Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Schizophr Bull ; 47(5): 1300-1309, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33822178

ABSTRACT

Altered Excitatory/Inhibitory (E/I) balance of cortical synaptic inputs has been proposed as a central pathophysiological factor for psychiatric neurodevelopmental disorders, including schizophrenia (SZ). However, direct measurement of E/I synaptic balance have not been assessed in vivo for any validated SZ animal model. Using a mouse model useful for the study of SZ we show that a selective ablation of NMDA receptors (NMDAr) in cortical and hippocampal interneurons during early postnatal development results in an E/I imbalance in vivo, with synaptic inputs to pyramidal neurons shifted towards excitation in the adult mutant medial prefrontal cortex (mPFC). Remarkably, this imbalance depends on the cortical state, only emerging when theta and gamma oscillations are predominant in the network. Additional brain slice recordings and subsequent 3D morphological reconstruction showed that E/I imbalance emerges after adolescence concomitantly with significant dendritic retraction and dendritic spine re-localization in pyramidal neurons. Therefore, early postnatal ablation of NMDAr in cortical and hippocampal interneurons developmentally impacts on E/I imbalance in vivo in an activity-dependent manner.


Subject(s)
Brain Waves/physiology , Electrophysiological Phenomena/physiology , Hippocampus/physiopathology , Interneurons/physiology , Nerve Net/physiopathology , Prefrontal Cortex/physiopathology , Pyramidal Cells/physiology , Receptors, N-Methyl-D-Aspartate/deficiency , Schizophrenia/physiopathology , Age Factors , Animals , Disease Models, Animal , Hippocampus/metabolism , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Net/metabolism , Parvalbumins/metabolism , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Schizophrenia/metabolism
2.
J Neurochem ; 115(6): 1520-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20950339

ABSTRACT

Soluble amyloid-ß peptide (Aß) oligomers, known to accumulate in Alzheimer's disease brains, target excitatory post-synaptic terminals. This is thought to trigger synapse deterioration, a mechanism possibly underlying memory loss in early stage Alzheimer's disease. A major unknown is the identity of the receptor(s) targeted by oligomers at synapses. Because oligomers have been shown to interfere with N-methyl-d-aspartate receptor (NMDAR) function and trafficking, we hypothesized that NMDARs might be required for oligomer binding to synapses. An amplicon vector was used to knock-down NMDARs in mature hippocampal neurons in culture, yielding 90% reduction in dendritic NMDAR expression and blocking neuronal oxidative stress induced by Aß oligomers, a pathological response that has been shown to be mediated by NMDARs. Remarkably, NMDAR knock-down abolished oligomer binding to dendrites, indicating that NMDARs are required for synaptic targeting of oligomers. Nevertheless, oligomers do not appear to bind directly to NMDARs as indicated by the fact that both oligomer-attacked and non-attacked neurons exhibit similar surface levels of NMDARs. Furthermore, pre-treatment of neurons with insulin down-regulates oligomer-binding sites in the absence of a parallel reduction in surface levels of NMDARs. Establishing that NMDARs are key components of the synaptic oligomer binding complex may illuminate the development of novel approaches to prevent synapse failure triggered by Aß oligomers.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Synapses/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/toxicity , Animals , Cells, Cultured , Gene Knockdown Techniques , Hippocampus/metabolism , Hippocampus/pathology , Peptide Fragments/chemistry , Peptide Fragments/toxicity , Protein Binding/physiology , Rats , Receptors, N-Methyl-D-Aspartate/deficiency , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL