in Group II, with the average number of PDGFR-α-positive cells being the highest in Group II. Additionally, in Group II, all specimens showed PDGFR-α-positive cells, with an average number of > 200 cells in five fields of view, suggesting a wound age of 4 to 7 days. Taken together, the immunohistochemical detection of PDGFR-α in human skin wounds can be a useful tool for wound age determination.


Subject(s)
Immunohistochemistry , Receptor, Platelet-Derived Growth Factor alpha , Skin , Humans , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Skin/injuries , Skin/pathology , Skin/metabolism , Skin/chemistry , Male , Female , Middle Aged , Adult , Forensic Pathology , Time Factors , Aged , Aged, 80 and over
12.
J Hepatol ; 80(6): 928-940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38336346

ABSTRACT

BACKGROUND & AIMS: Men are more prone to develop and die from liver fibrosis than women. In this study, we aim to investigate how sex-determining region Y gene (SRY) in hepatocytes promotes liver fibrosis. METHODS: Hepatocyte-specific Sry knock-in (KI), Sry knockout (KO), and Sry KI with platelet-derived growth factor receptor α (Pdgfrα) KO mice were generated. Liver fibrosis was induced in mice by bile duct ligation for 2 weeks or carbon tetrachloride treatment for 6 weeks. In addition, primary hepatocytes, hepatic stellate cells (HSCs), and immortalized cell lines were used for in vitro studies and mechanistic investigation. RESULTS: Compared to females, the severity of toxin- or cholestasis-induced liver fibrosis is similarly increased in castrated and uncastrated male mice. Among all Y chromosome-encoded genes, SRY was the most significantly upregulated and consistently increased gene in fibrotic/cirrhotic livers in male patients and in mouse models. Sry KI mice developed exacerbated liver fibrosis, whereas Sry KO mice had alleviated liver fibrosis, compared to age- and sex-matched control mice after bile duct ligation or administration of carbon tetrachloride. Mechanistically, both our in vivo and in vitro studies illustrated that SRY in hepatocytes can transcriptionally regulate Pdgfrα expression, and promote HMGB1 (high mobility group box 1) release and subsequent HSC activation. Pdgfrα KO or treatment with the SRY inhibitor DAX1 in Sry KI mice abolished SRY-induced HMGB1 secretion and liver fibrosis. CONCLUSIONS: SRY is a strong pro-fibrotic factor and accounts for the sex disparity observed in liver fibrosis, suggesting its critical role as a potentially sex-specific therapeutic target for prevention and treatment of the disease. IMPACT AND IMPLICATION: We identified that a male-specific gene, sex-determining region Y gene (SRY), is a strong pro-fibrotic gene that accounts for the sex disparity observed in liver fibrosis. As such, SRY might be an appropriate target for surveillance and treatment of liver fibrosis in a sex-specific manner. Additionally, SRY might be a key player in the sexual dimorphism observed in hepatic pathophysiology more generally.


Subject(s)
Hepatic Stellate Cells , Hepatocytes , Liver Cirrhosis , Mice, Knockout , Sex-Determining Region Y Protein , Animals , Male , Female , Mice , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/physiopathology , Humans , Hepatocytes/metabolism , Sex-Determining Region Y Protein/genetics , Sex-Determining Region Y Protein/metabolism , Hepatic Stellate Cells/metabolism , Sex Characteristics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/adverse effects , Cholestasis/genetics , Cholestasis/metabolism , Cholestasis/physiopathology , Disease Models, Animal
13.
Bioorg Chem ; 145: 107234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412650

ABSTRACT

Two new series of N-aryl acetamides 6a-o and benzyloxy benzylidenes 9a-p based 2-oxoindole derivatives were designed as potent antiproliferative multiple kinase inhibitors. The results of one-dose NCI antiproliferative screening for compounds 6a-o and 9a-p elucidated that the most promising antiproliferative scaffolds were 6f and 9f, which underwent five-dose testing. Notably, the amido congener 6f was the most potent derivative towards pancreatic ductal adenocarcinoma MDA-PATC53 and PL45 cell lines (IC50 = 1.73 µM and 2.40 µM, respectively), and the benzyloxy derivative 9f was the next potent one with IC50 values of 2.85 µM and 2.96 µM, respectively. Both compounds 6f and 9f demonstrated a favorable safety profile when tested against normal prostate epithelial cells (RWPE-1). Additionally, compound 6f displayed exceptional selectivity as a multiple kinase inhibitor, particularly targeting PDGFRα, PDGFRß, and VEGFR-2 kinases, with IC50 values of 7.41 nM, 6.18 nM, and 7.49 nM, respectively. In contrast, the reference compound Sunitinib exhibited IC50 values of 43.88 nM, 2.13 nM, and 78.46 nM against the same kinases. The derivative 9f followed closely, with IC50 values of 9.9 nM, 6.62 nM, and 22.21 nM for the respective kinases. Both 6f and 9f disrupt the G2/M cell cycle transition by upregulating p21 and reducing CDK1 and cyclin B1 mRNA levels. The interplay between targeted kinases and these cell cycle regulators underpins the G2/M cell cycle arrest induced by our compounds. Also, compounds 6f and 9f fundamentally resulted in entering MDA-PATC53 cells into the early stage of apoptosis with good percentages compared to the positive control Sunitinib. The in silico molecular-docking outcomes of scaffolds 6a-o and 9a-p in VEGFR-2, PDGFRα, and PDGFRß active sites depicted their ability to adopt essential binding interactions like the reference Sunitinib. Our designed analogs, specifically 6f and 9f, possess promising antiproliferative and kinase inhibitory properties, making them potential candidates for further therapeutic development.


