Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.598
Filter
1.
Platelets ; 35(1): 2322733, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38968449

ABSTRACT

Liver failure and cirrhosis are characterized by abnormal hemostasis with aberrant platelet activation. In particular, the consequences of cholestatic liver disease and molecular mechanisms, including the role of bile acids leading to impaired platelet responses, are not well understood. Here, we demonstrate that bile acids inhibit human and murine platelet activation, adhesion and spreading, leading to reduced thrombus formation under flow conditions. We identified the G-protein coupled receptor TGR5 in platelets and provide support for its role as mediator of bile acid-induced impairment of platelet activation. In the liver, TGR5 couples to Gαs proteins, activates the adenylate cyclase to induce a transient cAMP rise and stimulates the MAPK signaling pathway to regulate cholangiocyte proliferation, hepatocyte survival and inflammation. In this report, we demonstrate that the genetic deficiency of TGR5 in mice led to enhanced platelet activation and thrombus formation, suggesting that TGR5 plays an important role in hemostasis. Mechanistically, platelet inhibition is achieved by TGR5 mediated PKA activation and modulation of AKT and ERK1/2 phosphorylation. Thus, this report provides evidence for the ability of TGR5 ligands to reduce platelet activation and identifies TGR5 agonism as a new target for the prevention of cardiovascular diseases.


What is the context? Liver failure or cirrhosis are related to impaired hemostasis and a role of bile acids in impaired platelet responses is known but only less understood.Platelets express the bile acid receptor FXR. Ligand binding to the FXR on platelets causes a shift in platelet reactivity and is atheroprotective suggesting that the FXR is a potential target for the prevention of atherothrombotic diseases.What is new? Treatment of murine and human blood with bile acids in low molecular quantity led to reduced platelet activation, adhesion and thrombus formation.The bile acid receptor TGR5 was identified on human and murine platelets.TGR5 plays an important role in hemostasis because TGR5 deficient mice showed elevated platelet reactivity and enhanced thrombus formation.Loss of TGR5 led to enhanced PKA activation and modulated the phosphorylation of MAPK such as AKT and ERK1/2.What is the impact? Impairment of platelet activation by bile acids is mediated by TGR5 via the protein kinase A signaling pathway.Our findings provide evidence for the modulation of TGR5 activation as a potential new target of both, anti-platelet therapy in cardiovascular diseases and the restoration of hemostasis upon liver injury.


Subject(s)
Platelet Activation , Receptors, G-Protein-Coupled , Thrombosis , Receptors, G-Protein-Coupled/metabolism , Animals , Mice , Humans , Platelet Activation/drug effects , Thrombosis/metabolism , Blood Platelets/metabolism , Bile Acids and Salts/metabolism , Mice, Knockout , Signal Transduction
2.
Front Immunol ; 15: 1404384, 2024.
Article in English | MEDLINE | ID: mdl-38953035

ABSTRACT

Introduction: Schistosomiasis (SM) is a parasitic disease caused by Schistosoma mansoni. SM causes chronic inflammation induced by parasitic eggs, with collagen/fibrosis deposition in the granuloma process in the liver, spleen, central nervous system, kidneys, and lungs. Pulmonary arterial hypertension (PAH) is a clinical manifestation characterized by high pressure in the pulmonary circulation and right ventricular overload. This study investigated the production of functional autoantibodies (fAABs) against the second loop of the G-protein-coupled receptor (GPCR) in the presence of hepatic and PAH forms of human SM. Methods: Uninfected and infected individuals presenting acute and chronic manifestations (e.g., hepatointestinal, hepato-splenic without PAH, and hepato-splenic with PAH) of SM were clinically evaluated and their blood was collected to identify fAABs/GPCRs capable of recognizing endothelin 1, angiotensin II, and a-1 adrenergic receptor. Human serum was analyzed in rat cardiomyocytes cultured in the presence of the receptor antagonists urapidil, losartan, and BQ123. Results: The fAABs/GPCRs from chronic hepatic and PAH SM individuals, but not from acute SM individuals, recognized the three receptors. In the presence of the antagonists, there was a reduction in beating rate changes in cultured cardiomyocytes. In addition, binding sites on the extracellular domain functionality of fAABs were identified, and IgG1 and/or IgG3 antibodies were found to be related to fAABs. Conclusion: Our data suggest that fAABs against GPCR play an essential role in vascular activity in chronic SM (hepatic and PAH) and might be involved in the development of hypertensive forms of SM.


