Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.125
Filter
1.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891978

ABSTRACT

Binge alcohol consumption during adolescence can produce lasting deficits in learning and memory while also increasing the susceptibility to substance use disorders. The adolescent intermittent ethanol (AIE) rodent model mimics human adolescent binge drinking and has identified the nucleus basalis magnocellularis (NbM) as a key site of pathology. The NbM is a critical regulator of prefrontal cortical (PFC) cholinergic function and attention. The cholinergic phenotype is controlled pro/mature neurotrophin receptor activation. We sought to determine if p75NTR activity contributes to the loss of cholinergic phenotype in AIE by using a p75NTR modulator (LM11A-31) to inhibit prodegenerative signaling during ethanol exposure. Male and female rats underwent 5 g/kg ethanol (AIE) or water (CON) exposure following 2-day-on 2-day-off cycles from postnatal day 25-57. A subset of these groups also received a protective dose of LM11A-31 (50 mg/kg) during adolescence. Rats were trained on a sustained attention task (SAT) and behaviorally relevant acetylcholine (ACh) activity was recorded in the PFC with a fluorescent indicator (AChGRAB 3.0). AIE produced learning deficits on the SAT, which were spared with LM11A-31. In addition, PFC ACh activity was blunted by AIE, which LM11A-31 corrected. Investigation of NbM ChAT+ and TrkA+ neuronal expression found that AIE led to a reduction of ChAT+TrkA+ neurons, which again LM11A-31 protected. Taken together, these findings demonstrate the p75NTR activity during AIE treatment is a key regulator of cholinergic degeneration.


Subject(s)
Acetylcholine , Cholinergic Neurons , Ethanol , Prefrontal Cortex , Animals , Female , Male , Rats , Acetylcholine/metabolism , Atrophy , Behavior, Animal/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/drug effects , Disease Models, Animal , Ethanol/toxicity , Nerve Tissue Proteins , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Rats, Sprague-Dawley , Receptors, Growth Factor , Receptors, Nerve Growth Factor/metabolism
2.
Nat Med ; 30(6): 1761-1770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760589

ABSTRACT

p75 neurotrophin receptor (p75NTR) signaling pathways substantially overlap with degenerative networks active in Alzheimer disease (AD). Modulation of p75NTR with the first-in-class small molecule LM11A-31 mitigates amyloid-induced and pathological tau-induced synaptic loss in preclinical models. Here we conducted a 26-week randomized, placebo-controlled, double-blinded phase 2a safety and exploratory endpoint trial of LM11A-31 in 242 participants with mild to moderate AD with three arms: placebo, 200 mg LM11A-31 and 400 mg LM11A-31, administered twice daily by oral capsules. This trial met its primary endpoint of safety and tolerability. Within the prespecified secondary and exploratory outcome domains (structural magnetic resonance imaging, fluorodeoxyglucose positron-emission tomography and cerebrospinal fluid biomarkers), significant drug-placebo differences were found, consistent with the hypothesis that LM11A-31 slows progression of pathophysiological features of AD; no significant effect of active treatment was observed on cognitive tests. Together, these results suggest that targeting p75NTR with LM11A-31 warrants further investigation in larger-scale clinical trials of longer duration. EU Clinical Trials registration: 2015-005263-16 ; ClinicalTrials.gov registration: NCT03069014 .


Subject(s)
Alzheimer Disease , Positron-Emission Tomography , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Female , Aged , Double-Blind Method , Aged, 80 and over , Magnetic Resonance Imaging , Receptor, Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/metabolism , Middle Aged , Biomarkers/cerebrospinal fluid , Treatment Outcome , Isoleucine/analogs & derivatives , Morpholines , Nerve Tissue Proteins
3.
Sci Rep ; 14(1): 10583, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719848

ABSTRACT

Identifying marker combinations for robust prognostic validation in primary tumour compartments remains challenging. We aimed to assess the prognostic significance of CSC markers (ALDH1, CD44, p75NTR, BMI-1) and E-cadherin biomarkers in OSCC. We analysed 94 primary OSCC and 67 metastatic lymph node samples, including central and invasive tumour fronts (ITF), along with clinicopathological data. We observed an increase in ALDH1+/CD44+/BMI-1- tumour cells in metastatic lesions compared to primary tumours. Multivariate analysis highlighted that elevated p75NTR levels (at ITF) and reduced E-cadherin expression (at the tumour centre) independently predicted metastasis, whilst ALDH1high exhibited independent predictive lower survival at the ITF, surpassing the efficacy of traditional tumour staging. Then, specifically at the ITF, profiles characterized by CSChighE-cadherinlow (ALDH1highp75NTRhighE-cadherinlow) and CSCintermediateE-cadherinlow (ALDH1 or p75NTRhighE-cadherinlow) were significantly associated with worsened overall survival and increased likelihood of metastasis in OSCC patients. In summary, our study revealed diverse tumour cell profiles in OSCC tissues, with varying CSC and E-cadherin marker patterns across primary tumours and metastatic sites. Given the pivotal role of reduced survival rates as an indicator of unfavourable prognosis, the immunohistochemistry profile identified as CSChighE-cadherinlow at the ITF of primary tumours, emerges as a preferred prognostic marker closely linked to adverse outcomes in OSCC.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Biomarkers, Tumor , Cadherins , Carcinoma, Squamous Cell , Mouth Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Aldehyde Dehydrogenase 1 Family/metabolism , Biomarkers, Tumor/metabolism , Cadherins/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Hyaluronan Receptors/metabolism , Immunohistochemistry , Lymphatic Metastasis , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/mortality , Mouth Neoplasms/diagnosis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Nerve Tissue Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Prognosis , Receptors, Nerve Growth Factor/metabolism , Retinal Dehydrogenase/metabolism
4.
Clin Immunol ; 263: 110206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599263

ABSTRACT

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.


Subject(s)
Acute Lung Injury , Mice, Inbred C57BL , Neutrophils , Phagocytosis , Receptors, IgG , Receptors, Nerve Growth Factor , Sepsis , Animals , Acute Lung Injury/immunology , Acute Lung Injury/etiology , Neutrophils/immunology , Neutrophils/metabolism , Sepsis/immunology , Sepsis/complications , Humans , Receptors, IgG/metabolism , Receptors, IgG/genetics , Receptors, IgG/immunology , Mice , Male , Phagocytosis/immunology , Receptors, Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/immunology , Mice, Knockout , Lipopolysaccharides , Cytokines/metabolism , Cytokines/immunology , Lung/immunology , Lung/pathology , Female , NF-kappa B/metabolism , NF-kappa B/immunology , Nerve Tissue Proteins
5.
Nat Commun ; 15(1): 3225, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622181

ABSTRACT

Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. Recent clinical trials of the nerve growth factor (NGF) inhibitors in OA patients have suggested adverse effects of NGF inhibition on joint structure. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression in mice. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study suggests a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Mice , Animals , Receptor, Nerve Growth Factor , NF-kappa B , Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor , Inflammation , Cartilage, Articular/metabolism , Joints/metabolism
6.
FEBS Open Bio ; 14(4): 643-654, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429912

ABSTRACT

The neurotrophin nerve growth factor (NGF) and its precursor proNGF are both bioactive and exert similar or opposite actions depending on the cell target and its milieu. The balance between NGF and proNGF is crucial for cell and tissue homeostasis and it is considered an indicator of pathological conditions. Proteolytical cleavage of proNGF to the mature form results in different fragments, whose function and/or bioactivity is still unclear. The present study was conducted to investigate the distribution of proNGF fragments derived from endogenous cleavage in brain and peripheral tissues of adult rats in the healthy condition and following inflammatory lipopolysaccharide (LPS) challenge. Different anti-proNGF antibodies were tested and the presence of short peptides corresponding to the prodomain sequence (pdNGFpep) was identified. Processing of proNGF was found to be tissue-specific and accumulation of pdNGFpeps was found in inflamed tissues, mainly in testis, intestine and heart, suggesting a possible correlation between organ functions and a response to insults and/or injury. The bioactivity of pdNGFpep was also demonstrated in vitro by using primary hippocampal neurons. Our study supports a biological function for the NGF precursor prodomain and indicates that short peptides from residues 1-60, differing from the 70-110 sequence, induce apoptosis, thereby opening the way for identification of new molecular targets to study pathological conditions.


Subject(s)
Nerve Growth Factor , Neurons , Male , Rats , Animals , Nerve Growth Factor/metabolism , Neurons/metabolism , Receptors, Nerve Growth Factor/metabolism , Brain/metabolism , Hippocampus/metabolism
7.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473977

ABSTRACT

Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.