Subject(s)
Antineoplastic Agents , Receptor, Platelet-Derived Growth Factor alpha , Sunitinib/pharmacology , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Vascular Endothelial Growth Factor Receptor-2 , Cell Line, Tumor , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Angiogenesis Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Molecular Structure
14.
Nat Commun ; 15(1): 63, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167404

ABSTRACT

Avapritinib is the only potent and selective inhibitor approved for the treatment of D842V-mutant gastrointestinal stromal tumors (GIST), the most common primary mutation of the platelet-derived growth factor receptor α (PDGFRA). The approval was based on the NAVIGATOR trial, which revealed overall response rates of more than 90%. Despite this transformational activity, patients eventually progress, mostly due to acquired resistance mutations or following discontinuation due to neuro-cognitive side effects. These patients have no therapeutic alternative and face a dismal prognosis. Notable, little is known about this drug's binding mode and its medicinal chemistry development, which is instrumental for the development of the next generation of drugs. Against this background, we solve the crystal structures of avapritinib in complex with wild-type and mutant PDGFRA and stem cell factor receptor (KIT), which provide evidence and understanding of inhibitor binding and lead to the identification of a sub-pocket (Gα-pocket). We utilize this information to design, synthesize and characterize avapritinib derivatives for the determination of key pharmacophoric features to overcome drug resistance and limit potential blood-brain barrier penetration.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Humans , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Pyrazoles/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Mutation , Proto-Oncogene Proteins c-kit/genetics , Antineoplastic Agents/pharmacology
15.
Stem Cell Res Ther ; 15(1): 16, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38229108

ABSTRACT

BACKGROUND: Intestinal epithelial cells derived from human pluripotent stem cells (hPSCs) are generally maintained and cultured as organoids in vitro because they do not exhibit adhesion when cultured. However, the three-dimensional structure of organoids makes their use in regenerative medicine and drug discovery difficult. Mesenchymal stromal cells are found near intestinal stem cells in vivo and provide trophic factors to regulate stem cell maintenance and proliferation, such as BMP inhibitors, WNT, and R-spondin. In this study, we aimed to use mesenchymal stromal cells isolated from hPSC-derived intestinal organoids to establish an in vitro culture system that enables stable proliferation and maintenance of hPSC-derived intestinal epithelial cells in adhesion culture. METHODS: We established an isolation protocol for intestinal epithelial cells and mesenchymal stromal cells from hPSCs-derived intestinal organoids and a co-culture system for these cells. We then evaluated the intestinal epithelial cells and mesenchymal stromal cells' morphology, proliferative capacity, chromosomal stability, tumorigenicity, and gene expression profiles. We also evaluated the usefulness of the cells for pharmacokinetic and toxicity studies. RESULTS: The proliferating intestinal epithelial cells exhibited a columnar form, microvilli and glycocalyx formation, cell polarity, and expression of drug-metabolizing enzymes and transporters. The intestinal epithelial cells also showed barrier function, transporter activity, and drug-metabolizing capacity. Notably, small intestinal epithelial stem cells cannot be cultured in adherent culture without mesenchymal stromal cells and cannot replaced by other feeder cells. Organoid-derived mesenchymal stromal cells resemble the trophocytes essential for maintaining small intestinal epithelial stem cells and play a crucial role in adherent culture. CONCLUSIONS: The high proliferative expansion, productivity, and functionality of hPSC-derived intestinal epithelial cells may have potential applications in pharmacokinetic and toxicity studies and regenerative medicine.


