Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 846
Filter
2.
Cell Commun Signal ; 22(1): 364, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39014433

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS: This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS: Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS: The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.


Subject(s)
Chemokine CCL2 , Macrophages , Mice, Knockout , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pulmonary Disease, Chronic Obstructive , Receptors, CCR2 , Signal Transduction , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Animals , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice , Humans , Mice, Inbred C57BL , Male
3.
J Immunol ; 213(2): 214-225, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38829123

ABSTRACT

The interactions between chemokines and their receptors, particularly in the context of inflammation, are complex, with individual receptors binding multiple ligands and individual ligands interacting with multiple receptors. In addition, there are numerous reports of simultaneous coexpression of multiple inflammatory chemokine receptors on individual inflammatory leukocyte subtypes. Overall, this has previously been interpreted as redundancy and proposed as a protective mechanism to ensure that the inflammatory response is robust. By contrast, we have hypothesized that the system is not redundant but exquisitely subtle. Our interests relate to the receptors CCR1, CCR2, CCR3, and CCR5, which, together, regulate nonneutrophilic myeloid cell recruitment to inflammatory sites. In this study, we demonstrate that although most murine monocytes exclusively express CCR2, there is a small subpopulation that is expanded during inflammation and coexpresses CCR1 and CCR2. Combinations of transcript and functional analysis demonstrate that this is not redundant expression and that coexpression of CCR1 and CCR2 marks a phenotypically distinct population of monocytes characterized by expression of genes otherwise typically associated with neutrophils. Single-cell RNA sequencing confirms this as a monodisperse population of atypical monocytes. This monocytic population has previously been described as having immunosuppressive activity. Overall, our data confirm combinatorial chemokine receptor expression by a subpopulation of monocytes but demonstrate that this is not redundant expression and marks a discrete monocytic population.


Subject(s)
Monocytes , Receptors, CCR1 , Receptors, CCR2 , Receptors, CCR1/genetics , Receptors, CCR1/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Monocytes/immunology , Monocytes/metabolism , Animals , Mice , Mice, Inbred C57BL , Inflammation/immunology
4.
Int Immunopharmacol ; 137: 112528, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38908086

ABSTRACT

Low back pain due to epidural fibrosis is a major complication after spine surgery. Macrophages infiltrate the wound area post laminectomy, but the role of macrophages in epidural fibrosis remains largely elusive. In a mouse model of laminectomy, macrophage depletion decreased epidural fibrosis. CD146, an adhesion molecule involved in cell migration, is expressed by macrophages. CD146-defective macrophages exhibited impaired migration, which was mediated by reduced expression of CCR2 and suppression of the MAPK/ERK signaling pathway. CD146-defective macrophages suppress the MAPK/ERK signaling pathway by increasing Erdr1. In vivo, CD146 deficiency decreased macrophage infiltration and reduced extracellular matrix deposition in wound tissues. Moreover, the anti-CD146 antibody AA98 suppressed macrophage infiltration and epidural fibrosis. Taken together, these findings demonstrated that CD146 deficiency alleviates epidural fibrosis by decreasing the migration of macrophages via the Erdr1/ERK/CCR2 pathway. Blocking CD146 and macrophage infiltration may help alleviate epidural fibrosis.


Subject(s)
CD146 Antigen , Fibrosis , Macrophages , Mice, Inbred C57BL , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , CD146 Antigen/metabolism , CD146 Antigen/genetics , Cell Movement , Mice, Knockout , Epidural Space/pathology , Male , MAP Kinase Signaling System/immunology , Laminectomy , Disease Models, Animal , Signal Transduction , Humans
5.
Neurosci Lett ; 836: 137879, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38880353

ABSTRACT

Peripheral nerves exhibit long-term residual motor dysfunction following injury. The length of the denervation period before nerve and muscle reconnection is an important factor in motor function recovery. We aimed to investigate whether repeated nerve crush injuries to the same site every 7 days would preserve the conditioning lesion (CL) response and to determine the number of nerve crush injuries required to create an experimental animal model that would prolong the denervation period while maintaining peripheral nerve continuity. Rats were grouped according to the number of sciatic nerve crushes. A significant decrease in the soleus muscle fiber cross-sectional area was observed with increased crushes. After a single crush, macrophage accumulation and macrophage chemotaxis factor CCL2 expression in dorsal root ganglia were markedly increased, which aligned with the gene expression of Ccl2 and its receptor Ccr2. Macrophage numbers, histological CCL2 expression, and Ccl2 and Ccr2 gene expression levels decreased, depending on the number of repeated crushes. Histological analysis and gene expression analysis in the group with four repeated crushes did not differ significantly when compared with uninjured animals. Our findings indicated that repeated nerve crushes at the same site every 7 days sustained innervation loss and caused a loss of the CL response. The experimental model did not require nerve stump suturing and is useful for exploring factors causing prolonged denervation-induced motor dysfunction. SIGNIFICANCE STATEMENT: This study elucidates the effects of repeated nerve crush injury to the same site on innervation and conditioning lesion responses and demonstrates the utility of an experimental animal model that recapitulates the persistent residual motor deficits owing to prolonged denervation without requiring nerve transection and transection suturing.


Subject(s)
Chemokine CCL2 , Disease Models, Animal , Nerve Crush , Sciatic Nerve , Animals , Sciatic Nerve/injuries , Male , Nerve Crush/methods , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Muscle, Skeletal/innervation , Muscle, Skeletal/metabolism , Ganglia, Spinal/metabolism , Rats , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/metabolism , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/physiopathology , Rats, Sprague-Dawley , Denervation/methods , Nerve Regeneration/physiology , Sciatic Neuropathy/pathology , Sciatic Neuropathy/physiopathology
6.
J Clin Invest ; 134(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38747296

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac condition characterized by cardiac remodeling and life-threatening ventricular arrhythmias. In this issue of the JCI, Chelko, Penna, and colleagues mechanistically addressed the intricate contribution of immune-mediated injury in ACM pathogenesis. Inhibition of nuclear factor κ-B (NF-κB) and infiltration of monocyte-derived macrophages expressing C-C motif chemokine receptor-2 (CCR2) alleviated the phenotypic ACM features (i.e., fibrofatty replacement, contractile dysfunction, and ventricular arrhythmias) in desmoglein 2-mutant (Dsg2mut/mut) mice. These findings pave the way for efficacious and targetable immune therapy for patients with ACM.


Subject(s)
Desmoglein 2 , Macrophages , Receptors, CCR2 , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Desmoglein 2/genetics , Desmoglein 2/metabolism , Desmoglein 2/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, CCR2/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/immunology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/pathology , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/pathology , Cardiomyopathies/immunology , Cardiomyopathies/metabolism
7.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700011

ABSTRACT

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Subject(s)
Disease Models, Animal , Ischemic Stroke , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Ischemic Stroke/physiopathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Male , Mice, Knockout , Mice , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/pathology , Sympathetic Nervous System/physiopathology , Myocardium/pathology , Myocardium/metabolism , Heart Diseases/etiology , Heart Diseases/physiopathology , Heart Diseases/pathology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/deficiency
8.
Immunohorizons ; 8(5): 363-370, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38775688

ABSTRACT

Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1ß protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1ß mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1ß.


Subject(s)
Choroidal Neovascularization , Indenes , Inflammasomes , Interleukin-1beta , Microglia , Monocytes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Microglia/metabolism , Monocytes/metabolism , Mice, Knockout , Sulfones/pharmacology , Mice, Inbred C57BL , Furans/pharmacology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Macrophages/metabolism , Macrophages/immunology , Sulfonamides/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Choroid/metabolism , Choroid/pathology , Disease Models, Animal , Lasers/adverse effects , Macular Degeneration/pathology , Macular Degeneration/metabolism , Macular Degeneration/genetics
9.
Front Immunol ; 15: 1372957, 2024.
Article in English | MEDLINE | ID: mdl-38779688

ABSTRACT

Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.