Subject(s)
Autoantibodies , Receptors, G-Protein-Coupled , Autoantibodies/immunology , Autoantibodies/blood , Humans , Animals , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/metabolism , Rats , Male , Female , Adult , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/etiology , Middle Aged , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/parasitology , Schistosomiasis mansoni/immunology , Schistosoma mansoni/immunology , Schistosomiasis/immunology
3.
Methods Mol Biol ; 2814: 195-207, 2024.
Article in English | MEDLINE | ID: mdl-38954207

ABSTRACT

Activation of G protein-coupled receptors upon chemoattractant stimulation induces activation of multiple signaling pathways. To fully understand how these signaling pathway coordinates to achieve directional migration of neutrophils, it is essential to determine the dynamics of the spatiotemporal activation profile of signaling components at the level of single living cells. Here, we describe a detailed methodology for monitoring and quantitatively analyzing the spatiotemporal dynamics of 1,4,5-inositol trisphosphate (IP3) in neutrophil-like HL60 cells in response to various chemoattractant fields by applying Förster resonance energy transfer (FRET) fluorescence microscopy.


Subject(s)
Fluorescence Resonance Energy Transfer , Inositol 1,4,5-Trisphosphate , Microscopy, Confocal , Microscopy, Fluorescence , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Fluorescence Resonance Energy Transfer/methods , HL-60 Cells , Microscopy, Fluorescence/methods , Microscopy, Confocal/methods , Inositol 1,4,5-Trisphosphate/metabolism , Signal Transduction , Neutrophils/metabolism
4.
Sci Signal ; 17(843): eabq7038, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954638

ABSTRACT

Mini-G proteins are engineered, thermostable variants of Gα subunits designed to stabilize G protein-coupled receptors (GPCRs) in their active conformations. Because of their small size and ease of use, they are popular tools for assessing GPCR behaviors in cells, both as reporters of receptor coupling to Gα subtypes and for cellular assays to quantify compartmentalized signaling at various subcellular locations. Here, we report that overexpression of mini-G proteins with their cognate GPCRs disrupted GPCR endocytic trafficking and associated intracellular signaling. In cells expressing the Gαs-coupled GPCR glucagon-like peptide 1 receptor (GLP-1R), coexpression of mini-Gs, a mini-G protein derived from Gαs, blocked ß-arrestin 2 recruitment and receptor internalization and disrupted endosomal GLP-1R signaling. These effects did not involve changes in receptor phosphorylation or lipid nanodomain segregation. Moreover, we found that mini-G proteins derived from Gαi and Gαq also inhibited the internalization of GPCRs that couple to them. Finally, we developed an alternative intracellular signaling assay for GLP-1R using a nanobody specific for active Gαs:GPCR complexes (Nb37) that did not affect GLP-1R internalization. Our results have important implications for designing methods to assess intracellular GPCR signaling.


Subject(s)
Glucagon-Like Peptide-1 Receptor , Protein Engineering , Receptors, G-Protein-Coupled , Signal Transduction , Humans , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , HEK293 Cells , Protein Engineering/methods , Endocytosis/physiology , Protein Transport , Animals
5.
Proc Natl Acad Sci U S A ; 121(28): e2402407121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959045

ABSTRACT

Trade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap "n" collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR-MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.


Subject(s)
Hemiptera , Insect Proteins , Insecticide Resistance , MAP Kinase Signaling System , Receptors, G-Protein-Coupled , Animals , Hemiptera/genetics , Hemiptera/metabolism , Insecticide Resistance/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Female , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics
6.
Adv Protein Chem Struct Biol ; 141: 467-493, 2024.
Article in English | MEDLINE | ID: mdl-38960483

ABSTRACT

In Alzheimer's disease, the microtubule-associated protein, Tau misfolds to form aggregates and filaments in the intra- and extracellular region of neuronal cells. Microglial cells are the resident brain macrophage cells involved in constant surveillance and activated by the extracellular deposits. Purinergic receptors are involved in the chemotactic migration of microglial cells towards the site of inflammation. From our recent study, we have observed that the microglial P2Y12 receptor is involved in phagocytosis of full-length Tau species such as monomers, oligomers and aggregates by actin-driven chemotaxis. This study shows the interaction of repeat-domain of Tau (TauRD) with the microglial P2Y12 receptor and the corresponding residues for interaction have been analyzed by various in-silico approaches. In the cellular studies, TauRD was found to interact with microglial P2Y12R and induces its cellular expression confirmed by co-immunoprecipitation and western blot analysis. Furthermore, the P2Y12R-mediated TauRD internalization has demonstrated activation of microglia with an increase in the Iba1 level, and TauRD becomes accumulated at the peri-nuclear region for the degradation.


Subject(s)
Tauopathies , Humans , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/metabolism , Microglia/metabolism , Microglia/pathology , Receptors, Purinergic P2Y12/metabolism , Animals , Receptors, G-Protein-Coupled/metabolism
7.
Commun Biol ; 7(1): 802, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956302

ABSTRACT

G protein-coupled receptors (GPCRs) are mainly regulated by GPCR kinase (GRK) phosphorylation and subsequent ß-arrestin recruitment. The ubiquitously expressed GRKs are classified into cytosolic GRK2/3 and membrane-tethered GRK5/6 subfamilies. GRK2/3 interact with activated G protein ßγ-subunits to translocate to the membrane. Yet, this need was not linked as a factor for bias, influencing the effectiveness of ß-arrestin-biased agonist creation. Using multiple approaches such as GRK2/3 mutants unable to interact with Gßγ, membrane-tethered GRKs and G protein inhibitors in GRK2/3/5/6 knockout cells, we show that G protein activation will precede GRK2/3-mediated ß-arrestin2 recruitment to activated receptors. This was independent of the source of free Gßγ and observable for Gs-, Gi- and Gq-coupled GPCRs. Thus, ß-arrestin interaction for GRK2/3-regulated receptors is inseparably connected with G protein activation. We outline a theoretical framework of how GRK dependence on free Gßγ can determine a GPCR's potential for biased agonism. Due to this inherent cellular mechanism for GRK2/3 recruitment and receptor phosphorylation, we anticipate generation of ß-arrestin-biased ligands to be mechanistically challenging for the subgroup of GPCRs exclusively regulated by GRK2/3, but achievable for GRK5/6-regulated receptors, that do not demand liberated Gßγ. Accordingly, GRK specificity of any GPCR is foundational for developing arrestin-biased ligands.


Subject(s)
G-Protein-Coupled Receptor Kinases , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Humans , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , HEK293 Cells , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , G-Protein-Coupled Receptor Kinases/metabolism , G-Protein-Coupled Receptor Kinases/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Phosphorylation , Animals , Signal Transduction
11.
Proc Natl Acad Sci U S A ; 121(29): e2407744121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985766

ABSTRACT

G protein-coupled receptors (GPCRs) control intracellular signaling cascades via agonist-dependent coupling to intracellular transducers including heterotrimeric G proteins, GPCR kinases (GRKs), and arrestins. In addition to their critical interactions with the transmembrane core of active GPCRs, all three classes of transducers have also been reported to interact with receptor C-terminal domains (CTDs). An underexplored aspect of GPCR CTDs is their possible role as lipid sensors given their proximity to the membrane. CTD-membrane interactions have the potential to control the accessibility of key regulatory CTD residues to downstream effectors and transducers. Here, we report that the CTDs of two closely related family C GPCRs, metabotropic glutamate receptor 2 (mGluR2) and mGluR3, bind to membranes and that this interaction can regulate receptor function. We first characterize CTD structure with NMR spectroscopy, revealing lipid composition-dependent modes of membrane binding. Using molecular dynamics simulations and structure-guided mutagenesis, we then identify key conserved residues and cancer-associated mutations that modulate CTD-membrane binding. Finally, we provide evidence that mGluR3 transducer coupling is controlled by CTD-membrane interactions in live cells, which may be subject to regulation by CTD phosphorylation and changes in membrane composition. This work reveals an additional mechanism of GPCR modulation, suggesting that CTD-membrane binding may be a general regulatory mode throughout the broad GPCR superfamily.


Subject(s)
Cell Membrane , Molecular Dynamics Simulation , Receptors, Metabotropic Glutamate , Humans , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/genetics , Cell Membrane/metabolism , Protein Domains , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Protein Binding , HEK293 Cells , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Signal Transduction
12.
Methods Mol Biol ; 2780: 257-280, 2024.
Article in English | MEDLINE | ID: mdl-38987472

ABSTRACT

The interactions of G-protein-coupled receptors (GPCRs) with other proteins are critical in several cellular processes but resolving their structural dynamics remains challenging. An increasing number of GPCR complexes have been experimentally resolved but others including receptor variants are yet to be characterized, necessitating computational predictions of their interactions. Although integrative approaches with multi-scale simulations would provide rigorous estimates of their conformational dynamics, protein-protein docking remains a first tool of choice of many researchers due to the availability of open-source programs and easy to use web servers with reasonable predictive power. Protein-protein docking algorithms have limited ability to consider protein flexibility, environment effects, and entropy contributions and are usually a first step towards more integrative approaches. The two critical steps of docking: the sampling and scoring algorithms have improved considerably and their performance has been validated against experimental data. In this chapter, we provide an overview and generalized protocol of a few docking protocols using GPCRs as test cases. In particular, we demonstrate the interactions of GPCRs with extracellular protein ligands and an intracellular protein effectors (G-protein) predicted from docking approaches and test their limitations. The current chapter will help researchers critically assess docking protocols and predict experimentally testable structures of GPCR complexes.


Subject(s)
Algorithms , Molecular Docking Simulation , Protein Binding , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Molecular Docking Simulation/methods , Humans , Ligands , Software , Protein Conformation , Computational Biology/methods
13.
Methods Mol Biol ; 2780: 281-287, 2024.
Article in English | MEDLINE | ID: mdl-38987473

ABSTRACT

G-protein-coupled receptors (GPCRs), the largest family of human membrane proteins, play a crucial role in cellular control and are the target of approximately one-third of all drugs on the market. Targeting these complexes with selectivity or formulating small molecules capable of modulating receptor-receptor interactions could potentially offer novel avenues for drug discovery, fostering the development of more refined and safer pharmacotherapies. Due to the lack of experimentally derived X-ray crystallography spectra of GPCR oligomers, there is growing evidence supporting the development of new in silico approaches for predicting GPCR self-assembling structures. The significance of GPCR oligomerization, the challenges in modeling these structures, and the potential of protein-protein docking algorithms to address these challenges are discussed. The study also underscores the use of various software solutions for modeling GPCR oligomeric structures and presents practical cases where these techniques have been successfully applied.


Subject(s)
Molecular Docking Simulation , Protein Multimerization , Receptors, G-Protein-Coupled , Software , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Molecular Docking Simulation/methods , Humans , Protein Binding , Algorithms , Crystallography, X-Ray/methods , Protein Conformation , Models, Molecular
14.
Mol Med ; 30(1): 99, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982366

ABSTRACT

BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.


Subject(s)
Carbon Tetrachloride , Cyclic AMP Response Element-Binding Protein , Hepatic Stellate Cells , Liver Cirrhosis , Mice, Knockout , Receptors, G-Protein-Coupled , Signal Transduction , Smad7 Protein , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/etiology , Liver Cirrhosis/chemically induced , Mice , Cyclic AMP Response Element-Binding Protein/metabolism , Hepatic Stellate Cells/metabolism , Smad7 Protein/metabolism , Smad7 Protein/genetics , Transforming Growth Factor beta1/metabolism , Male , Humans , Cell Line , Disease Models, Animal , Mice, Inbred C57BL , Gene Deletion
15.
Methods Mol Biol ; 2816: 69-75, 2024.
Article in English | MEDLINE | ID: mdl-38977589

ABSTRACT

Intracellular Ca2+ can be conveniently monitored by sensitive Ca2+ fluorescent dyes in live cells. The Gαq involved lipid signaling pathways and, thus, can be studied by intracellular Ca2+ imaging. Here we describe the protocols to measure intracellular Ca2+ for studying PEG2-EP1 activity in esophageal smooth muscle cells. The ratiometric Fura-2 imaging provides quantitative data, and the Fluo-4 confocal microscopic imaging has high-spatial resolution.


Subject(s)
Calcium , Receptors, G-Protein-Coupled , Calcium/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Microscopy, Confocal/methods , Signal Transduction , Myocytes, Smooth Muscle/metabolism , Calcium Signaling , Humans , Xanthenes/metabolism , Fura-2/metabolism , Lipid Metabolism , Esophagus/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Aniline Compounds
16.
Methods Mol Biol ; 2816: 161-174, 2024.
Article in English | MEDLINE | ID: mdl-38977598

ABSTRACT

G-protein-coupled receptors (GPCRs) are hepta-helical transmembrane proteins that mediate various intracellular signaling events in response to their specific ligands including many lipid mediators. Although analyses of GPCR molecular interactions are pivotal to understanding diverse intracellular signaling events, affinity purification of interacting proteins by a conventional co-immunoprecipitation method is challenging due to the hydrophobic nature of GPCRs and their dynamic molecular interactions. Proximity labeling catalyzed by a TurboID system is a powerful technique for defining the molecular interactions of target proteins in living cells. TurboID and miniTurbo (a modified version of TurboID) are engineered biotin ligases that biotinylate neighboring proteins in a promiscuous manner. When fused with a target protein and expressed in living cells, TurboID or miniTurbo mediates the biotin labeling of the proteins with close proximity to the target protein, allowing efficient purification of the biotinylated proteins followed by a shot-gun proteomic analysis. In this chapter, we describe a step-by-step protocol for the labeling of GPCR neighboring proteins by TurboID or miniTurbo, purification of the biotin-labeled proteins, and subsequent sample preparation for proteomic analysis. We utilized S1PR1 as a model GPCR, a receptor for a bioactive lipid molecule sphingosine 1-phosphate (S1P) that plays various roles in physiological and pathological conditions. This analysis pipeline enables the mapping of interacting proteins of lipid GPCRs in living cells.


Subject(s)
Biotinylation , Proteomics , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Proteomics/methods , Biotin/metabolism , Biotin/chemistry , HEK293 Cells , Protein Binding , Staining and Labeling/methods , Sphingosine-1-Phosphate Receptors/metabolism , Lipids/chemistry
18.
Dev Psychobiol ; 66(6): e22523, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970242

ABSTRACT

The current literature suggests that relaxin-3/relaxin/insulin-like family peptide receptor 3 (RLN-3/RXFP-3) system is involved in the pathophysiology of affective disorders because the results of anatomical and pharmacological studies have shown that the RLN-3 signaling pathway plays a role in modulating the stress response, anxiety, arousal, depression-like behavior, and neuroendocrine homeostasis. The risk of developing mental illnesses in adulthood is increased by exposure to stress in early periods of life. The available data indicate that puberty is especially characterized by the development of the neural system and emotionality and is a "stress-sensitive" period. The presented study assessed the short-term changes in the expression of RLN-3 and RXFP-3 mRNA in the stress-dependent brain regions in male pubertal Wistar rats that had been subjected to acute stress. Three stressors were applied from 42 to 44 postnatal days (first day: a single forced swim; second day: stress on an elevated platform that was repeated three times; third day: restraint stress three times). Anxiety (open field, elevated plus maze test) and anhedonic-like behavior (sucrose preference test) were estimated during these tests. The corticosterone (CORT) levels and blood morphology were estimated. We found that the RXFP-3 mRNA expression decreased in the brainstem, whereas it increased in the hypothalamus 72 h after acute stress. These molecular changes were accompanied by the increased levels of CORT and anxiety-like behavior detected in the open field test that had been conducted earlier, that is, 24 h after the stress procedure. These findings shed new light on the neurochemical changes that are involved in the compensatory response to adverse events in pubertal male rats and support other data that suggest a regulatory interplay between the RLN-3 pathway and the hypothalamus-pituitary-adrenal axis activity in the mechanisms of anxiety-like behavior.


Subject(s)
Anxiety , Brain , RNA, Messenger , Rats, Wistar , Receptors, G-Protein-Coupled , Stress, Psychological , Animals , Male , Rats , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Anxiety/metabolism , Anxiety/physiopathology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Brain/metabolism , RNA, Messenger/metabolism , Behavior, Animal/physiology , Relaxin/metabolism , Relaxin/genetics , Receptors, Peptide/metabolism , Receptors, Peptide/genetics , Sexual Maturation/physiology , Nerve Tissue Proteins
19.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38958606

ABSTRACT

Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.


Subject(s)
Caloric Restriction , Forkhead Box Protein O1 , Ghrelin , Receptors, Notch , Signal Transduction , Animals , Ghrelin/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Receptors, Notch/metabolism , Receptors, Notch/genetics , Mice , Cell Differentiation , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Cell Proliferation , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Gastric Mucosa/metabolism , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Male , Stomach
20.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999959

ABSTRACT

In the realm of colon carcinoma, significant genetic and epigenetic diversity is observed, underscoring the necessity for tailored prognostic features that can guide personalized therapeutic strategies. In this study, we explored the association between the type 2 bitter taste receptor (TAS2Rs) family-related genes and colon cancer using RNA-sequencing and clinical datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Our preliminary analysis identified seven TAS2Rs genes associated with survival using univariate Cox regression analysis, all of which were observed to be overexpressed in colon cancer. Subsequently, based on these seven TAS2Rs prognostic genes, two colon cancer molecular subtypes (Cluster A and Cluster B) were defined. These subtypes exhibited distinct prognostic and immune characteristics, with Cluster A characterized by low immune cell infiltration and less favorable outcomes, while Cluster B was associated with high immune cell infiltration and better prognosis. Finally, we developed a robust scoring system using a gradient boosting machine (GBM) approach, integrated with the gene-pairing method, to predict the prognosis of colon cancer patients. This machine learning model could improve our predictive accuracy for colon cancer outcomes, underscoring its value in the precision oncology framework.


Subject(s)
Colonic Neoplasms , Gene Expression Regulation, Neoplastic , Receptors, G-Protein-Coupled , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/mortality , Colonic Neoplasms/pathology , Prognosis , Receptors, G-Protein-Coupled/genetics , Biomarkers, Tumor/genetics , Female , Machine Learning , Gene Expression Profiling , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...