Subject(s)
Pluripotent Stem Cells , Receptor, Platelet-Derived Growth Factor alpha , Humans , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Cell Differentiation , Pluripotent Stem Cells/metabolism , Organoids/metabolism , Epithelial Cells/metabolism , Cell Proliferation , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
16.
Arthritis Rheumatol ; 76(4): 620-630, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37975161

ABSTRACT

OBJECTIVE: The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex. METHODS: The binding of monomeric human PDGFRα to the AAV5 capsid was analyzed by in silico molecular docking, surface plasmon resonance (SPR), and genome editing of the PDGFRα locus. AAV5 was detected in SSc lungs by in situ hybridization, immunohistochemistry, confocal microscopy, and molecular analysis of bronchoalveolar lavage (BAL) fluid. Immune responses to AAV5 and PDGFRα were evaluated by SPR using SSc monoclonal anti-PDGFRα antibodies and immunoaffinity-purified anti-PDGFRα antibodies from sera of patients with SSc. RESULTS: AAV5 was detected in the BAL fluid of 41 of 66 patients with SSc with interstitial lung disease (62.1%) and in 17 of 66 controls (25.75%) (P < 0.001). In SSc lungs, AAV5 localized in type II pneumocytes and in interstitial cells. A molecular complex formed of spatially contiguous epitopes of the AAV5 capsid and of PDGFRα was identified and characterized. In silico molecular docking analysis and binding to the agonistic anti-PDGFRα antibodies identified spatially contiguous epitopes derived from PDGFRα and AAV5 that interacted with SSc agonistic antibodies to PDGFRα. These peptides were also able to bind total IgG isolated from patients with SSc, not from healthy controls. CONCLUSION: These data link AVV5 with the immune reactivity to endogenous antigens in SSc and provide a novel element in the pathogenesis of SSc.


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , Humans , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Epitopes , Dependovirus/metabolism , Autoantibodies , Molecular Docking Simulation , Scleroderma, Systemic/pathology , Peptides , Lung/pathology
17.
Dev Cell ; 59(2): 228-243.e7, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38113891

ABSTRACT

Autophagy is a conserved cellular degradation process. While autophagy-related proteins were shown to influence the signaling and trafficking of some receptor tyrosine kinases, the relevance of this during cancer development is unclear. Here, we identify a role for autophagy in regulating platelet-derived growth factor receptor alpha (PDGFRA) signaling and levels. We find that PDGFRA can be targeted for autophagic degradation through the activity of the autophagy cargo receptor p62. As a result, short-term autophagy inhibition leads to elevated levels of PDGFRA but an unexpected defect in PDGFA-mediated signaling due to perturbed receptor trafficking. Defective PDGFRA signaling led to its reduced levels during prolonged autophagy inhibition, suggesting a mechanism of adaptation. Importantly, PDGFA-driven gliomagenesis in mice was disrupted when autophagy was inhibited in a manner dependent on Pten status, thus highlighting a genotype-specific role for autophagy during tumorigenesis. In summary, our data provide a mechanism by which cells require autophagy to drive tumor formation.


Subject(s)
Brain Neoplasms , Signal Transduction , Mice , Animals , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Autophagy
18.
Acta Biomater ; 174: 297-313, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38096960

ABSTRACT

The transcription factor Olig2 is highly expressed throughout oligodendroglial development and is needed for the differentiation of oligodendrocyte progenitor cells (OPCs) into oligodendrocytes and remyelination. Although Olig2 overexpression in OPCs is a possible therapeutic target for enhancing myelin repair in ischemic stroke, achieving Olig2 overexpression in vivo remains a formidable technological challenge. To address this challenge, we employed lipid nanoparticle (LNP)-mediated delivery of Olig2 synthetically modified messenger RNA (mRNA) as a viable method for in vivo Olih2 protein overexpression. Specifically, we developed CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) to achieve targeted Olig2 protein expression within PDGFRα+ OPCs, with the goal of promoting remyelination for ischemic stroke therapy. We show that C-Olig2 promotes the differentiation of PDGFRα+ OPCs derived from mouse neural stem cells into mature oligodendrocytes in vitro, suggesting that mRNA-mediated Olig2 overexpression is a rational approach to promote oligodendrocyte differentiation and remyelination. Furthermore, when C-Olig2 was administered to a murine model of ischemic stroke, it led to improvements in blood‒brain barrier (BBB) integrity, enhanced remyelination, and rescued learning and cognitive deficits. Our comprehensive analysis, which included bulk RNA sequencing (RNA-seq) and single-nucleus RNA-seq (snRNA-seq), revealed upregulated biological processes related to learning and memory in the brains of mice treated with C-Olig2 compared to those receiving empty LNPs (Mock). Collectively, our findings highlight the therapeutic potential of multifunctional nanomedicine targeting mRNA expression for ischemic stroke and suggest that this approach holds promise for addressing various brain diseases. STATEMENT OF SIGNIFICANCE: While Olig2 overexpression in OPCs represents a promising therapeutic avenue for enhancing remyelination in ischemic stroke, in vivo strategies for achieving Olig2 expression pose considerable technological challenges. The delivery of mRNA via lipid nanoparticles is considered aa viable approach for in vivo protein expression. In this study, we engineered CD140a-targeted LNPs loaded with Olig2 mRNA (C-Olig2) with the aim of achieving specific Olig2 overexpression in mouse OPCs. Our findings demonstrate that C-Olig2 promotes the differentiation of OPCs into oligodendrocytes in vitro, providing evidence that mRNA-mediated Olig2 overexpression is a rational strategy to foster remyelination. Furthermore, the intravenous administration of C-Olig2 into a murine model of ischemic stroke not only improved blood-brain barrier integrity but also enhanced remyelination and mitigated learning and cognitive deficits. These results underscore the promising therapeutic potential of multifunctional nanomedicine targeting mRNA expression in the context of ischemic stroke.


Subject(s)
Ischemic Stroke , Oligodendrocyte Precursor Cells , Mice , Animals , Oligodendrocyte Transcription Factor 2 , Ischemic Stroke/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Disease Models, Animal , Myelin Sheath , Cell Differentiation/genetics , Oligodendroglia , Ischemia , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069370

ABSTRACT

Embryonic genome activation (EGA) is a critical step during embryonic development. Several transcription factors have been identified that play major roles in initiating EGA; however, this gradual and complex mechanism still needs to be explored. In this study, we investigated the role of nuclear transcription factor Y subunit A (NFYA) in bovine EGA and bovine embryonic development and its relationship with the platelet-derived growth factor receptor-ß (PDGFRß) by using a potent selective activator (PDGF-BB) and inhibitor (CP-673451) of PDGF receptors. Activation and inhibition of PDGFRß using PDGF-BB and CP-673451 revealed that NFYA expression is significantly (p < 0.05) affected by the PDGFRß. In addition, PDGFRß mRNA expression was significantly increased (p < 0.05) in the activator group and significantly decreased (p < 0.05) in the inhibitor group when compared with PDGFRα. Downregulation of NFYA following PDGFRß inhibition was associated with the expression of critical EGA-related genes, bovine embryo development rate, and implantation potential. Moreover, ROS and mitochondrial apoptosis levels and expression of pluripotency-related markers necessary for inner cell mass development were also significantly (p < 0.05) affected by the downregulation of NFYA while interrupting trophoblast cell (CDX2) differentiation. In conclusion, the PDGFRß-NFYA axis is critical for bovine embryonic genome activation and embryonic development.


Subject(s)
Receptor, Platelet-Derived Growth Factor beta , Signal Transduction , Animals , Cattle , Becaplermin/metabolism , Signal Transduction/physiology , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Cell Differentiation
20.
Biomolecules ; 13(12)2023 11 23.
Article in English | MEDLINE | ID: mdl-38136560

ABSTRACT

The interplay of the enteric nervous system (ENS) and SIP syncytium (smooth muscle cells-interstitial cells of Cajal-PDGFRα+ cells) plays an important role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the dynamic regulatory mechanisms of the ENS-SIP system on colon motility during postnatal development. Colonic samples of postnatal 1-week-old (PW1), 3-week-old (PW3), and 5-week-old (PW5) mice were characterized by RNA sequencing, qPCR, Western blotting, isometric force recordings (IFR), and colonic motor complex (CMC) force measurements. Our study showed that the transcriptional expression of Pdgfrα, c-Kit, P2ry1, Nos1, and Slc18a3, and the protein expression of nNOS, c-Kit, and ANO1 significantly increased with age from PW1 to PW5. In PW1 and PW3 mice, colonic migrating movement was not fully developed. In PW5 mice, rhythmic CMCs were recorded, similar to the CMC pattern described previously in adult mice. The inhibition of nNOS revealed excitatory and non-propulsive responses which are normally suppressed due to ongoing nitrergic inhibition. During postnatal development, molecular data demonstrated the establishment and expansion of ICC and PDGFRα+ cells, along with nitrergic and cholinergic nerves and purinergic receptors. Our findings are important for understanding the role of the SIP syncytium in generating and establishing CMCs in postnatal, developing murine colons.


Subject(s)
Enteric Nervous System , Receptor, Platelet-Derived Growth Factor alpha , Animals , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Colon/metabolism , Enteric Nervous System/metabolism , Giant Cells/metabolism , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...