Subject(s)
Hypertension, Pulmonary , Macrophages , Animals , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/parasitology , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/pathology , Mice , Macrophages/immunology , Macrophages/parasitology , Phenotype , Schistosoma mansoni/immunology , Mice, Inbred C57BL , Schistosomiasis/immunology , Schistosomiasis/complications , Schistosomiasis/parasitology , Disease Models, Animal , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/parasitology , Schistosomiasis mansoni/complications , Schistosomiasis mansoni/pathology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Monocytes/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Female , Schistosoma/immunology , Schistosoma/physiology , Lung/immunology , Lung/parasitology , Lung/pathology
10.
Mol Ther ; 32(7): 2248-2263, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38796708

ABSTRACT

Acute kidney injury (AKI) is a major worldwide health concern that currently lacks effective medical treatments. PSMP is a damage-induced chemotactic cytokine that acts as a ligand of CCR2 and has an unknown role in AKI. We have observed a significant increase in PSMP levels in the renal tissue, urine, and plasma of patients with AKI. PSMP deficiency improved kidney function and decreased tubular damage and inflammation in AKI mouse models induced by kidney ischemia-reperfusion injury, glycerol, and cisplatin. Single-cell RNA sequencing analysis revealed that Ly6Chi or F4/80lo infiltrated macrophages (IMs) were a major group of proinflammatory macrophages with strong CCR2 expression in AKI. We observed that PSMP deficiency decreased CCR2+Ly6Chi or F4/80lo IMs and inhibited M1 polarization in the AKI mouse model. Moreover, overexpressed human PSMP in the mouse kidney could reverse the attenuation of kidney injury in a CCR2-dependent manner, and this effect could be achieved without CCL2 involvement. Extracellular PSMP played a crucial role, and treatment with a PSMP-neutralizing antibody significantly reduced kidney injury in vivo. Therefore, PSMP might be a therapeutic target for AKI, and its antibody is a promising therapeutic drug for the treatment of AKI.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Macrophages , Receptors, CCR2 , Animals , Humans , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Kidney/metabolism , Kidney/pathology , Macrophages/metabolism , Mice, Knockout , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Reperfusion Injury/metabolism , Neoplasm Proteins
11.
Cell Mol Life Sci ; 81(1): 220, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763956

ABSTRACT

Cardiovascular diseases are an array of age-related disorders, and accumulating evidence suggests a link between cardiac resident macrophages (CRMs) and the age-related disorders. However, how does CRMs alter with aging remains elusive. In the present study, aged mice (20 months old) have been employed to check for their cardiac structural and functional alterations, and the changes in the proportion of CRM subsets as well, followed by sorting of CRMs, including C-C Motif Chemokine Receptor 2 (CCR2)+ and CCR2- CRMs, which were subjected to Smart-Seq. Integrated analysis of the Smart-Seq data with three publicly available single-cell RNA-seq datasets revealed that inflammatory genes were drastic upregulated for both CCR2+ and CCR2- CRMs with aging, but genes germane to wound healing were downregulated for CCR2- CRMs, suggesting the differential functions of these two subsets. More importantly, inflammatory genes involved in damage sensing, complement cascades, and phagocytosis were largely upregulated in CCR2- CRMs, implying the imbalance of inflammatory response upon aging. Our work provides a comprehensive framework and transcriptional resource for assessing the impact of aging on CRMs with a potential for further understanding cardiac aging.


