Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.996
Filter
1.
Sci Rep ; 14(1): 14975, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38951170

ABSTRACT

Glioblastoma (GBM) continues to exhibit a discouraging survival rate despite extensive research into new treatments. One factor contributing to its poor prognosis is the tumor's immunosuppressive microenvironment, in which the kynurenine pathway (KP) plays a significant role. This study aimed to explore how KP impacts the survival of newly diagnosed GBM patients. We examined tissue samples from 108 GBM patients to assess the expression levels of key KP markers-tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase (IDO1/2), and the aryl hydrocarbon receptor (AhR). Using immunohistochemistry and QuPath software, three tumor cores were analyzed per patient to evaluate KP marker expression. Kaplan-Meier survival analysis and stepwise multivariate Cox regression were used to determine the effect of these markers on patient survival. Results showed that patients with high expression of TDO2, IDO1/2, and AhR had significantly shorter survival times. This finding held true even when controlling for other known prognostic variables, with a hazard ratio of 3.393 for IDO1, 2.775 for IDO2, 1.891 for TDO2, and 1.902 for AhR. We suggest that KP markers could serve as useful tools for patient stratification, potentially guiding future immunomodulating trials and personalized treatment approaches for GBM patients.


Subject(s)
Biomarkers, Tumor , Glioblastoma , Indoleamine-Pyrrole 2,3,-Dioxygenase , Kynurenine , Receptors, Aryl Hydrocarbon , Tryptophan Oxygenase , Humans , Kynurenine/metabolism , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/pathology , Female , Male , Prognosis , Middle Aged , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Biomarkers, Tumor/metabolism , Tryptophan Oxygenase/metabolism , Aged , Adult , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Kaplan-Meier Estimate , Tumor Microenvironment , Aged, 80 and over , Basic Helix-Loop-Helix Transcription Factors
2.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992915

ABSTRACT

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Subject(s)
Allosteric Site , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/chemistry , Humans , Allosteric Regulation/drug effects , Pyrimidines/pharmacology , Pyrimidines/chemistry , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/chemistry , Molecular Dynamics Simulation , Drug Approval , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/antagonists & inhibitors
3.
Cells ; 13(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38994936

ABSTRACT

Although our skin is not the primary visual organ in humans, it acts as a light sensor, playing a significant role in maintaining our health and overall well-being. Thanks to the presence of a complex and sophisticated optotransduction system, the skin interacts with the visible part of the electromagnetic spectrum and with ultraviolet (UV) radiation. Following a brief overview describing the main photosensitive molecules that detect specific electromagnetic radiation and their associated cell pathways, we analyze their impact on physiological functions such as melanogenesis, immune response, circadian rhythms, and mood regulation. In this paper, we focus on 6-formylindolo[3,2-b]carbazole (FICZ), a photo oxidation derivative of the essential amino acid tryptophan (Trp). This molecule is the best endogenous agonist of the Aryl hydrocarbon Receptor (AhR), an evolutionarily conserved transcription factor, traditionally recognized as a signal transducer of both exogenous and endogenous chemical signals. Increasing evidence indicates that AhR is also involved in light sensing within the skin, primarily due to its ligand FICZ, which acts as both a chromophore and a photosensitizer. The biochemical reactions triggered by their interaction impact diverse functions and convey crucial data to our body, thus adding a piece to the complex puzzle of pathways that allow us to decode and elaborate environmental stimuli.


