Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.992
Filter
1.
Cells ; 13(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39120267

ABSTRACT

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain locations encompassing the hypothalamus and the brainstem, where the receptor controls several body functions, including metabolism. In a well-defined pathway to decrease appetite, hypothalamic proopiomelanocortin (POMC) neurons localized in the arcuate nucleus (Arc) project to MC4R neurons in the paraventricular nuclei (PVN) to release the natural MC4R agonist α-melanocyte-stimulating hormone (α-MSH). Arc neurons also project excitatory glutamatergic fibers to the MC4R neurons in the PVN for a fast synaptic transmission to regulate a satiety pathway potentiated by α-MSH. By using super-resolution microscopy, we found that in hypothalamic neurons in a primary culture, postsynaptic density protein 95 (PSD95) colocalizes with GluN1, a subunit of the ionotropic N-methyl-D-aspartate receptor (NMDAR). Thus, hypothalamic neurons form excitatory postsynaptic specializations. To study the MC4R distribution at these sites, tagged HA-MC4R under the synapsin promoter was expressed in neurons by adeno-associated virus (AAV) gene transduction. HA-MC4R immunofluorescence peaked at the center and in proximity to the PSD95- and NMDAR-expressing sites. These data provide morphological evidence that MC4R localizes together with glutamate receptors at postsynaptic and peri-postsynaptic sites.


Subject(s)
Hypothalamus , Neurons , Receptor, Melanocortin, Type 4 , Animals , Receptor, Melanocortin, Type 4/metabolism , Receptor, Melanocortin, Type 4/genetics , Neurons/metabolism , Hypothalamus/metabolism , Hypothalamus/cytology , Mice , Synapses/metabolism , Disks Large Homolog 4 Protein/metabolism , Cells, Cultured , Receptors, N-Methyl-D-Aspartate/metabolism
2.
Nat Commun ; 15(1): 6842, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122700

ABSTRACT

Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.


Subject(s)
Astrocytes , Cognition , Glycolysis , Lactic Acid , Mice, Knockout , Serine , Animals , Male , Astrocytes/metabolism , Cognition/physiology , Mice , Lactic Acid/metabolism , Serine/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Hippocampus/metabolism , Synapses/metabolism , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
3.
Behav Brain Res ; 472: 115173, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39097148

ABSTRACT

Glutamate activates the NMDARs, significantly affecting multiple processes such as learning, memory, synaptic integration, and excitatory transmission in the central nervous system. Uncontrolled activation of NMDARs is a significant contributor to synaptic dysfunction. Having a properly functioning NMDAR and synapse is crucial for maintaining neuronal communication. In addition, the dysfunction of NMDAR and synapse function could contribute to the development of neurological disorders at the neuronal level; hence, targeting NMDARs with antagonists in the fight against neurological disorders is a promising route. Recently published results from the animal study on different kinds of brain diseases like stroke, epilepsy, tinnitus, ataxia, Alzheimer's disease, Parkinson's disease, and spinal cord injury have demonstrated promising therapeutic scopes. Several NMDA receptor antagonists, such as memantine, MK801, ketamine, ifenprodil, gacyclidine, amantadine, agmatine, etc., showed encouraging results against different brain disease mouse models. Given the unique expression of different subunits of the well-organized NMDA receptor system by neurons. It could potentially lead to the development of medications specifically targeting certain receptor subtypes. For a future researcher, conducting more targeted research and trials is crucial to fully understand and develop highly specific medications with good clinical effects and potential neuroprotective properties.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/drug effects , Animals , Humans , Excitatory Amino Acid Antagonists/pharmacology , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Neuroprotective Agents/pharmacology
4.
Biol Res ; 57(1): 56, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175009