Subject(s)
Aging , Gene Expression Profiling , Macrophages , Mice, Inbred C57BL , Receptors, CCR2 , Animals , Macrophages/metabolism , Aging/genetics , Aging/metabolism , Mice , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Transcriptome , Myocardium/metabolism , Male , Single-Cell Analysis , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Signal Transduction , Phagocytosis
12.
J Neuroinflammation ; 21(1): 134, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802868

ABSTRACT

BACKGROUND: Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS: Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS: Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS: Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Receptors, CCR2 , Wallerian Degeneration , Animals , Macrophages/metabolism , Macrophages/pathology , Mice , Nerve Regeneration/physiology , Wallerian Degeneration/pathology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/deficiency , Peripheral Nerve Injuries/pathology , Peripheral Nerve Injuries/metabolism , Mice, Inbred C57BL , Mice, Knockout , Sciatic Neuropathy/pathology , Axons/pathology , Mice, Transgenic , Disease Models, Animal , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
13.
Cells ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38786041

ABSTRACT

Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice.


Subject(s)
CX3C Chemokine Receptor 1 , Flow Cytometry , Monocytes , Receptors, CCR2 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Monocytes/metabolism , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Mice , Antibodies/immunology , Genes, Reporter , Phenotype , Mice, Inbred C57BL , Mice, Transgenic , Green Fluorescent Proteins/metabolism , Antigens, Ly/metabolism , Antigens, Ly/genetics
14.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755605

ABSTRACT

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Mendelian Randomization Analysis , Phenotype , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Receptors, CCR2/genetics , CD8-Positive T-Lymphocytes/immunology , CD28 Antigens/genetics
15.
J Clin Invest ; 134(10)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564300

ABSTRACT

Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA-Seq and cellular indexing of transcriptomes and epitomes (CITE-Seq) studies revealed marked proinflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts, and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.


Subject(s)
Desmoglein 2 , Disease Models, Animal , Macrophages , NF-kappa B , Receptors, CCR2 , Signal Transduction , Animals , Mice , Macrophages/metabolism , Macrophages/pathology , Macrophages/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/immunology , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Arrhythmogenic Right Ventricular Dysplasia/pathology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology
16.
Commun Biol ; 7(1): 494, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658802

ABSTRACT

Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.


Subject(s)
Brain , Herpesvirus 1, Human , La Crosse virus , Mice, Knockout , Monocytes , Receptors, CCR2 , Receptors, CCR7 , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Brain/virology , Brain/metabolism , Brain/immunology , Herpesvirus 1, Human/physiology , La Crosse virus/genetics , La Crosse virus/physiology , Receptors, CCR7/metabolism , Receptors, CCR7/genetics , Encephalitis, California/virology , Encephalitis, California/genetics , Encephalitis, California/metabolism , Encephalitis, California/immunology , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/virology , Female , Male
17.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38629806

ABSTRACT

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Subject(s)
CX3C Chemokine Receptor 1 , Colon , Enterococcus faecalis , Macrophages , Receptors, CCR2 , Receptors, Chemokine , Animals , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Macrophages/microbiology , Macrophages/immunology , Mice , Colon/microbiology , Colon/immunology , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Receptors, Chemokine/metabolism , Receptors, Chemokine/genetics , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Mice, Inbred C57BL , Lymph Nodes/microbiology , Lymph Nodes/immunology , Receptors, CCR7/metabolism , Receptors, CCR7/genetics
18.
J Ethnopharmacol ; 329: 118169, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38621463

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY: We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS: UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS: A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS: Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.


Subject(s)
Drugs, Chinese Herbal , Hepatic Stellate Cells , Liver Cirrhosis , Phosphatidylinositol 3-Kinases , Signal Transduction , Animals , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Drugs, Chinese Herbal/pharmacology , Humans , Mice , Male , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/chemically induced , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/antagonists & inhibitors , Mice, Inbred C57BL , Carbon Tetrachloride , Cell Line
19.
J Cell Mol Med ; 28(9): e18315, 2024 May.
Article in English | MEDLINE | ID: mdl-38680032

ABSTRACT

Oestrogen is known to be strongly associated with ovarian cancer. There was much work to show the importance of lncRNA SNHG17 in ovarian cancer. However, no study has revealed the molecular regulatory mechanism and functional effects between oestrogen and SNHG17 in the development and metastasis of ovarian cancer. In this study, we found that SNHG17 expression was significantly increased in ovarian cancer and positively correlated with oestrogen treatment. Oestrogen could promote M2 macrophage polarization as well as ovarian cancer cells SKOV3 and ES2 cell exosomal SNHG17 expression. When exposure to oestrogen, exosomal SNHG17 promoted ovarian cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, and tumour growth and lung metastasis in vivo by accelerating M2-like phenotype of macrophages. Mechanically, exosomal SNHG17 could facilitate the release of CCL13 from M2 macrophage via the PI3K-Akt signalling pathway. Moreover, CCL13-CCR2 axis was identified to be involved in ovarian cancer tumour behaviours driven by oestrogen. There results demonstrate a novel mechanism that exosomal SNHG17 exerts an oncogenic effect on ovarian cancer via the CCL13-CCR2-M2 macrophage axis upon oestrogen treatment, of which SNHG17 may be a potential biomarker and therapeutic target for ovarian cancer responded to oestrogen.


Subject(s)
Cell Proliferation , Epithelial-Mesenchymal Transition , Estrogens , Exosomes , Gene Expression Regulation, Neoplastic , Macrophages , Ovarian Neoplasms , RNA, Long Noncoding , Receptors, CCR2 , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Macrophages/metabolism , Macrophages/drug effects , Exosomes/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Cell Line, Tumor , Animals , Receptors, CCR2/metabolism , Receptors, CCR2/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Mice , Epithelial-Mesenchymal Transition/drug effects , Cell Movement/drug effects , Disease Progression , Signal Transduction , Mice, Nude
20.
J Exp Clin Cancer Res ; 43(1): 76, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38468260

ABSTRACT

BACKGROUND: While T cell-activating immunotherapies against recurrent head and neck squamous cell carcinoma (HNSCC) have shown impressive results in clinical trials, they are often ineffective in the majority of patients. NK cells are potential targets for immunotherapeutic intervention; however, the setback in monalizumab-based therapy in HNSCC highlights the need for an alternative treatment to enhance their antitumor activity. METHODS: Single-cell RNA sequencing (scRNA-seq) and TCGA HNSCC datasets were used to identify key molecular alterations in NK cells. Representative HPV-positive ( +) and HPV-negative ( -) HNSCC cell lines and orthotopic mouse models were used to validate the bioinformatic findings. Changes in immune cells were examined by flow cytometry and immunofluorescence. RESULTS: Through integration of scRNA-seq data with TCGA data, we found that the impact of IL6/IL6R and CCL2/CCR2 signaling pathways on evasion of immune attack by NK cells is more pronounced in the HPV - HNSCC cohort compared to the HPV + HNSCC cohort. In orthotopic mouse models, blocking IL6 with a neutralizing antibody suppressed HPV - but not HPV + tumors, which was accompanied by increased tumor infiltration and proliferation of CD161+ NK cells. Notably, combining the CCR2 chemokine receptor antagonist RS504393 with IL6 blockade resulted in a more pronounced antitumor effect that was associated with more activated intratumoral NK cells in HPV - HNSCC compared to either agent alone. CONCLUSIONS: These findings demonstrate that dual blockade of IL6 and CCR2 pathways effectively enhances the antitumor activity of NK cells in HPV-negative HNSCC, providing a novel strategy for treating this type of cancer.


Subject(s)
Head and Neck Neoplasms , Papillomavirus Infections , Animals , Mice , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Interleukin-6/metabolism , Papillomavirus Infections/complications , Neoplasm Recurrence, Local/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/metabolism , Killer Cells, Natural , Receptors, CCR2/genetics , Receptors, CCR2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL