Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.492
Filter
1.
Clin Transl Sci ; 17(7): e13876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963161

ABSTRACT

Plerixafor is a CXCR4 antagonist approved in 2008 by the FDA for hematopoietic stem cell collection. Subsequently, plerixafor has shown promise as a potential pathogen-agnostic immunomodulator in a variety of preclinical animal models. Additionally, investigator-led studies demonstrated plerixafor prevents viral and bacterial infections in patients with WHIM syndrome, a rare immunodeficiency with aberrant CXCR4 signaling. Here, we investigated whether plerixafor could be repurposed to treat sepsis or severe wound infections, either alone or as an adjunct therapy. In a Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced zebrafish sepsis model, plerixafor reduced sepsis mortality and morbidity assessed by tail edema. There was a U-shaped response curve with the greatest effect seen at 0.1 µM concentration. We used Acinetobacter baumannii infection in a neutropenic murine thigh infection model. Plerixafor did not show reduced bacterial growth at 24 h in the mouse thigh model, nor did it amplify the effects of a rifampin antibiotic therapy, in varying regimens. While plerixafor did not mitigate or treat bacterial wound infections in mice, it did reduce sepsis mortality in zebra fish. The observed mortality reduction in our LPS model of zebrafish was consistent with prior research demonstrating a mortality benefit in a murine model of sepsis. However, based on our results, plerixafor is unlikely to be successful as an adjunct therapy for wound infections. Further research is needed to better define the scope of plerixafor as a pathogen-agnostic therapy. Future directions may include the use of longer acting CXCR4 antagonists, biased CXCR4 signaling, and optimization of animal models.


Subject(s)
Benzylamines , Cyclams , Disease Models, Animal , Heterocyclic Compounds , Receptors, CXCR4 , Sepsis , Zebrafish , Animals , Cyclams/pharmacology , Cyclams/administration & dosage , Benzylamines/pharmacology , Sepsis/drug therapy , Sepsis/microbiology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/administration & dosage , Mice , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Thigh/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Female , Lipopolysaccharides , Wound Infection/microbiology , Wound Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
J Med Chem ; 67(12): 10057-10075, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38863440

ABSTRACT

Artificial intelligence (AI) de novo molecular generation provides leads with novel structures for drug discovery. However, the target affinity and synthesizability of the generated molecules present critical challenges for the successful application of AI technology. Therefore, we developed an advanced reinforcement learning model to bridge the gap between the theory of de novo molecular generation and the practical aspects of drug discovery. This model utilizes chemical reaction templates and commercially available building blocks as a starting point and employs forward reaction prediction to generate molecules, while real-time docking and drug-likeness predictions are conducted to ensure synthesizability and drug-likeness. We applied this model to design active molecules targeting the inflammation-related receptor CXCR4 and successfully prepared them according to the AI-proposed synthetic routes. Several molecules exhibited potent anti-CXCR4 and anti-inflammatory activity in subsequent in vitro and in vivo assays. The top-performing compound XVI alleviated symptoms related to inflammatory bowel disease and showed reasonable pharmacokinetic properties.


Subject(s)
Artificial Intelligence , Drug Design , Receptors, CXCR4 , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Humans , Animals , Molecular Docking Simulation , Inflammatory Bowel Diseases/drug therapy , Mice , Drug Discovery , Structure-Activity Relationship , Male , Molecular Structure
4.
Biomacromolecules ; 25(7): 4569-4580, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38869359

ABSTRACT

Acute myeloid leukemia (AML) is often associated with poor prognosis and survival. Small molecule inhibitors, though widening the treatment landscape, have limited monotherapy efficacy. The combination therapy, however, shows suboptimal clinical outcomes due to low bioavailability, overlapping systemic toxicity and drug resistance. Here, we report that CXCR4-mediated codelivery of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor sorafenib (SOR) via T22 peptide-tagged disulfide cross-linked polymeric micelles (TM) achieves synergistic treatment of FLT3-ITD AML. TM-VS with a VEN/SOR weight ratio of 1/4 and T22 peptide density of 20% exhibited an extraordinary inhibitory effect on CXCR4-overexpressing MV4-11 AML cells. TM-VS at a VEN/SOR dosage of 2.5/10 mg/kg remarkably reduced leukemia burden, prolonged mouse survival, and impeded bone loss in orthotopic MV4-11-bearing mice, outperforming the nontargeted M-VS and oral administration of free VEN/SOR. CXCR4-mediated codelivery of BCL-2 and FLT3 inhibitors has emerged as a prospective clinical treatment for FLT3-ITD AML.


Subject(s)
Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-bcl-2 , Receptors, CXCR4 , Sorafenib , Sulfonamides , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Animals , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Sulfonamides/administration & dosage , Sorafenib/pharmacology , Sorafenib/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Micelles
6.
J Control Release ; 370: 453-467, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697315

ABSTRACT

Negative immunoregulatory signal (PD-L1, CXCR4, et al.) and weak immunogenicity elicited immune system failing to detect and destroy cancerous cells. CXCR4 blockade promoted T cell tumor infiltration and increased tumor sensitivity to anti-PD-L1 therapy. Here, pH-responsive reassembled nanomaterials were constructed with anti-PD-L1 peptide and CXCR4 antagonists grafting (APAB), synergized with photothermal therapy for melanoma and breast tumor interference. The self-assembled APAB nanoparticles accumulated in the tumor and rapidly transformed into nanofibers in response to the acidic tumor microenvironment, leading to the exposure of grafted therapeutic agents. APAB enabling to reassemble around tumor cells and remained stable for over 96 h due to the aggregation induced retention (AIR) effect, led to long-term efficiently combined PD-L1 and CXCR4 blockade. Photothermal efficiency (ICG) induced immunogenic cell death (ICD) of tumor cells so as to effectively improve the immunogenicity. The combined therapy (ICG@APAB) could effectively inhibit the growth of primary tumor (∼83.52%) and distant tumor (∼76.24%) in melanoma-bearing mice, and significantly (p < 0.05) prolong the survival time over 42 days. The inhibition assay on tumor metastasis in 4 T1 model mice exhibited ICG@APAB almostly suppressed the occurrence of lung metastases and the expression levels of CD31, MMP-9 and VEGF in tumor decreased by 82.26%, 90.45% and 41.54%, respectively. The in vivo reassembly strategy will offer novel perspectives benefical future immunotherapies and push development of combined therapeutics into clinical settings.


Subject(s)
B7-H1 Antigen , Mice, Inbred C57BL , Receptors, CXCR4 , Animals , Receptors, CXCR4/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Female , Cell Line, Tumor , Mice , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Nanoparticles , Humans , Photothermal Therapy/methods , Tumor Microenvironment/drug effects , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Indocyanine Green/administration & dosage
7.
Clin Exp Pharmacol Physiol ; 51(6): e13865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692577

ABSTRACT

CTCE-9908, a CXC chemokine receptor 4 (CXCR4) antagonist, prevents CXCR4 phosphorylation and inhibits the interaction with chemokine ligand 12 (CXCL12) and downstream signalling pathways associated with metastasis. This study evaluated the in vitro effects of CTCE-9908 on B16 F10 melanoma cells with the use of mathematical modelling. Crystal violet staining was used to construct a mathematical model of CTCE-9908 B16 F10 (melanoma) and RAW 264.7 (non-cancerous macrophage) cell lines on cell viability to predict the half-maximal inhibitory concentration (IC50). Morphological changes were assessed using transmission electron microscopy. Flow cytometry was used to assess changes in cell cycle distribution, apoptosis via caspase-3, cell survival via extracellular signal-regulated kinase1/2 activation, CXCR4 activation and CXCL12 expression. Mathematical modelling predicted IC50 values from 0 to 100 h. At IC50, similar cytotoxicity between the two cell lines and ultrastructural morphological changes indicative of cell death were observed. At a concentration 10 times lower than IC50, CTCE-9908 induced inhibition of cell survival (p = 0.0133) in B16 F10 cells but did not affect caspase-3 or cell cycle distribution in either cell line. This study predicts CTCE-9908 IC50 values at various time points using mathematical modelling, revealing cytotoxicity in melanoma and non-cancerous cells. CTCE-9908 significantly inhibited melanoma cell survival at a concentration 10 times lower than the IC50 in B16 F10 cells but not RAW 264.7 cells. However, CTCE-9908 did not affect CXCR4 phosphorylation, apoptosis,\ or cell cycle distribution in either cell line.


Subject(s)
Apoptosis , Cell Survival , Receptors, CXCR4 , Mice , Cell Survival/drug effects , Animals , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Apoptosis/drug effects , Melanoma, Experimental/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , RAW 264.7 Cells , Cell Line, Tumor , Melanoma/pathology , Melanoma/drug therapy , Melanoma/metabolism , Models, Biological , Cell Cycle/drug effects , Chemokine CXCL12/metabolism
8.
Blood ; 144(1): 35-45, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38643510

ABSTRACT

ABSTRACT: We investigated efficacy and safety of mavorixafor, an oral CXCR4 antagonist, in participants with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency caused by CXCR4 gain-of-function variants. This randomized (1:1), double-blind, placebo-controlled, phase 3 trial enrolled participants aged ≥12 years with WHIM syndrome and absolute neutrophil count (ANC) ≤0.4 × 103/µL. Participants received once-daily mavorixafor or placebo for 52 weeks. The primary end point was time (hours) above ANC threshold ≥0.5 × 103/µL (TATANC; over 24 hours). Secondary end points included TAT absolute lymphocyte count ≥1.0 × 103/µL (TATALC; over 24 hours); absolute changes in white blood cell (WBC), ANC, and absolute lymphocyte count (ALC) from baseline; annualized infection rate; infection duration; and total infection score (combined infection number/severity). In 31 participants (mavorixafor, n = 14; placebo, n = 17), mavorixafor least squares (LS) mean TATANC was 15.0 hours and 2.8 hours for placebo (P < .001). Mavorixafor LS mean TATALC was 15.8 hours and 4.6 hours for placebo (P < .001). Annualized infection rates were 60% lower with mavorixafor vs placebo (LS mean 1.7 vs 4.2; nominal P = .007), and total infection scores were 40% lower (7.4 [95% confidence interval [CI], 1.6-13.2] vs 12.3 [95% CI, 7.2-17.3]). Treatment with mavorixafor reduced infection frequency, severity, duration, and antibiotic use. No discontinuations occurred due to treatment-emergent adverse events (TEAEs); no related serious TEAEs were observed. Overall, mavorixafor treatment demonstrated significant increases in LS mean TATANC and TATALC, reduced infection frequency, severity/duration, and was well tolerated. The trial was registered at www.clinicaltrials.gov as #NCT03995108.


Subject(s)
Immunologic Deficiency Syndromes , Primary Immunodeficiency Diseases , Receptors, CXCR4 , Warts , Humans , Female , Receptors, CXCR4/antagonists & inhibitors , Male , Primary Immunodeficiency Diseases/drug therapy , Warts/drug therapy , Double-Blind Method , Adult , Middle Aged , Immunologic Deficiency Syndromes/drug therapy , Quinolines/adverse effects , Quinolines/administration & dosage , Quinolines/therapeutic use , Adolescent , Young Adult , Child , Lymphocyte Count , Aminoquinolines , Benzimidazoles , Butylamines
9.
Br J Pharmacol ; 181(16): 2991-3009, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679415

ABSTRACT

BACKGROUND AND PURPOSE: IL-11 is a member of the IL-6 family of cytokine initially considered as haematopoietic and cytoprotective factor. Recent evidence indicates that IL-11 promotes lung fibrosis and pulmonary hypertension in animal models and is elevated in lung tissue of patients with pulmonary fibrosis and pulmonary hypertension. Fibrocytes are bone marrow-derived circulating cells that participate in lung fibrosis and pulmonary hypertension, but the role of IL-11 on fibrocytes is unknown. We investigated the role of IL-11 system on fibrocyte activation in different in vitro and in vivo models of lung fibrosis associated with pulmonary hypertension. EXPERIMENTAL APPROACH: Human fibrocytes were isolated from peripheral blood of six healthy donors. Recombinant human (rh)-IL-11 and soluble rh-IL-11 receptor, α subunit (IL-11Rα) were used to stimulated fibrocytes in vitro to measure:- cell migration in a chemotactic migration chamber, fibrocyte to endothelial cell adhesion in a microscope-flow chamber and fibrocyte to myofibroblast transition. Mouse lung fibrosis and pulmonary hypertension was induced using either IL-11 (s.c.) or bleomycin (intra-tracheal), while in the rat monocrotaline (intra-tracheal) was used. In vivo siRNA-IL-11 was administered to suppress IL-11 in vivo. KEY RESULTS: RhIL-11 and soluble rhIL-11Rα promote fibrocyte migration, endothelial cell adhesion and myofibroblast transition. Subcutaneous (s.c.) IL-11 infusion elevates blood, bronchoalveolar and lung tissue fibrocytes. SiRNA-IL-11 transfection in bleomycin and monocrotaline animal models reduces blood and lung tissue fibrocytes and reduces serum CXCL12 and CXCL12/CXCR4 lung expression. CONCLUSION AND IMPLICATIONS: Targeting IL-11 reduces fibrocyte circulation and lung accumulation in animal models of pulmonary hypertension-associated lung fibrosis.


Subject(s)
Disease Models, Animal , Hypertension, Pulmonary , Interleukin-11 , Lung , Pulmonary Fibrosis , Animals , Interleukin-11/metabolism , Humans , Hypertension, Pulmonary/metabolism , Pulmonary Fibrosis/metabolism , Lung/metabolism , Lung/pathology , Lung/drug effects , Male , Rats , Mice , Mice, Inbred C57BL , Cell Movement/drug effects , Bleomycin , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Rats, Sprague-Dawley , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11 Receptor alpha Subunit/antagonists & inhibitors , Cells, Cultured , Chemokine CXCL12/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/administration & dosage
10.
Eur J Nucl Med Mol Imaging ; 51(9): 2744-2757, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587644

ABSTRACT

PURPOSE: Radiopharmaceutical therapies targeting fibroblast activation protein (FAP) have shown promising efficacy against many tumor types. But radiopharmaceuticals alone in most cases are insufficient to completely eradicate tumor cells, which can partially be attributed to the protective interplay between tumor cells and cancer-associated fibroblasts (CAFs). The C-X-C chemokine receptor type 4/C-X-C motif chemokine 12 (CXCR4/CXCL12) interaction plays an important role in orchestrating tumor cells and CAFs. We hereby investigated the feasibility and efficacy of [177Lu]Lu-DOTAGA.(SA.FAPi)2, a FAP-targeting radiopharmaceutical, in combination with AMD3100, a CXCR4 antagonist, in a preclinical murine model of triple-negative breast cancer (TNBC). METHODS: Public database was first interrogated to reveal the correlation between CAFs' scores and the prognosis of TNBC patients, as well as the expression levels of FAP and CXCR4 in normal tissues and tumors. In vitro therapeutic efficacy regarding cell proliferation, migration, and colony formation was assessed in BALB/3T3 fibroblasts and 4T1 murine breast cancer cells. In vivo therapeutic efficacy was longitudinally monitored using serial 18F-FDG, [18F]AlF-NOTA-FAPI-04, and [68Ga]Ga-DOTA-Pentixafor PET/CT scans and validated using tumor sections through immunohistochemical staining of Ki-67, α-SMA, CXCR4, and CXCL12. Intratumoral abundance of myeloid-derived suppressive cells (MDSCs) was analyzed using flow cytometry in accordance with the PET/CT schedules. Treatment toxicity was evaluated by examining major organs including heart, lung, liver, kidney, and spleen. RESULTS: CAFs' scores negatively correlated with the survival of TNBC patients (p < 0.05). The expression of CXCR4 and FAP was both significantly higher in tumors than in normal tissues. The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 significantly suppressed cell proliferation, migration, and colony formation in cell culture, and exhibited synergistic effects in 4T1 tumor models along with a decreased number of MDSCs. PET/CT imaging revealed lowest tumor accumulation of 18F-FDG and [18F]AlF-NOTA-FAPI-04 on day 13 and day 14 after treatment started, both of which gradually increased at later time points. A similar trend was observed in the IHC staining of Ki-67, α-SMA, and CXCL12. CONCLUSION: The combination of [177Lu]Lu-DOTAGA.(SA.FAPi)2 and AMD3100 is a feasible treatment against TNBC with minimal toxicity in main organs.


Subject(s)
Chemokine CXCL12 , Receptors, CXCR4 , Triple Negative Breast Neoplasms , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Animals , Mice , Chemokine CXCL12/metabolism , Humans , Cell Line, Tumor , Female , Cyclams/pharmacology , Cyclams/therapeutic use , Lutetium , Benzylamines/pharmacology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Endopeptidases , Cell Proliferation/drug effects , Gelatinases/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism
11.
J Drug Target ; 32(6): 587-605, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38634290

ABSTRACT

Nanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis. However, challenges persist in the clinical translation of targeted NPs due to issues with biological response, tumour accumulation, and maintaining NP quality at an industrial scale. Biological and intratumoral barriers further hinder efficient NP accumulation in tumours, hampering translatability. To address these challenges, the academic community is refocusing efforts on understanding NP biological fate and establishing robust preclinical models. Future studies should investigate NP-body interactions, develop computational models, and identify optimal preclinical models. Establishing central NP research databases and fostering collaboration across disciplines is crucial to expediting clinical translation. Overcoming these hurdles will unlock the transformative potential of CXCR4-ligand-NP conjugates in revolutionising cancer treatment.


Subject(s)
Nanoparticles , Neoplasms , Receptors, CXCR4 , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Humans , Neoplasms/drug therapy , Animals , Precision Medicine/methods , Ligands , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Drug Delivery Systems/methods
12.
J Phys Chem B ; 128(21): 5157-5174, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38647430

ABSTRACT

The chemokine receptor CXCR4 is a critical target for the treatment of several cancer types and HIV-1 infections. While orthosteric and allosteric modulators have been developed targeting its extracellular or transmembrane regions, the intramembrane region of CXCR4 may also include allosteric binding sites suitable for the development of allosteric drugs. To investigate this, we apply the Gaussian Network Model (GNM) to the monomeric and dimeric forms of CXCR4 to identify residues essential for its local and global motions located in the hinge regions of the protein. Residue interaction network (RIN) analysis suggests hub residues that participate in allosteric communication throughout the receptor. Mutual residues from the network models reside in regions with a high capacity to alter receptor dynamics upon ligand binding. We then investigate the druggability of these potential allosteric regions using the site identification by ligand competitive saturation (SILCS) approach, revealing two putative allosteric sites on the monomer and three on the homodimer. Two screening campaigns with Glide and SILCS-Monte Carlo docking using FDA-approved drugs suggest 20 putative hit compounds including antifungal drugs, anticancer agents, HIV protease inhibitors, and antimalarial drugs. In vitro assays considering mAB 12G5 and CXCL12 demonstrate both positive and negative allosteric activities of these compounds, supporting our computational approach. However, in vivo functional assays based on the recruitment of ß-arrestin to CXCR4 do not show significant agonism and antagonism at a single compound concentration. The present computational pipeline brings a new perspective to computer-aided drug design by combining conformational dynamics based on network analysis and cosolvent analysis based on the SILCS technology to identify putative allosteric binding sites using CXCR4 as a showcase.


Subject(s)
Allosteric Site , Receptors, CXCR4 , Receptors, CXCR4/chemistry , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Ligands , Humans , Molecular Docking Simulation , Monte Carlo Method , Allosteric Regulation
13.
Int Immunopharmacol ; 132: 111944, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581990

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy worldwide owing to its complex tumour microenvironment and dense physical barriers. Stromal-derived factor-1 (SDF-1), which is abundantly secreted by tumour stromal cells, plays a pivotal role in promoting PDAC growth and metastasis. In this study, we investigated the impact and molecular mechanisms of the anti-PD-L1&CXCR4 bispecific nanobody on the TME and their consequent interference with PDAC progression. We found that blocking the SDF-1/CXCR4 signalling pathway delayed the epithelial-mesenchymal transition in pancreatic cancer cells. Anti-PD-L1&CXCR4 bispecific nanobody effectively suppress the secretion of SDF-1 by pancreatic stellate cells and downregulate the expression of smooth muscle actin alpha(α-SMA), thereby preventing the activation of cancer-associated fibroblasts by downregulating the PI3K/AKT signaling pathway. This improves the pancreatic tumour microenvironment, favouring the infiltration of T cells into the tumour tissue. In conclusion, our results suggest that the anti-PD-L1&CXCR4 bispecific nanobody exerts an antitumor immune response by changing the pancreatic tumour microenvironment. Hence, the anti-PD-L1&CXCR4 bispecific nanobody is a potential candidate for pancreatic cancer treatment.