ABSTRACT

Synaptic dysfunction is an early feature in Alzheimer's disease (AD) pathogenesis and a major morphological correlate of memory deficits. Given the main synaptic location of N-methyl-D-aspartate receptors (NMDARs), their dysregulation has been implicated in these pathological effects. Here, to detect possible alterations in the expression and synaptic localisation of the GluN1 subunit in the brain of amyloidogenic APP/PS1 mice, we employed histoblot and SDS-digested freeze-fracture replica labelling (SDS-FRL) techniques. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus in a layer-dependent manner, in the cortex and the caudate putamen of APP/PS1 transgenic mice at 12 months of age but was unaltered at 1 and 6 months. Using quantitative SDS-FRL, we unravelled the molecular organisation of GluN1 in seven excitatory synapse populations at a high spatial resolution in the CA1 and CA3 fields and the DG of the hippocampus in 12-month-old APP/PS1 mice. In the CA1 field, the labelling density for GluN1 in the excitatory synapses established on spines and interneurons, was significantly reduced in APP/PS1 mice compared to age-matched wild-type mice in the stratum lacunosum-moleculare but unaltered in the stratum radiatum. In the CA3 field, synaptic GluN1 was reduced in mossy fibre-CA3 pyramidal cell synapses but unaltered in the A/C-CA3 pyramidal cell synapses. In the DG, the density of GluN1 in granule cell-perforant pathway synapses was reduced in APP/PS1 mice. Altogether, our findings provide evidence of specific alterations of synaptic GluN1 in the trisynaptic circuit of the hippocampus in Aß pathology. This differential vulnerability in the disruption of NMDARs may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit and cognitive impairment characteristic of APP/PS1 mice.


Subject(s)
Alzheimer Disease , Hippocampus , Mice, Transgenic , Receptors, N-Methyl-D-Aspartate , Synapses , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Synapses/metabolism , Synapses/pathology , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Mice , Disease Models, Animal , Male , Amyloid beta-Peptides/metabolism
5.
Open Vet J ; 14(7): 1634-1643, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39175964

ABSTRACT

Background: Chronic toxoplasmosis has been strongly implicated in the development of psychosis and schizophrenia. Additionally, the understanding of schizophrenia has been significantly reshaped by insights into N-methyl-D-aspartate receptor (NMDAR) hypofunction. Aim: This study aimed to compare the behavioral, antioxidant, and NMDAR changes in mice subjected to Toxoplasma gondii infection and those treated with ketamine to induce schizophrenia-like symptoms. Methods: Sixty male BALB/c mice were divided into six groups: toxoplasmosis (TOXO) (infected), ketamine-induced schizophrenia (KET), TOXO+KET, TOXO+sulfadiazine-trimethoprim treatment (SDT), TOXO+KET+SDT, and control (CON) (uninfected). After 10 weeks post-infection, behavioral tests were conducted, brain antioxidant status and lipid peroxidation were analyzed, and NMDA-NR1/NR2A expressions were assessed. TOXO and KET induced distinct behaviors: hyperlocomotion, anxiety, and memory impairment. Results: Antioxidant enzyme levels decreased, and lipid peroxidation increased in TOXO and schizophrenic mice brains. NMDAR downregulation, especially NR-1 and NR2A, was evident due to T. gondii and ketamine. Sulfadiazine-trimethoprim ameliorated NMDAR downregulation, but not all of the behavioral alterations. Conclusion: Further studies are needed to elucidate specific NMDAR subunit roles in toxoplasmosis-induced pathophysiology, offering potential therapeutic insights. This investigation highlights the intricate relationship between chronic toxoplasmosis, NMDAR dysfunction, and schizophrenia-like behaviors. Insights gained could pave the way for innovative interventions targeting both cognitive and neurological impairments associated with these conditions.


Subject(s)
Ketamine , Mice, Inbred BALB C , Receptors, N-Methyl-D-Aspartate , Schizophrenia , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Male , Schizophrenia/drug therapy , Schizophrenia/metabolism , Mice , Ketamine/administration & dosage , Ketamine/pharmacology , Ketamine/therapeutic use , Toxoplasmosis/drug therapy , Behavior, Animal/drug effects , Chronic Disease , Toxoplasmosis, Animal/drug therapy
6.
Science ; 385(6710): eadh7814, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39146415

ABSTRACT

Spontaneous activity refines neural connectivity prior to the onset of sensory experience, but it remains unclear how such activity instructs axonal connectivity with subcellular precision. We simultaneously measured spontaneous retinal waves and the activity of individual retinocollicular axons and tracked morphological changes in axonal arbors across hours in vivo in neonatal mice. We demonstrate that the correlation of an axon branch's activity with neighboring axons or postsynaptic neurons predicts whether the branch will be added, stabilized, or eliminated. Desynchronizing individual axons from their local networks, changing the pattern of correlated activity, or blocking N-methyl-d-aspartate receptors all significantly altered single-axon morphology. These observations provide the first direct evidence in vivo that endogenous patterns of correlated neuronal activity instruct fine-scale refinement of axonal processes.


Subject(s)
Axons , Receptors, N-Methyl-D-Aspartate , Retinal Ganglion Cells , Animals , Mice , Axons/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Retinal Ganglion Cells/physiology , Superior Colliculi/physiology , Neuronal Plasticity , Mice, Mutant Strains
7.
Neuropharmacology ; 258: 110097, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094831

ABSTRACT

Aging is characterized by a functional decline in several physiological systems. α-Klotho-hypomorphic mice (Kl-/-) exhibit accelerated aging and cognitive decline. We evaluated whether male and female α-Klotho-hypomorphic mice show changes in the expression of synaptic proteins, N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, postsynaptic density protein 95 (PSD-95), synaptophysin and synapsin, and the activity of Na+, K+-ATPase (NaK) isoforms in the cerebellum and hippocampus. In this study, we demonstrated that in the cerebellum, Kl-/- male mice have reduced expression of GluA1 (AMPA) compared to wild-type (Kl+/+) males and Kl-/- females. Also, Kl-/- male and female mice show reduced ɑ2/ɑ3-NaK and Mg2+-ATPase activities in the cerebellum, respectively, and sex-based differences in NaK and Mg2+-ATPase activities in both the regions. Our findings suggest that α-Klotho could influence the expression of AMPAR and the activity of NaK isoforms in the cerebellum in a sex-dependent manner, and these changes may contribute, in part, to cognitive decline.


Subject(s)
Cerebellum , Hippocampus , Klotho Proteins , Receptors, AMPA , Sex Characteristics , Sodium-Potassium-Exchanging ATPase , Animals , Cerebellum/metabolism , Male , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Female , Hippocampus/metabolism , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Klotho Proteins/metabolism , Mice , Synaptophysin/metabolism , Disks Large Homolog 4 Protein/metabolism , Disks Large Homolog 4 Protein/genetics , Mice, Knockout , Synapsins/metabolism , Synapsins/genetics , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics
8.
Nature ; 631(8022): 826-834, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38987597

ABSTRACT

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.


Subject(s)
Acid Sensing Ion Channels , Brain Ischemia , Glutamic Acid , Animals , Female , Humans , Male , Mice , 2-Amino-5-phosphonovalerate/adverse effects , 2-Amino-5-phosphonovalerate/metabolism , 2-Amino-5-phosphonovalerate/pharmacology , Acid Sensing Ion Channels/chemistry , Acid Sensing Ion Channels/deficiency , Acid Sensing Ion Channels/drug effects , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Allosteric Regulation/drug effects , Binding Sites/genetics , Brain Ischemia/chemically induced , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Glutamic Acid/analogs & derivatives , Glutamic Acid/metabolism , Glutamic Acid/pharmacology , Glutamic Acid/toxicity , Mice, Knockout , Mutagenesis, Site-Directed , Protons , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism
9.
Transl Psychiatry ; 14(1): 272, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961057

ABSTRACT

Valproic acid (VPA) is one of the most effective antiepileptic drugs, and exposing animals to VPA during gestation has been used as a model for autism spectrum disorder (ASD). Numerous studies have shown that impaired synaptic transmission in the cerebellar cortical circuits is one of the reasons for the social deficits and repetitive behavior seen in ASD. In this study, we investigated the effect of VPA exposure during pregnancy on tactile stimulation-evoked cerebellar mossy fiber-granule cell (MF-GC) synaptic transmission in mice anesthetized with urethane. Three-chamber testing showed that mice exposed to VPA mice exhibited a significant reduction in social interaction compared with the control group. In vivo electrophysiological recordings revealed that a pair of air-puff stimulation on ipsilateral whisker pad evoked MF-GC synaptic transmission, N1, and N2. The evoked MF-GC synaptic responses in VPA-exposed mice exhibited a significant increase in the area under the curve (AUC) of N1 and the amplitude and AUC of N2 compared with untreated mice. Cerebellar surface application of the selective N-methyl-D-aspartate (NMDA) receptor blocker D-APV significantly inhibited facial stimulation-evoked MF-GC synaptic transmission. In the presence of D-APV, there were no significant differences between the AUC of N1 and the amplitude and AUC of N2 in the VPA-exposed mice and those of the untreated mice. Notably, blockade of the GluN2A subunit-containing, but not the GluN2B subunit-containing, NMDA receptor, significantly inhibited MF-GC synaptic transmission and decreased the AUC of N1 and the amplitude and AUC of N2 in VPA-exposed mice to levels similar to those seen in untreated mice. In addition, the GluN2A subunit-containing NMDA receptor was expressed at higher levels in the GC layer of VPA-treated mice than in control mice. These results indicate that gestational VPA exposure in mice produces ASD-like behaviors, accompanied by increased cerebellar MF-GC synaptic transmission and an increase in GluN2A subunit-containing NMDA receptor expression in the offspring.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Prenatal Exposure Delayed Effects , Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Valproic Acid , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Valproic Acid/pharmacology , Pregnancy , Female , Mice , Prenatal Exposure Delayed Effects/physiopathology , Synaptic Transmission/drug effects , Autism Spectrum Disorder/chemically induced , Male , Cerebellum/drug effects , Cerebellum/metabolism , Anticonvulsants/pharmacology
10.
Sci Rep ; 14(1): 15239, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956130

ABSTRACT

Dysbindin-1, a protein encoded by the schizophrenia susceptibility gene DTNBP1, is reduced in the hippocampus of schizophrenia patients. It is expressed in various cellular populations of the brain and implicated in dopaminergic and glutamatergic transmission. To investigate the impact of reduced dysbindin-1 in excitatory cells on hippocampal-associated behaviors and synaptic transmission, we developed a conditional knockout mouse model with deletion of dysbindin-1 gene in CaMKIIα expressing cells. We found that dysbindin-1 reduction in CaMKII expressing cells resulted in impaired spatial and social memories, and attenuation of the effects of glutamate N-methyl-d-asparate receptor (NMDAR) antagonist MK801 on locomotor activity and prepulse inhibition of startle (PPI). Dysbindin-1 deficiency in CaMKII expressing cells also resulted in reduced protein levels of NMDAR subunit GluN1 and GluN2B. These changes were associated with increased expression of immature dendritic spines in basiliar dendrites and abnormalities in excitatory synaptic transmission in the ventral hippocampus. These results highlight the functional relevance of dysbindin-1 in excitatory cells and its implication in schizophrenia-related pathologies.


Subject(s)
Dysbindin , Hippocampus , Mice, Knockout , Neurons , Receptors, N-Methyl-D-Aspartate , Synaptic Transmission , Animals , Dysbindin/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Hippocampus/metabolism , Mice , Neurons/metabolism , Schizophrenia/metabolism , Schizophrenia/pathology , Schizophrenia/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Male , Dizocilpine Maleate/pharmacology , Behavior, Animal , Dendritic Spines/metabolism , Nerve Tissue Proteins
11.
Genes Brain Behav ; 23(4): e12908, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39052331

ABSTRACT

Rough-and-tumble play in juvenile rats and song in flocks of adult songbirds outside a breeding context (gregarious song) are two distinct forms of non-sexual social behavior. Both are believed to play roles in the development of sociomotor skills needed for later life-history events, including reproduction, providing opportunities for low-stakes practice. Additionally, both behaviors are thought to be intrinsically rewarded and are associated with a positive affective state. Given the functional similarities of these behaviors, this study used RNA-sequencing to identify commonalities in their underlying neurochemical systems within the medial preoptic area. This brain region is implicated in multiple social behaviors, including song and play, and is highly conserved across vertebrates. DESeq2 and rank-rank hypergeometric overlap analyses identified a shared neurotranscriptomic profile in adult European starlings singing high rates of gregarious song and juvenile rats playing at high rates. Transcript levels for several glutamatergic receptor genes, such as GRIN1, GRIN2A, and GRIA1, were consistently upregulated in highly gregarious (i.e., playful/high singing) animals. This study is the first to directly investigate shared neuromodulators of positive, non-sexual social behaviors across songbirds and mammals. It provides insight into a conserved brain region that may regulate similar behaviors across vertebrates.


Subject(s)
Preoptic Area , Social Behavior , Vocalization, Animal , Animals , Preoptic Area/metabolism , Rats , Male , Vocalization, Animal/physiology , Transcriptome , Starlings/genetics , Starlings/physiology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Songbirds/genetics , Sequence Analysis, RNA/methods
12.
Cell ; 187(15): 3854-3856, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059361

ABSTRACT

Glucagon-like peptide-1 (GLP-1) and N-methyl-D-aspartate (NMDA) receptors in the brain regulate metabolic homeostasis. In a paper published in Nature, Petersen et al. describe a bimodal molecule that conjugates a GLP-1 analog with MK-801 (NMDA receptor antagonist), which lowers feeding and body weight to a greater extent than the GLP-1R agonist alone.


Subject(s)
Brain , Glucagon-Like Peptide 1 , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Glucagon-Like Peptide 1/metabolism , Brain/metabolism , Animals , Humans , Dizocilpine Maleate/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists
13.
Behav Pharmacol ; 35(6): 327-337, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39051912

ABSTRACT

Emerging evidence suggests that crocin rescues stress-induced depressive symptoms in mice via stimulation of hippocampal neurogenesis. Glutamate modulators mainly involving N-methyl- d -aspartate (NMDA) receptors (NMDARs) have highlighted a role in neural development, synaptic plasticity, and depression. The research presented here was designed to appraise the interaction between NMDAR agents and crocin on depressive-related behaviors in the NMRI male mice exposed to acute restraint stress (ARS) for a period of 4 h. The mice were submitted to the splash test, forced swimming test, and tail suspension test to evaluate depressive-like behavior. The ARS decreased the grooming duration in the splash test and increased immobility time in the forced swimming test and tail suspension test, suggesting a depressive-like phenotype. NMDA (0.25 and 0.5 µg/mouse, intracerebroventricular) did not alter depression-related profiles in both non-acute restraint stress (NARS) and ARS mice, while the same doses of NMDAR antagonist D-AP5 potentiated the antidepressive-like activities in the ARS mice compared with the NARS mice. Moreover, a low dose of NMDA did not change depression-related parameters in the crocin-treated NARS or ARS mice, while D-AP5 enhanced the crocin response in the NARS and ARS mice. Isobologram analysis noted a synergism between crocin and D-AP5 on antidepressive-like behavior in the NARS and ARS mice. Collectively, the combination of crocin and D-AP5 was shown to mitigate depression symptoms and can be potentially used for the treatment of depression disorders.


Subject(s)
Antidepressive Agents , Carotenoids , Depression , Drug Synergism , Restraint, Physical , Stress, Psychological , Animals , Male , Mice , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Depression/drug therapy , Antidepressive Agents/pharmacology , Carotenoids/pharmacology , 2-Amino-5-phosphonovalerate/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Disease Models, Animal , Hindlimb Suspension , Behavior, Animal/drug effects , Swimming , Dose-Response Relationship, Drug
14.
Commun Biol ; 7(1): 806, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961250

ABSTRACT

Developmental synapse elimination is crucial for shaping mature neural circuits. In the neonatal mouse cerebellum, Purkinje cells (PCs) receive excitatory synaptic inputs from multiple climbing fibers (CFs) and synapses from all but one CF are eliminated by around postnatal day 20. Heterosynaptic interaction between CFs and parallel fibers (PFs), the axons of cerebellar granule cells (GCs) forming excitatory synapses onto PCs and molecular layer interneurons (MLIs), is crucial for CF synapse elimination. However, mechanisms for this heterosynaptic interaction are largely unknown. Here we show that deletion of AMPA-type glutamate receptor functions in GCs impairs CF synapse elimination mediated by metabotropic glutamate receptor 1 (mGlu1) signaling in PCs. Furthermore, CF synapse elimination is impaired by deleting NMDA-type glutamate receptors from MLIs. We propose that PF activity is crucial for CF synapse elimination by directly activating mGlu1 in PCs and indirectly enhancing the inhibition of PCs through activating NMDA receptors in MLIs.


Subject(s)
Cerebellum , Receptors, Metabotropic Glutamate , Synapses , Animals , Cerebellum/metabolism , Cerebellum/physiology , Cerebellum/cytology , Synapses/physiology , Synapses/metabolism , Mice , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Purkinje Cells/metabolism , Purkinje Cells/physiology , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Interneurons/metabolism , Interneurons/physiology , Mice, Knockout , Mice, Inbred C57BL
15.
Commun Biol ; 7(1): 852, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997325

ABSTRACT

Astrocytes play a key role in the regulation of synaptic strength and are thought to orchestrate synaptic plasticity and memory. Yet, how specifically astrocytes and their neuroactive transmitters control learning and memory is currently an open question. Recent experiments have uncovered an astrocyte-mediated feedback loop in CA1 pyramidal neurons which is started by the release of endocannabinoids by active neurons and closed by astrocytic regulation of the D-serine levels at the dendrites. D-serine is a co-agonist for the NMDA receptor regulating the strength and direction of synaptic plasticity. Activity-dependent D-serine release mediated by astrocytes is therefore a candidate for mediating between long-term synaptic depression (LTD) and potentiation (LTP) during learning. Here, we show that the mathematical description of this mechanism leads to a biophysical model of synaptic plasticity consistent with the phenomenological model known as the BCM model. The resulting mathematical framework can explain the learning deficit observed in mice upon disruption of the D-serine regulatory mechanism. It shows that D-serine enhances plasticity during reversal learning, ensuring fast responses to changes in the external environment. The model provides new testable predictions about the learning process, driving our understanding of the functional role of neuron-glia interaction in learning.


Subject(s)
Astrocytes , Neuronal Plasticity , Reversal Learning , Animals , Astrocytes/physiology , Astrocytes/metabolism , Neuronal Plasticity/physiology , Mice , Reversal Learning/physiology , Serine/metabolism , Models, Neurological , Receptors, N-Methyl-D-Aspartate/metabolism
16.
PLoS Biol ; 22(7): e3002706, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950066

ABSTRACT

Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.


Subject(s)
CA3 Region, Hippocampal , Hippocampus , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Male , Rats , CA3 Region, Hippocampal/physiology , Hippocampus/physiology , Hippocampus/metabolism , Mental Recall/physiology , Memory, Episodic , Dentate Gyrus/physiology , Dentate Gyrus/metabolism , Rats, Long-Evans , Cues , Memory/physiology
17.
PLoS Biol ; 22(7): e3002687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38991663

ABSTRACT

Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.


Subject(s)
Astrocytes , Cognitive Dysfunction , Hippocampus , Lipocalin-2 , Long-Term Potentiation , Neuroinflammatory Diseases , Neurons , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Lipocalin-2/metabolism , Lipocalin-2/genetics , Mice , Hippocampus/metabolism , Hippocampus/pathology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Neurons/metabolism , Neurons/pathology , Mice, Knockout , Male , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate/metabolism , Optogenetics , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/metabolism , Disease Models, Animal
18.
Biochem Biophys Res Commun ; 730: 150385, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39002200

ABSTRACT

Major depression is a severe neuropsychiatric disorder that poses a significant challenge to health. However, development of an effective therapy for the disease has long been difficult. Here, we investigate the efficacy of a novel combinatorial treatment employing sub-effective doses of Ro25-6981, an antagonist targeting GluN2B-containing NMDA receptors, in conjunction with ZL006, an inhibitor of the PSD95/nNOS, on mouse models of depression. We employed social isolation, chronic restraint stress, or a combination of both to establish a depressed mouse model. Treatment with the drug combination reduced depressive-like behaviors without affecting locomotor activity in mice subjected to social isolation or chronic restraint stress. Furthermore, the combination therapy ameliorated depressive-like behaviors induced by combined stress of chronic restraint followed by social isolation. Mechanistic studies revealed that the combined treatment downregulated the hippocampal nitric oxide level. However, the therapeutic benefits of this combination were negated by the activation of NMDA receptors with a low dose of NMDA or by increasing nitric oxide levels with l-arginine. Moreover, the combinatorial treatment had negligible effects on object memory and contextual fear memory. Our data establish a combined therapy paradigm, providing a potential strategy targeting major depression.


Subject(s)
Depression , Mice, Inbred C57BL , Piperidines , Receptors, N-Methyl-D-Aspartate , Stress, Psychological , Animals , Male , Mice , Depression/drug therapy , Depression/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Stress, Psychological/drug therapy , Piperidines/pharmacology , Piperidines/therapeutic use , Phenols/pharmacology , Phenols/therapeutic use , Behavior, Animal/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Drug Therapy, Combination , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Nitric Oxide/metabolism
19.
Nature ; 632(8023): 209-217, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085540

ABSTRACT

Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity1. The N-methyl-D-aspartate receptor (NMDAR) is unique among all ligand-gated channels, requiring two ligands-glutamate and glycine-for activation. These receptors function as heterotetrameric ion channels, with the channel opening dependent on the simultaneous binding of glycine and glutamate to the extracellular ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, respectively2,3. The exact molecular mechanism for channel gating by the two ligands has been unclear, particularly without structures representing the open channel and apo states. Here we show that the channel gate opening requires tension in the linker connecting the LBD and transmembrane domain (TMD) and rotation of the extracellular domain relative to the TMD. Using electron cryomicroscopy, we captured the structure of the GluN1-GluN2B (GluN1-2B) NMDAR in its open state bound to a positive allosteric modulator. This process rotates and bends the pore-forming helices in GluN1 and GluN2B, altering the symmetry of the TMD channel from pseudofourfold to twofold. Structures of GluN1-2B NMDAR in apo and single-liganded states showed that binding of either glycine or glutamate alone leads to distinct GluN1-2B dimer arrangements but insufficient tension in the LBD-TMD linker for channel opening. This mechanistic framework identifies a key determinant for channel gating and a potential pharmacological strategy for modulating NMDAR activity.


Subject(s)
Glutamic Acid , Glycine , Ion Channel Gating , Receptors, N-Methyl-D-Aspartate , Animals , Rats , Allosteric Regulation , Cryoelectron Microscopy , Glutamic Acid/metabolism , Glycine/metabolism , Ligands , Models, Molecular , Oocytes/metabolism , Protein Domains , Protein Multimerization , Protein Subunits/metabolism , Protein Subunits/chemistry , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/ultrastructure , Rotation , Xenopus laevis
20.
Biochemistry (Mosc) ; 89(6): 1045-1060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38981700

ABSTRACT

Astrocytic NMDA receptors (NMDARs) are heterotetramers, whose expression and properties are largely determined by their subunit composition. Astrocytic NMDARs are characterized by a low sensitivity to magnesium ions and low calcium conductivity. Their activation plays an important role in the regulation of various intracellular processes, such as gene expression and mitochondrial function. Astrocytic NMDARs are involved in calcium signaling in astrocytes and can act through the ionotropic and metabotropic pathways. Astrocytic NMDARs participate in the interactions of the neuroglia, thus affecting synaptic plasticity. They are also engaged in the astrocyte-vascular interactions and contribute to the regulation of vascular tone. Astrocytic NMDARs are involved in various pathologies, such as ischemia and hyperammonemia, and their blockade prevents negative changes in astrocytes during these diseases.


Subject(s)
Astrocytes , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Astrocytes/metabolism , Humans , Animals , Calcium Signaling , Neuronal Plasticity
SELECTION OF CITATIONS
SEARCH DETAIL