Subject(s)
Carbazoles , Receptors, Aryl Hydrocarbon , Skin , Humans , Receptors, Aryl Hydrocarbon/metabolism , Skin/metabolism , Carbazoles/pharmacology , Light , Animals , Vision, Ocular/physiology , Signal Transduction
4.
Cell Mol Life Sci ; 81(1): 293, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976012

ABSTRACT

The function of astrocytes in response to gut microbiota-derived signals has an important role in the pathophysiological processes of central nervous system (CNS) diseases. However, the specific effects of microbiota-derived metabolites on astrocyte activation have not been elucidated yet. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL/6 mice as a classical MS model. The alterations of gut microbiota and the levels of short-chain fatty acids (SCFAs) were assessed after EAE induction. We observed that EAE mice exhibit low levels of Allobaculum, Clostridium_IV, Clostridium_XlVb, Lactobacillus genera, and microbial-derived SCFAs metabolites. SCFAs supplementation suppressed astrocyte activation by increasing the level of tryptophan (Trp)-derived AhR ligands that activating the AhR. The beneficial effects of SCFAs supplementation on the clinical scores, histopathological alterations, and the blood brain barrier (BBB)-glymphatic function were abolished by intracisterna magna injection of AAV-GFAP-shAhR. Moreover, SCFAs supplementation suppressed the loss of AQP4 polarity within astrocytes in an AhR-dependent manner. Together, SCFAs potentially suppresses astrocyte activation by amplifying Trp-AhR-AQP4 signaling in EAE mice. Our study demonstrates that SCFAs supplementation may serve as a viable therapy for inflammatory disorders of the CNS.


Subject(s)
Aquaporin 4 , Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Fatty Acids, Volatile , Mice, Inbred C57BL , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Fatty Acids, Volatile/pharmacology , Fatty Acids, Volatile/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Mice , Tryptophan/metabolism , Tryptophan/pharmacology , Female , Signal Transduction/drug effects , Aquaporin 4/metabolism , Aquaporin 4/genetics , Gastrointestinal Microbiome/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
5.
Molecules ; 29(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38998940

ABSTRACT

Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.


Subject(s)
Receptors, Aryl Hydrocarbon , T-Lymphocytes, Regulatory , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/agonists , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Humans , Zebrafish , Fluorescent Dyes/chemistry , Ligands , Mice, Inbred C57BL , Indoles/pharmacology , Indoles/chemistry , Cell Differentiation/drug effects
6.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000041

ABSTRACT

Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.


Subject(s)
Cardiovascular Diseases , Inflammation , Kynurenic Acid , Receptors, Aryl Hydrocarbon , Signal Transduction , Humans , Receptors, Aryl Hydrocarbon/metabolism , Cardiovascular Diseases/metabolism , Kynurenic Acid/metabolism , Inflammation/metabolism , Animals , Kynurenine/metabolism , Tryptophan/metabolism , Basic Helix-Loop-Helix Transcription Factors
7.
Sci Rep ; 14(1): 15706, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977770

ABSTRACT

Maintaining the mucus layer is crucial for the innate immune system. Urolithin A (Uro A) is a gut microbiota-derived metabolite; however, its effect on mucin production as a physical barrier remains unclear. This study aimed to elucidate the protective effects of Uro A on mucin production in the colon. In vivo experiments employing wild-type mice, NF-E2-related factor 2 (Nrf2)-deficient mice, and wild-type mice treated with an aryl hydrocarbon receptor (AhR) antagonist were conducted to investigate the physiological role of Uro A. Additionally, in vitro assays using mucin-producing cells (LS174T) were conducted to assess mucus production following Uro A treatment. We found that Uro A thickened murine colonic mucus via enhanced mucin 2 expression facilitated by Nrf2 and AhR signaling without altering tight junctions. Uro A reduced mucosal permeability in fluorescein isothiocyanate-dextran experiments and alleviated dextran sulfate sodium-induced colitis. Uro A treatment increased short-chain fatty acid-producing bacteria and propionic acid concentration. LS174T cell studies confirmed that Uro A promotes mucus production through the AhR and Nrf2 pathways. In conclusion, the enhanced intestinal mucus secretion induced by Uro A is mediated through the actions of Nrf-2 and AhR, which help maintain intestinal barrier function.


Subject(s)
Colitis , Coumarins , Intestinal Mucosa , NF-E2-Related Factor 2 , Receptors, Aryl Hydrocarbon , Animals , NF-E2-Related Factor 2/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Mice , Intestinal Mucosa/metabolism , Coumarins/pharmacology , Colitis/metabolism , Colitis/chemically induced , Mucin-2/metabolism , Mucin-2/genetics , Humans , Colon/metabolism , Mice, Inbred C57BL , Signal Transduction/drug effects , Male , Gastrointestinal Microbiome , Mice, Knockout , Dextran Sulfate , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Intestinal Barrier Function
8.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980302

ABSTRACT

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Subject(s)
Indican , Kidney Failure, Chronic , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/metabolism , Humans , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Arachidonic Acid/metabolism , Male , Immunity, Innate/drug effects , Mice, Inbred C57BL , Arachidonate 5-Lipoxygenase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Trained Immunity
9.
J Dermatol Sci ; 115(1): 33-41, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955622

ABSTRACT

BACKGROUND: Tryptophan metabolism dysregulation has been observed in vitiligo. However, drawing a mechanistic linkage between this metabolic disturbance and vitiligo pathogenesis remains challenging. OBJECTIVE: Aim to reveal the characterization of tryptophan metabolism in vitiligo and investigate the role of tryptophan metabolites in vitiligo pathophysiology. METHODS: LC-MS/MS, dual-luciferase reporter assay, ELISA, qRT-PCR, small interfering RNA, western blotting, and immunohistochemistry were employed. RESULTS: Kynurenine pathway activation and KYAT enzyme-associated deviation to kynurenic acid (KYNA) in the plasma of stable non-segmental vitiligo were determined. Using a public microarray dataset, we next validated the activation of kynurenine pathway was related with inflammatory-related genes expression in skin of vitiligo patients. Furthermore, we found that KYNA induced CXCL10 upregulation in keratinocytes via AhR activation. Moreover, the total activity of AhR agonist was increased while the AhR concentration per se was decreased in the plasma of vitiligo patients. Finally, higher KYAT, CXCL10, CYP1A1 and lower AhR expression in vitiligo lesional skin were observed by immunohistochemistry staining. CONCLUSION: This study depicts the metabolic and genetic characterizations of tryptophan metabolism in vitiligo and proposes that KYNA, a tryptophan-derived AhR ligand, can enhance CXCL10 expression in keratinocytes.


Subject(s)
Chemokine CXCL10 , Keratinocytes , Kynurenic Acid , Receptors, Aryl Hydrocarbon , Skin , Tryptophan , Up-Regulation , Vitiligo , Humans , Vitiligo/metabolism , Vitiligo/genetics , Vitiligo/blood , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Tryptophan/metabolism , Tryptophan/blood , Kynurenic Acid/blood , Kynurenic Acid/metabolism , Male , Keratinocytes/metabolism , Skin/metabolism , Skin/pathology , Adult , Female , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Kynurenine/metabolism , Kynurenine/blood , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Middle Aged , Case-Control Studies , Signal Transduction , Young Adult
10.
Environ Sci Pollut Res Int ; 31(32): 44789-44799, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954331

ABSTRACT

Cyprodinil, a globally utilized broad-spectrum pyrimidine amine fungicide, has been observed to elicit cardiac abnormality. Resveratrol (RSV), a naturally occurring polyphenolic compound, showcases remarkable defensive properties in nurturing cardiac development. To investigate whether RSV could protect against cyprodinil-induced cardiac defects, we exposed zebrafish embryos to cyprodinil (500 µg/L) in the presence or absence of RSV (1 µM). Our results showed that RSV significantly mitigated the decrease of survival rate and embryo movement and the hatching delay induced by cyprodinil. In addition, RSV also improved cyprodinil-induced zebrafish cardiac developmental toxicity, including pericardial edema and cardiac function impairment. In mechanism, RSV attenuated the cyprodinil-induced changes in mRNA expression involved in cardiac development, such as myh6, myl7, tbx5, and gata4, and calcium ion channels, such as ncx1h, slc8a4a, and atp2a2b. We further showed that RSV might inhibit the activity of aryl hydrocarbon receptor (AhR) signaling pathways induced by cyprodinil. In summary, our findings establish that the protective effects of RSV against the cardiac developmental toxicity are induced by cyprodinil due to its remarkable ability to inhibit AhR activity. Our findings not only shed light on a new avenue for regulating and ensuring the safe utilization of cyprodinil but also presents a novel concept to promote its responsible use.


Subject(s)
Heart , Pyrimidines , Receptors, Aryl Hydrocarbon , Resveratrol , Zebrafish , Animals , Zebrafish/embryology , Resveratrol/pharmacology , Pyrimidines/toxicity , Pyrimidines/pharmacology , Heart/drug effects , Embryo, Nonmammalian/drug effects
11.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892253

ABSTRACT

Psoriasis is a chronic autoimmune inflammatory skin disorder that affects approximately 2-3% of the global population due to significant genetic predisposition. It is characterized by an uncontrolled growth and differentiation of keratinocytes, leading to the formation of scaly erythematous plaques. Psoriasis extends beyond dermatological manifestations to impact joints and nails and is often associated with systemic disorders. Although traditional treatments provide relief, their use is limited by potential side effects and the chronic nature of the disease. This review aims to discuss the therapeutic potential of keratinocyte-targeting natural products in psoriasis and highlight their efficacy and safety in comparison with conventional treatments. This review comprehensively examines psoriasis pathogenesis within keratinocytes and the various related signaling pathways (such as JAK-STAT and NF-κB) and cytokines. It presents molecular targets such as high-mobility group box-1 (HMGB1), dual-specificity phosphatase-1 (DUSP1), and the aryl hydrocarbon receptor (AhR) for treating psoriasis. It evaluates the ability of natural compounds such as luteolin, piperine, and glycyrrhizin to modulate psoriasis-related pathways. Finally, it offers insights into alternative and sustainable treatment options with fewer side effects.


Subject(s)
Biological Products , Keratinocytes , Psoriasis , Signal Transduction , Humans , Psoriasis/drug therapy , Psoriasis/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Signal Transduction/drug effects , Animals , Receptors, Aryl Hydrocarbon/metabolism , Molecular Targeted Therapy
12.
Viruses ; 16(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932276

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is a risk factor for severe COVID-19. This study explores the potential influence of gut hormone receptor and immune response gene expression on COVID-19 outcomes in MAFLD patients. METHODS: We investigated gene expression levels of AHR, FFAR2, FXR, and TGR5 in patients with MAFLD and COVID-19 compared to controls. We examined associations between gene expression and clinical outcomes. RESULTS: COVID-19 patients displayed altered AHR expression, potentially impacting immune response and recovery. Downregulated AHR in patients with MAFLD correlated with increased coagulation parameters. Elevated FFAR2 expression in patients with MAFLD was linked to specific immune cell populations and hospital stay duration. A significantly lower FXR expression was observed in both MAFLD and severe COVID-19. CONCLUSION: Our findings suggest potential modulatory roles for AHR, FFAR2, and FXR in COVID-19 and MAFLD.


Subject(s)
COVID-19 , Receptors, Aryl Hydrocarbon , Receptors, G-Protein-Coupled , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/virology , COVID-19/immunology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Male , Female , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Middle Aged , Aged , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Gene Expression , Fatty Liver/genetics , Fatty Liver/virology , Adult , RNA-Binding Proteins , Basic Helix-Loop-Helix Transcription Factors
13.
Chem Biol Interact ; 398: 111096, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844257

ABSTRACT

Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 µM) and CPF (0.05, 0.5, 5 and 50 µM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.


Subject(s)
Chlorpyrifos , Cyclooxygenase 2 , Hexachlorobenzene , Hypoxia-Inducible Factor 1, alpha Subunit , Receptors, Aryl Hydrocarbon , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Chlorpyrifos/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Humans , Hexachlorobenzene/metabolism , Hexachlorobenzene/toxicity , Vascular Endothelial Growth Factor A/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Ligands , Nitric Oxide Synthase Type II/metabolism , Female , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Cell Proliferation/drug effects
14.
Sci Total Environ ; 945: 174136, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901578

ABSTRACT

Dioxins and the emerging dioxin-like compounds (DLCs) have recruited increasing concerns about their environmental contamination, toxicity, health impacts, and mechanisms. Based on the structural similarity of dioxins and many DLCs, their toxicity was predominantly mediated by the dioxin receptor (aryl hydrocarbon receptor, AHR) in animals (including human), which can be different in expression and function among species and then possibly produce the species-specific risk or toxicity. To date, characterizing the AHR of additional species other than human and rodents can increase the accuracy of toxicity/risk evaluation and increase knowledge about AHR biology. As a key model, the medaka AHR has not been clearly characterized. Through genome survey and phylogenetic analysis, we identified four AHRs (olaAHR1a, olaAHR1b, olaAHR2a, and olaAHR2b) and two ARNTs (olaARNT1 and olaARNT2). The medaka AHR pathway was conserved in expression in nine tested tissues, of which olaAHR2a represented the predominant subform with greater abundance. Medaka AHRs and ARNTs were functional and could be efficiently transactivated by the classical dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), although olaAHR1a did not seem to cooperate with olaARNT2. In terms of function/sensitivity, the EC50 values of medaka olaAHR1a (9.01 ± 1.43 nM), olaAHR1b (4.00 ± 1.10 nM), olaAHR2a (8.75 ± 3.34 nM), and olaAHR2b (3.06 ± 0.81 nM) showed slight differences; however, they were all at the nM level. The sensitivity of four medaka AHRs to TCDD was similar to that of zebrafish dreAHR2 (the dominant form, EC50 = 3.14 ± 4.19 nM), but these medaka AHRs were more sensitive than zebrafish dreAHR1b (EC50 = 27.05 ± 18.51 nM). The additional comparison also indicated that the EC50 values in various species were usually within the nM range, but AHRs of certain subforms/species can vary by one or two orders of magnitude. In summary, the present study will enhance the understanding of AHR and help improve research on the ecotoxicity of dioxins/DLCs.


Subject(s)
Dioxins , Oryzias , Receptors, Aryl Hydrocarbon , Water Pollutants, Chemical , Zebrafish , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Dioxins/toxicity , Water Pollutants, Chemical/toxicity , Phylogeny , Species Specificity
15.
Nutrients ; 16(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931163

ABSTRACT

Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of Il10 (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of Lactobacillus in GF offspring. Further, the expression of Il10 was downregulated in liver myeloid cells and in LPS-stimulated bone marrow-derived macrophages (BMDM) in adult offspring, suggestive of a hypo-responsive, or tolerant, innate immune response. BMDMs from adult mice lacking AHR in macrophages exhibited a similar tolerogenic response, including diminished expression of Il10. Overall, our study shows that exposure to maternal WD alters microbial metabolites in the offspring that affect AHR signaling, potentially contributing to innate immune hypo-responsiveness and progression of MASLD, highlighting the impact of early life gut dysbiosis on offspring metabolism. Further investigations are warranted to elucidate the complex interplay between maternal diet, gut microbial function, and the development of neonatal innate immune tolerance and potential therapeutic interventions targeting these pathways.


Subject(s)
Diet, Western , Gastrointestinal Microbiome , Immunity, Innate , Receptors, Aryl Hydrocarbon , Tryptophan , Animals , Female , Pregnancy , Diet, Western/adverse effects , Tryptophan/metabolism , Mice , Receptors, Aryl Hydrocarbon/metabolism , Mice, Inbred C57BL , Interleukin-10/metabolism , Prenatal Exposure Delayed Effects , Obesity, Maternal/metabolism , Liver/metabolism , Maternal Nutritional Physiological Phenomena , Male , Macrophages/metabolism , Macrophages/immunology , Disease Models, Animal
16.
Cell Mol Biol Lett ; 29(1): 90, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877403

ABSTRACT

The membrane-delimited receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), angiotensin-converting enzyme 2 (ACE2), which is expressed in the intestine, collaborates with broad neutral amino acid transporter 1 (B0AT1). Tryptophan (Trp) is transported into intestinal epithelial cells by ACE2 and B0AT1. However, whether ACE2 and its binding protein B0AT1 are involved in Trp-mediated alleviation of intestinal injury is largely unknown. Here, we used weaned piglets and IPEC-J2 cells as models and found that ACE2/B0AT1 alleviated lipopolysaccharide (LPS)-induced diarrhea and promoted intestinal barrier recovery via transport of Trp. The levels of the aryl hydrocarbon receptor (AhR) and mechanistic target of rapamycin (mTOR) pathways were altered by ACE2. Dietary Trp supplementation in LPS-treated weaned piglets revealed that Trp alleviated diarrhea by promoting ACE2/B0AT1 expression, and examination of intestinal morphology revealed that the damage to the intestinal barrier was repaired. Our study demonstrated that ACE2 accompanied by B0AT1 mediated the alleviation of diarrhea by Trp through intestinal barrier repair via the mTOR pathway.


Subject(s)
Angiotensin-Converting Enzyme 2 , Diarrhea , Intestinal Mucosa , Lipopolysaccharides , TOR Serine-Threonine Kinases , Tryptophan , Animals , Tryptophan/metabolism , Angiotensin-Converting Enzyme 2/metabolism , TOR Serine-Threonine Kinases/metabolism , Swine , Diarrhea/metabolism , Intestinal Mucosa/metabolism , Signal Transduction , Cell Line , COVID-19/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , SARS-CoV-2
17.
Food Chem ; 454: 139798, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38823201

ABSTRACT

Ingestion of fermented foods impacts human immune function, yet the bioactive food components underlying these effects are not understood. Here, we interrogated whether fermented food bioactivity relates to microbial metabolites derived from aromatic amino acids, termed aryl-lactates. Using targeted metabolomics, we established the presence of aryl-lactates in commercially available fermented foods. After pinpointing fermented food-associated lactic acid bacteria that produce high levels of aryl-lactates, we identified fermentation conditions to increase aryl-lactate production in food matrices up to 5 × 103 fold vs. standard fermentation conditions. Using ex vivo reporter assays, we found that food matrix conditions optimized for aryl-lactate production exhibited enhanced agonist activity for the human aryl-hydrocarbon receptor (AhR) as compared to standard fermentation conditions and commercial products. Reduced microbial-induced AhR activity has emerged as a hallmark of many chronic inflammatory diseases, thus we envision strategies to enhance AhR bioactivity of fermented foods to be leveraged to improve human health.


Subject(s)
Amino Acids, Aromatic , Fermentation , Fermented Foods , Receptors, Aryl Hydrocarbon , Humans , Fermented Foods/analysis , Fermented Foods/microbiology , Amino Acids, Aromatic/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Lactobacillales/metabolism , Lactates/metabolism
18.
Front Immunol ; 15: 1397072, 2024.
Article in English | MEDLINE | ID: mdl-38915403

ABSTRACT

Background: Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies. The relevance of the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, has been investigated in several inflammatory diseases, including allergic asthma. However, its potential role in AIT still needs to be addressed. Methods: A murine model of AIT in ovalbumin-induced allergic airway inflammation was performed in AhR-deficient (AhR-/-) and wild-type mice. Furthermore, AIT was combined with the application of the high-affinity AhR agonist 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ) as an adjuvant to investigate the effects of AhR activation on therapeutic outcome. Results: Although AhR-/- mice suffer stronger allergic responses than wild-type mice, experimental AIT is comparably effective in both. Nevertheless, combining AIT with the administration of 10-Cl-BBQ improved therapeutic effects by an AhR-dependent mechanism, resulting in decreased cell counts in the bronchoalveolar fluid, decreased pulmonary Th2 and Th17 cell levels, and lower sIgE levels. Conclusion: This study demonstrates that the success of AIT is not dependent on the AhR. However, targeting the AhR during AIT can help to dampen inflammation and improve tolerogenic vaccination. Therefore, AhR ligands might represent promising candidates as immunomodulators to enhance the efficacy of AIT.


Subject(s)
Adjuvants, Immunologic , Allergens , Asthma , Desensitization, Immunologic , Disease Models, Animal , Mice, Knockout , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/immunology , Receptors, Aryl Hydrocarbon/agonists , Mice , Desensitization, Immunologic/methods , Allergens/immunology , Asthma/immunology , Asthma/therapy , Ovalbumin/immunology , Female , Mice, Inbred C57BL , Th2 Cells/immunology , Basic Helix-Loop-Helix Transcription Factors
19.
Ecotoxicol Environ Saf ; 281: 116662, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944008

ABSTRACT

OBJECTIVE: This study aimed to investigate the mechanism that Lactobacillus murinus (L. murinus) alleviated lung inflammation induced by polycyclic aromatic hydrocarbons (PAHs) exposure based on metabolomics. METHODS: Female mice were administrated with PAHs mix, L. murinus and indoleacrylic acid (IA) or indolealdehyde (IAId). Microbial diversity in feces was detected by 16 S rRNA gene sequencing. Non-targeted metabolomics analysis in urine samples and targeted analysis of tryptophan metabolites in serum by UPLC-Orbitrap-MS and short-chain fatty acids (SCFA) in feces by GC-MS were performed, respectively. Flow cytometry was used to determine T helper immune cell differentiation in gut and lung tissues. The levels of IgE, IL-4 and IL-17A in the bronchoalveolar lavage fluid (BALF) or serum were detected by ELISA. The expressions of aryl hydrocarbon receptor (Ahr), cytochrome P450 1A1 (Cyp1a1) and forkheadbox protein 3 (Foxp3) genes and the histone deacetylation activity were detected by qPCR and by ELISA in lung tissues, respectively. RESULTS: PAHs exposure induced lung inflammation and microbial composition shifts and tryptophan metabolism disturbance in mice. L. murinus alleviated PAHs-induced lung inflammation and inhibited T helper cell 17 (Th17) cell differentiation and promoted regulatory T cells (Treg) cell differentiation. L. murinus increased the levels of IA and IAId in the serum and regulated Th17/Treg imbalance by activating AhR. Additionally, L. murinus restored PAHs-induced decrease of butyric acid and valeric acid which can reduce the histone deacetylase (HDAC) level in the lung tissues, enhancing the expression of the Foxp3 gene and promoting Treg cell differentiation. CONCLUSION: our study illustrated that L. murinus alleviated PAHs-induced lung inflammation and regulated Th17/Treg cell differentiation by regulating host tryptophan metabolism and SCFA levels. The study provided new insights into the reciprocal influence between gut microbiota, host metabolism and the immune system, suggesting that L. murinus might have the potential as a novel therapeutic strategy for lung diseases caused by environmental pollution in the future.


Subject(s)
Lactobacillus , Pneumonia , Polycyclic Aromatic Hydrocarbons , Animals , Mice , Female , Polycyclic Aromatic Hydrocarbons/toxicity , Pneumonia/chemically induced , Pneumonia/drug therapy , Receptors, Aryl Hydrocarbon/metabolism , Lung/drug effects , Lung/pathology , Lung/immunology , Tryptophan , Th17 Cells/drug effects , Th17 Cells/immunology , Probiotics/pharmacology , Probiotics/therapeutic use , Gastrointestinal Microbiome/drug effects , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/chemistry , Metabolomics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics
20.
Eur J Neurosci ; 60(2): 3901-3920, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924210

ABSTRACT

Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.


Subject(s)
Alzheimer Disease , Circadian Rhythm , Glymphatic System , Receptors, Aryl Hydrocarbon , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Glymphatic System/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Circadian Rhythm/physiology , Animals , Blood-Brain Barrier/metabolism , Circadian Clocks/physiology
SELECTION OF CITATIONS
SEARCH DETAIL