Subject(s)
B7-H1 Antigen , Carcinoma, Pancreatic Ductal , Chemokine CXCL12 , Pancreatic Neoplasms , Pancreatic Stellate Cells , Receptors, CXCR4 , Single-Domain Antibodies , Tumor Microenvironment , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/drug effects , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Humans , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Cell Line, Tumor , Animals , Chemokine CXCL12/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/immunology , Signal Transduction , Mice , Epithelial-Mesenchymal Transition/drug effects , Disease Progression
14.
ACS Appl Mater Interfaces ; 16(17): 21610-21622, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647446

ABSTRACT

The treatment of acute myeloid leukemia (AML) remains unsatisfactory, owing to the absence of efficacious therapy regimens over decades. However, advances in molecular biology, including inhibiting the CXCR4/CXCL12 biological axis, have introduced novel therapeutic options for AML. Additionally, self-stimulated phototherapy can solve the poor light penetration from external sources, and it will overcome the limitation that traditional phototherapy cannot be applied to the treatment of AML. Herein, we designed and manufactured a self-stimulated photodynamic nanoreactor to enhance antileukemia efficacy and suppress leukemia recurrence and metastasis in AML mouse models. To fulfill our design, we utilized the CXCR4/CXCL12 biological axis and biomimetic cell membranes in conjunction with self-stimulated phototherapy. This nanoreactor possesses the capability to migrate into the bone marrow cavity, inhibit AML cells from infiltrating into the visceral organ, significantly enhance the antileukemia effect, and prolong the survival time of leukemic mice. Therefore, this nanoreactor has significant potential for achieving high success rates and low recurrence rates in leukemia treatment.


Subject(s)
Leukemia, Myeloid, Acute , Photochemotherapy , Receptors, CXCR4 , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Mice , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Cell Line, Tumor , Chemokine CXCL12/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
16.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674069

ABSTRACT

Bladder pain is a prominent symptom in Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS). We studied spinal mechanisms of bladder pain in mice using a model where repeated activation of intravesical Protease Activated Receptor-4 (PAR4) results in persistent bladder hyperalgesia (BHA) with little or no bladder inflammation. Persistent BHA is mediated by spinal macrophage migration inhibitory factor (MIF), and is associated with changes in lumbosacral proteomics. We investigated the contribution of individual spinal MIF receptors to persistent bladder pain as well as the spinal proteomics changes associated with relief of persistent BHA by spinal MIF antagonism. Female mice with persistent BHA received either intrathecal (i.t.) MIF monoclonal antibodies (mAb) or mouse IgG1 (isotype control antibody). MIF antagonism temporarily reversed persistent BHA (peak effect: 2 h), while control IgG1 had no effect. Moreover, i.t. antagonism of the MIF receptors CD74 and C-X-C chemokine receptor type 4 (CXCR4) partially reversed persistent BHA. For proteomics experiments, four separate groups of mice received either repeated intravesical scrambled peptide and sham i.t. injection (control, no pain group) or repeated intravesical PAR4 and: sham i.t.; isotype IgG1 i.t. (15 µg); or MIF mAb (15 µg). L6-S1 spinal segments were excised 2 h post-injection and examined for proteomics changes using LC-MS/MS. Unbiased proteomics analysis identified and relatively quantified 6739 proteins. We selected proteins that showed significant changes compared to control (no pain group) after intravesical PAR4 (sham or IgG i.t. treatment) and showed no significant change after i.t. MIF antagonism. Six proteins decreased during persistent BHA (V-set transmembrane domain-containing protein 2-like confirmed by immunohistochemistry), while two proteins increased. Spinal MIF antagonism reversed protein changes. Therefore, spinal MIF and MIF receptors mediate persistent BHA and changes in specific spinal proteins. These novel MIF-modulated spinal proteins represent possible new targets to disrupt spinal mechanisms that mediate persistent bladder pain.


Subject(s)
Macrophage Migration-Inhibitory Factors , Proteomics , Receptors, CXCR4 , Animals , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Female , Mice , Proteomics/methods , Receptors, CXCR4/metabolism , Receptors, CXCR4/antagonists & inhibitors , Hyperalgesia/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Antigens, Differentiation, B-Lymphocyte/metabolism , Histocompatibility Antigens Class II/metabolism , Cystitis, Interstitial/metabolism , Cystitis, Interstitial/pathology , Spinal Cord/metabolism , Urinary Bladder/metabolism , Urinary Bladder/pathology , Disease Models, Animal , Receptors, Immunologic/metabolism , Receptors, Immunologic/antagonists & inhibitors
17.
Dalton Trans ; 53(12): 5616-5623, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38439632

ABSTRACT

The chemokine receptor CXCR4 is implicated in multiple diseases including inflammatory disorders, cancer growth and metastasis, and HIV/AIDS. CXCR4 targeting has been evaluated in treating cancer metastasis and therapy resistance. Cyclam derivatives, most notably AMD3100 (Plerixafor™), are a common motif in small molecule CXCR4 antagonists. However, AMD3100 has not been shown to be effective in cancer treatment as an individual agent. Configurational restriction and transition metal complex formation increases receptor binding affinity and residence time. In the present study, we have synthesized novel trans-IV locked cyclam-based CXCR4 inhibitors, a previously unexploited configuration, and demonstrated their higher affinity for CXCR4 binding and CXCL12-mediated signaling inhibition compared to AMD3100. These results pave the way for even more potent CXCR4 inhibitors that may provide significant efficacy in cancer therapy.


Subject(s)
Coordination Complexes , Cyclams , Heterocyclic Compounds , Benzylamines , Coordination Complexes/pharmacology , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Receptors, CXCR4/antagonists & inhibitors
18.
Radiother Oncol ; 194: 110194, 2024 May.
Article in English | MEDLINE | ID: mdl-38447871

ABSTRACT

High precision, image-guided radiotherapy (RT) has increased the therapeutic ratio, enabling higher tumor and lower normal tissue doses, leading to improved patient outcomes. Nevertheless, some patients remain at risk of developing serious side effects.In many clinical situations, the radiation tolerance of normal tissues close to the target volume limits the dose that can safely be delivered and thus the potential for tumor control and cure. This is particularly so in patients being re-treated for tumor progression or a second primary tumor within a previous irradiated volume, scenarios that are becoming more frequent in clinical practice.Various normal tissue 'radioprotective' drugs with the potential to reduce side effects have been studied previously. Unfortunately, most have failed to impact clinical practice because of lack of therapeutic efficacy, concern about concurrent tumor protection or excessive drug-related toxicity. This review highlights the evidence indicating that targeting the CXCL12/CXCR4 pathway can mitigate acute and late RT-induced injury and reduce treatment side effects in a manner that overcomes these previous translational challenges. Pre-clinical studies involving a broad range of normal tissues commonly affected in clinical practice, including skin, lung, the gastrointestinal tract and brain, have shown that CXCL12 signalling is upregulated by RT and attracts CXCR4-expressing inflammatory cells that exacerbate acute tissue injury and late fibrosis. These studies also provide convincing evidence that inhibition of CXCL12/CXCR4 signalling during or after RT can reduce or prevent RT side effects, warranting further evaluation in clinical studies. Greater dialogue with the pharmaceutical industry is needed to prioritize the development and availability of CXCL12/CXCR4 inhibitors for future RT studies.


Subject(s)
Chemokine CXCL12 , Neoplasms , Radiation Injuries , Radiation-Protective Agents , Signal Transduction , Animals , Humans , Chemokine CXCL12/metabolism , Neoplasms/radiotherapy , Radiation Injuries/prevention & control , Radiation Tolerance/drug effects , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiotherapy, Image-Guided/methods , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/metabolism , Signal Transduction/drug effects , Chemokines, CXC/antagonists & inhibitors
19.
Blood ; 143(17): 1702-1712, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38211337

ABSTRACT

ABSTRACT: Mutations in MYD88 (95%-97%) and CXCR4 (30%-40%) are common in Waldenström macroglobulinemia (WM). TP53 is altered in 20% to 30% of patients with WM, particularly those previously treated. Mutated MYD88 activates hematopoietic cell kinase that drives Bruton tyrosine kinase (BTK) prosurvival signaling. Both nonsense and frameshift CXCR4 mutations occur in WM. Nonsense variants show greater resistance to BTK inhibitors. Covalent BTK inhibitors (cBTKi) produce major responses in 70% to 80% of patients with WM. MYD88 and CXCR4 mutation status can affect time to major response, depth of response, and/or progression-free survival (PFS) in patients with WM treated with cBTKi. The cBTKi zanubrutinib shows greater response activity and/or improved PFS in patients with WM with wild-type MYD88, mutated CXCR4, or altered TP53. Risks for adverse events, including atrial fibrillation, bleeding diathesis, and neutropenia can differ based on which BTKi is used in WM. Intolerance is also common with cBTKi, and dose reduction or switchover to another cBTKi can be considered. For patients with acquired resistance to cBTKis, newer options include pirtobrutinib or venetoclax. Combinations of BTKis with chemoimmunotherapy, CXCR4, and BCL2 antagonists are discussed. Algorithms for positioning BTKis in treatment naïve or previously treated patients with WM, based on genomics, disease characteristics, and comorbidities, are presented.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors , Waldenstrom Macroglobulinemia , Adult , Aged , Female , Humans , Male , Middle Aged , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/genetics , Genomics/methods , Mutation , Myeloid Differentiation Factor 88/genetics , Piperidines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Pyrazoles/therapeutic use , Pyrazoles/adverse effects , Pyrimidines/therapeutic use , Receptors, CXCR4/genetics , Receptors, CXCR4/antagonists & inhibitors , Waldenstrom Macroglobulinemia/drug therapy , Waldenstrom Macroglobulinemia/genetics
20.
Integr Biol (Camb) ; 152023 04 11.
Article in English | MEDLINE | ID: mdl-37635325

ABSTRACT

Neurodegenerative disorders (NDDs) are known to exhibit genetic overlap and shared pathophysiology. This study aims to find the shared genetic architecture of Alzheimer's disease (AD) and Parkinson's disease (PD), two major age-related progressive neurodegenerative disorders. The gene expression profiles of GSE67333 (containing samples from AD patients) and GSE114517 (containing samples from PD patients) were retrieved from the Gene Expression Omnibus (GEO) functional genomics database managed by the National Center for Biotechnology Information. The web application GREIN (GEO RNA-seq Experiments Interactive Navigator) was used to identify differentially expressed genes (DEGs). A total of 617 DEGs (239 upregulated and 379 downregulated) were identified from the GSE67333 dataset. Likewise, 723 DEGs (378 upregulated and 344 downregulated) were identified from the GSE114517 dataset. The protein-protein interaction networks of the DEGs were constructed, and the top 50 hub genes were identified from the network of the respective dataset. Of the four common hub genes between two datasets, C-X-C chemokine receptor type 4 (CXCR4) was selected due to its gene expression signature profile and the same direction of differential expression between the two datasets. Mavorixafor was chosen as the reference drug due to its known inhibitory activity against CXCR4 and its ability to cross the blood-brain barrier. Molecular docking and molecular dynamics simulation of 51 molecules having structural similarity with Mavorixafor was performed to find two novel molecules, ZINC49067615 and ZINC103242147. This preliminary study might help predict molecular targets and diagnostic markers for treating Alzheimer's and Parkinson's diseases. Insight Box Our research substantiates the therapeutic relevance of CXCR4 inhibitors for the treatment of Alzheimer's and Parkinson's diseases. We would like to disclose the following insights about this study. We found common signatures between Alzheimer's and Parkinson's diseases at transcriptional levels by analyzing mRNA sequencing data. These signatures were used to identify putative therapeutic agents for these diseases through computational analysis. Thus, we proposed two novel compounds, ZINC49067615 and ZINC103242147, that were stable, showed a strong affinity with CXCR4, and exhibited good pharmacokinetic properties. The interaction of these compounds with major residues of CXCR4 has also been described.


Subject(s)
Alzheimer Disease , Parkinson Disease , Receptors, CXCR4 , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Aminoquinolines , Molecular Docking Simulation , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Receptors, CXCR4/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...