Subject(s)
Killifishes , Nerve Growth Factors , Receptors, Nerve Growth Factor , Humans , Receptors, Nerve Growth Factor/metabolism , Nerve Growth Factors/metabolism , Receptor Protein-Tyrosine Kinases/physiology , Retina/metabolism , Receptor, trkA , Neurotrophin 3 , Brain-Derived Neurotrophic Factor
8.
Cell Rep ; 43(2): 113705, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38307025

ABSTRACT

Nerve growth factor receptor (NGFR) is expressed by follicular dendritic cells (FDCs). However, the role of NGFR in the humoral response is not well defined. Here, we study the effect of Ngfr loss on lymph node organization and function, demonstrating that Ngfr depletion leads to spontaneous germinal center (GC) formation and an expansion of the GC B cell compartment. In accordance with this effect, stromal cells are altered in Ngfr-/- mice with a higher frequency of FDCs, characterized by CD21/35, MAdCAM-1, and VCAM-1 overexpression. GCs are located ectopically in Ngfr-/- mice, with lost polarization together with impaired high-affinity antibody production and an increase in circulating autoantibodies. We observe higher levels of autoantibodies in Bcl2 Tg/Ngfr-/- mice, concomitant with a higher incidence of autoimmunity and lower overall survival. Our work shows that NGFR is involved in maintaining GC structure and function, participating in GC activation, antibody production, and immune tolerance.


Subject(s)
Receptor, Nerve Growth Factor , Receptors, Nerve Growth Factor , Animals , Mice , Autoantibodies , Dendritic Cells, Follicular , Germinal Center
9.
Cancer Med ; 13(3): e6736, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38204220

ABSTRACT

BACKGROUND: The mechanism of decreased T cells infiltrating tumor tissues in hepatocellular carcinoma is poorly understood. METHODS: Cells were separated from the single-cell RNA-sequence dataset of hepatocellular carcinoma patients (GSE149614) for cell-cell communication. Flow cytometry, EDU staining, H3-Ser28 staining, confocal immunofluorescence staining, western blotting and naked microsubcutaneous tumors were performed for the mechanism of NGF-NGFR promoting proliferation. RESULTS: The present study has revealed that during the process of T-cell infiltration from adjacent tissues to tumor tissues, an inefficiency in NGF-NGFR communication occurs in the tumor tissues. Importantly, NGF secreted by tumor cells interacts with NGFR present on the membranes of the infiltrated T cells, thereby promoting the proliferation through the activation of mitotic spindle signals. Mechanistically, the mediation of mitotic spindle signal activation promoting proliferation is executed by HDAC1-mediated inhibition of unclear trans-localization of PREX1. Furthermore, PD-1 mAb acts synergistically with the NGF-NGFR communication to suppress tumor progression in both mouse models and HCC patients. Additionally, NGF-NGFR communication was positively correlates with the PD-1/PDL-1 expression. However, expressions of NGF and NGFR are low in tumor tissues, which is responsible for the invasive clinicopathological features and the disappointing prognosis in HCC patients. CONCLUSION: Inefficiency in NGF-NGFR communication impairs PD-1 mAb immunotherapy and could thus be utilized as a novel therapeutic target in the treatment of HCC patients in clinical practice.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/therapy , Programmed Cell Death 1 Receptor , Liver Neoplasms/therapy , T-Lymphocytes , Immunotherapy , Guanine Nucleotide Exchange Factors , Nerve Tissue Proteins , Receptors, Nerve Growth Factor
10.
FASEB J ; 38(1): e23312, 2024 01.
Article in English | MEDLINE | ID: mdl-38161282

ABSTRACT

ProBDNF is the precursor protein of brain-derived neurotrophic factor (BDNF) expressed in the central nervous system and peripheral tissues. Previous studies showed that the blood levels of both proBDNF and p75 neurotrophic receptors (p75NTR) in major depressive disorder (MDD) were increased, but which blood cell types express proBDNF and its receptors is not known. Furthermore, the relationship between proBDNF/p75NTR and inflammatory cytokines in peripheral blood of MDD is unclear. Peripheral blood mononuclear cells (PBMCs) and serum were obtained from depressive patients (n = 32) and normal donors (n = 20). We examined the expression of proBDNF and inflammatory markers and their correlative relationship in patients with major depression. Using flow cytometry analysis, we examined which blood cells express proBDNF and its receptors. Finally, the role of proBDNF/p75NTR signal in inflammatory immune activity of PBMCs was verified in vitro experiments. Inflammatory cytokines in PBMC from MDD patients were increased and correlated with the major depression scores. The levels of IL-1ß and IL-10 were also positively correlated with the major depression scores, while the levels of TNF-α and IL-6 were negatively correlated with the major depression scores. Intriguingly, the levels of sortilin were positively correlated with IL-1ß. Q-PCR and Western blots showed proBDNF, p75NTR, and sortilin levels were significantly increased in PBMCs from MDD patients compared with that from the normal donors. Flow cytometry studies showed that proBDNF and p75NTR were present mainly in CD4+ and CD8+ T cells. The number of proBDNF and p75NTR positive CD4+ and CD8+ T cells from MDD patients was increased and subsequently reversed after therapeutic management. Exogenous proBDNF protein or p75ECD-Fc treatment of cultured PBMC affected the release of inflammatory cytokines in vitro. ProBDNF promoted the expression of inflammatory cytokines, while p75ECD-Fc inhibited the expression of inflammatory cytokines. Given there was an inflammatory response of lymphocytes to proBDNF, it is suggested that proBDNF/p75NTR signaling may upstream inflammatory cytokines in MDD. Our data suggest that proBDNF/p75NTR signaling may not only serve as biomarkers but also may be a potential therapeutic target for MDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/metabolism , Leukocytes, Mononuclear/metabolism , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism , Up-Regulation , CD8-Positive T-Lymphocytes/metabolism , Depression , Brain-Derived Neurotrophic Factor/metabolism , Cytokines/metabolism
11.
Cell Commun Signal ; 22(1): 60, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38254118

ABSTRACT

BACKGROUND: Increasing evidence has indicated that long non-coding RNAs (lncRNAs) have been proven to regulate esophageal cancer progression. The lncRNA protein disulfide isomerase family A member 3 pseudogene 1 (PDIA3P1) has been shown to promote cancer stem cell properties; however, its mechanism of action remains unclear. In this study, we investigated the regulation of esophageal cancer stem cell properties by the interaction of PDIA3P1 with proteins. METHODS: The GEPIA2 and Gene Expression Omnibus databases were used to analyze gene expression. PDIA3P1 expression in human esophageal squamous cell carcinoma (ESCC) tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to determine the effects of PDIA3P1 on ESCC cell proliferation, migration, and invasion. The sphere formation assay, number of side population cells, and CD271 + /CD44 + cells were detected by flow cytometry to identify the cancer stem cell properties. RNA immunoprecipitation (RIP), RNA pull-down, co-immunoprecipitation (co-IP), dual luciferase reporter, and cleavage under targets and tagmentation (CUT&Tag) assays were performed to elucidate the underlying molecular mechanisms. RESULTS: PDIA3P1 expression was upregulated in ESCC cell lines and tissues. Functionally, higher PDIA3P1 expression promoted cell proliferation, invasion, and metastasis and inhibited apoptosis in esophageal cancer. Importantly, PDIA3P1 promoted cancer stem cell properties in ESCC. Mechanistically, PDIA3P1 interacted with and stabilized octamer-binding transcription factor 4 (OCT4) by eliminating its ubiquitination by the ubiquitinating enzyme WW domain-containing protein 2 (WWP2). Moreover, as a transcription factor, OCT4 bound to the PDIA3P1 promoter and promoted its transcription. CONCLUSIONS: Our research revealed a novel mechanism by which a positive feedback loop exists between PDIA3P1 and OCT4. It also demonstrated that the PDIA3P1-WWP2-OCT4 loop is beneficial for promoting the cancer stem cell properties of ESCC. Owing to this regulatory relationship, the PDIA3P1-WWP2-OCT4-positive feedback loop might be used in the diagnosis and prognosis, as well as in the development of novel therapeutics for esophageal cancer.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Neoplastic Stem Cells , Octamer Transcription Factor-3 , RNA, Long Noncoding , Humans , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , RNA , Ubiquitin-Protein Ligases , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Nerve Growth Factor
12.
Mol Neurobiol ; 61(1): 276-293, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37606717

ABSTRACT

The precursor nerve growth factor (ProNGF) and its receptor p75 neurotrophin receptor (p75NTR) are upregulated in several brain diseases, including ischemic stroke. The activation of p75NTR is associated with neuronal apoptosis and inflammation. Thus, we hypothesized that p75NTR modulation attenuates brain damage and improves functional outcomes after ischemic stroke. Two sets of experiments were performed. (1) Adult wild-type (WT) C57BL/6 J mice were subjected to intraluminal suture-middle cerebral artery occlusion (MCAO) to induce cerebral ischemia. Pharmacological inhibitor of p75NTR, LM11A-31 (50 mg/kg), or normal saline was administered intraperitoneally (IP) 1 h post-MCAO, and animals survived for 24 h. (2) Adult p75NTR heterozygous knockout (p75NTR+/-) and WT were subjected to photothrombotic (pMCAO) to induce ischemic stroke, and the animals survived for 72 h. The sensory-motor function of animals was measured using Catwalk XT. The brain samples were collected to assess infarction volume, edema, hemorrhagic transformation, neuroinflammation, and signaling pathway at 24 and 72 h after the stroke. The findings described that pharmacological inhibition and genetic knocking down of p75NTR reduce infarction size, edema, and hemorrhagic transformation following ischemic stroke. Additionally, p75NTR modulation significantly decreased several anti-apoptosis markers and improved sensory motor function compared to the WT mice following ischemic stroke. Our observations exhibit that the involvement of p75NTR in ischemic stroke and modulation of p75NTR could improve the outcome of ischemic stroke by increasing cell survival and enhancing motor performance. LM11A-31 has the potential to be a promising therapeutic agent for ischemic stroke. However, more evidence is needed to illuminate the efficacy of LM11A-31 in ischemic stroke.


Subject(s)
Brain Injuries , Ischemic Stroke , Mice , Animals , Receptor, Nerve Growth Factor/metabolism , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Mice, Inbred C57BL , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/metabolism , Brain/metabolism , Infarction , Edema
13.
CNS Neurol Disord Drug Targets ; 23(4): 449-462, 2024.
Article in English | MEDLINE | ID: mdl-37016521

ABSTRACT

Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.


Subject(s)
Brain Neoplasms , Glioma , Humans , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Reactive Oxygen Species/metabolism , Glioma/metabolism , Receptors, Nerve Growth Factor/metabolism
14.
Clin Exp Rheumatol ; 42(3): 713-717, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37976118

ABSTRACT

OBJECTIVES: Nerve growth factor ß (ß-NGF) is a protein which is important to the development of neurons particularly those involved in the transmission of pain and is central to the experience of pain in osteoarthritis (OA). Direct NGF antagonism has been shown to reduce OA pain but is associated with rapidly progressive OA. The aim of the study is to investigate the ability of soluble neurotrophin receptors in the NGF pathway to modulate pain in OA. METHODS: Synovial fluid (SF) was obtained from the knee joints of 43 subjects who underwent total knee arthroplasty. Visual analogue scale (VAS) pain scores were obtained prior to surgery. Customised-automated-ELISAs and commercial-ELISAs and LEGENDplex™ were used to measure soluble low-affinity nerve growth factor (LNGFR), soluble tropomyosin receptor kinase (TrkA), proNGF, ß-NGF, other neurotrophins (NT) and cytokines including inflammatory marker TNF-α. RESULTS: The VAS score positively correlated with ß-NGF (r=0.34) and there was positive association trend with neurotrophin-3 (NT-3), BDNF and negative association trend with ProNGF. sLNGFR positively correlated with VAS (r=0.33). The ß-NGF/soluble TrkA ratio showed a strong positive correlation with VAS (r=0.80). In contrast, there was no correlation between pain and the ß-NGF/sLNGFR ratio (r=-0.08). TNF-α positively correlated with ß-NGF (r=0.83), NT-3 (r=0.66), and brain-derived neurotrophic factor (BDNF) (r=0.50) and negatively with ProNGF (r= -0.74) and positively correlated with both soluble TrkA (r=0.62), sLNGFR (r=0.26). CONCLUSIONS: This study suggests that endogenous or cleaved sLNGFR, but not soluble TrkA may participate in OA pain modulation thus supporting further research into soluble LNGFR as a therapeutic target in OA.


Subject(s)
Nerve Growth Factor , Osteoarthritis, Knee , Humans , Nerve Growth Factor/metabolism , Brain-Derived Neurotrophic Factor , Receptor, Nerve Growth Factor , Tumor Necrosis Factor-alpha , Receptors, Nerve Growth Factor/metabolism , Pain
15.
Genes Cells ; 29(1): 73-85, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016691

ABSTRACT

Bladder cancer is a urothelial cancer and effective therapeutic strategies for its advanced stages are limited. Here, we report that CD271, a neurotrophin receptor, promotes the proliferation and migration of bladder cancer cells. CD271 knockdown decreased proliferation in both adherent and spheroid cultures, and vice versa when CD271 was overexpressed in bladder cancer cell lines. CD271 depletion impaired tumorigenicity in vivo. Migration activity was reduced by CD271 knockdown and TAT-Pep5, a known CD271-Rho GDI-binding inhibitor. Apoptosis was induced by CD271 knockdown. Comprehensive gene expression analysis revealed alterations in E2F- and Myc-related pathways upon CD271 expression. In clinical cases, patients with high CD271 expression showed significantly shortened overall survival. In surgically resected specimens, pERK, a known player in proliferation signaling, colocalizes with CD271. These data indicate that CD271 is involved in bladder cancer malignancy by promoting cell proliferation and migration, resulting in poor prognosis.


Subject(s)
Receptors, Nerve Growth Factor , Urinary Bladder Neoplasms , Humans , Adapalene , Receptors, Nerve Growth Factor/genetics , Cell Proliferation , Signal Transduction , Urinary Bladder Neoplasms/genetics , Cell Movement , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
16.
Stem Cells Transl Med ; 13(3): 255-267, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38159248

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have been widely studied to alleviate acute lung injury (ALI) due to their paracrine function. However, the microenvironment of inflammatory outbreaks significantly restricted the factors secreted from MSCs like keratinocyte growth factor (KGF). KGF is a growth factor with tissue-repaired ability. Is there a better therapeutic prospect for MSCs in combination with compounds that promote their paracrine function? Through compound screening, we screened out isoxazole-9 (ISX-9) to promote MSCs derived KGF secretion and investigated the underlying mechanisms of action. METHODS: Compounds that promote KGF secretion were screened by a dual-luciferase reporter gene assay. The TMT isotope labeling quantitative technique was used to detect the differential proteins upon ISX-9 administrated to MSCs. The expressions of NGFR, ERK, TAU, and ß-catenin were detected by Western blot. In the ALI model, we measured the inflammatory changes by HE staining, SOD content detection, RT-qPCR, immunofluorescence, etc. The influence of ISX-9 on the residence time of MSCs transplantation was explored by optical in vivo imaging. RESULTS: We found out that ISX-9 can promote the expression of KGF in MSCs. ISX-9 acted on the membrane receptor protein NGFR, upregulated phosphorylation of downstream signaling proteins ERK and TAU, downregulated phosphorylation of ß-catenin, and accelerated ß-catenin into the nucleus to further increase the expression of KGF. In the ALI model, combined ISX-9 with MSCs treatments upgraded the expression of KGF in the lung, and enhanced the effect of MSCs in reducing inflammation and repairing lung damage compared with MSCs alone. CONCLUSIONS: ISX-9 facilitated the secretion of KGF from MSCs both in vivo and in vitro. The combination of ISX-9 with MSCs enhanced the paracrine function and anti-inflammatory effect of MSCs compared with MSCs applied alone in ALI. ISX-9 played a contributive role in the transplantation of MSCs for the treatment of ALI.


Subject(s)
Acute Lung Injury , Isoxazoles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Thiophenes , Humans , beta Catenin/metabolism , beta Catenin/pharmacology , Fibroblast Growth Factor 7/metabolism , Fibroblast Growth Factor 7/pharmacology , Acute Lung Injury/therapy , Mesenchymal Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Nerve Growth Factor/metabolism
17.
Int J Mol Sci ; 24(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38003427

ABSTRACT

In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.


Subject(s)
Hydrogen Peroxide , Receptor, trkA , Humans , Mice , Animals , Receptor, trkA/metabolism , Feedback , Hydrogen Peroxide/pharmacology , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/metabolism , Receptor, Nerve Growth Factor/metabolism , Cell Line , Oxidative Stress , Epithelial Cells/metabolism
18.
Sci Rep ; 13(1): 18364, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884604

ABSTRACT

Bupivacaine (BPV) can cause severe central nervous system toxicity when absorbed into the blood circulation system. Rapid intravenous administration of lipid emulsion (LE) could be used to treat local anaesthetic toxicity. This study aimed to investigate the mechanism by which the BDNF-TrkB/proBDNF-p75NTR pathway regulation by LE rescues BPV induced neurotoxicity in hippocampal neurons in rats. Seven- to nine-day-old primary cultured hippocampal neurons were randomly divided into 6 groups: the blank control group (Ctrl), the bupivacaine group (BPV), the lipid emulsion group (LE), the bupivacaine + lipid emulsion group (BPV + LE), the bupivacaine + lipid emulsion + tyrosine kinase receptor B (TrkB) inhibitor group (BPV + LE + K252a), the bupivacaine + lipid emulsion + p75 neurotrophic factor receptor (p75NTR) inhibitor group (BPV + LE + TAT-Pep5). All hippocampal neurons were incubated for 24 h, and their growth state was observed by light microscopy. The relative TrkB and p75NTR mRNA levels were detected by real-time PCR. The protein expression levels of brain-derived neurotrophic factor (BDNF), proBDNF, TrkB, p75NTR and cleaved caspase-3 were detected by western blotting. The results showed that primary hippocampal neuron activity was reduced by BPV. As administration of LE elevated hippocampal neuronal activity, morphology was also somewhat improved. The protein expression and mRNA levels of TrkB and p75NTR were decreased when BPV induced hippocampal neuronal toxicity, while the expression of BDNF was increased. At the same time, BPV increased the original generation of cleaved caspase-3 protein content by hippocampal neurons, while the content of cleaved caspase-3 protein in hippocampal neurons cotreated with LE and BPV was decreased. Thus, this study has revealed LE may reduce apoptosis and promote survival of hippocampal neurons by regulating the BDNF-TrkB pathway and the proBDNF-p75NTR pathway to rescue BPV induced central neurotoxicity in rats.


Subject(s)
Brain-Derived Neurotrophic Factor , Bupivacaine , Rats , Animals , Brain-Derived Neurotrophic Factor/metabolism , Caspase 3 , Emulsions/pharmacology , Receptor, trkB/metabolism , Receptors, Nerve Growth Factor/metabolism , RNA, Messenger/metabolism , Lipids
19.
J Endod ; 49(12): 1668-1675, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37660765

ABSTRACT

INTRODUCTION: In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS: Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS: Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS: Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.


Subject(s)
Brain-Derived Neurotrophic Factor , Pulpitis , Humans , Brain-Derived Neurotrophic Factor/metabolism , Receptors, Nerve Growth Factor/analysis , Receptors, Nerve Growth Factor/metabolism , Nerve Growth Factor , Receptor Protein-Tyrosine Kinases/metabolism , Ubiquitin Thiolesterase
20.
Chin J Physiol ; 66(4): 276-283, 2023.
Article in English | MEDLINE | ID: mdl-37635487

ABSTRACT

Neurotrophin receptor-interacting melanoma-associated antigen homolog (NRAGE), a type II melanoma-associated antigen, plays a critical role in cell processes that are involved in the tumorigenesis of various cancers. However, the effect of NRAGE on acute myeloid leukemia (AML) is rarely reported. The expression of NRAGE in AML tissues and the survival rates between different AML groups were obtained from the GEPIA tool. Human AML cell lines were cultured and transfected with siRNA targeting NRAGE. The ability of AML cells to proliferate and cell cycle were examined. Western blotting was performed to detect the activity of the extracellular signal-regulated kinase (ERK) signaling pathway in AML cells. NRAGE expression was enhanced in AML tissues relative to control tissues, and the high NRAGE expression in AML patients is associated with a poor prognosis. The capacity of AML cells to survive and proliferate was significantly decreased and its cell cycle was arrested at the G1 phase after NRAGE was silenced. Furthermore, silencing NRAGE induced the inactivation of the ERK signaling pathway. Furthermore, supplement of tert-Butylhydroquinone, an ERK activator, improved the reduced ability of AML cell survival and proliferation as well as cell cycle arrest induced by NRAGE knockdown. In this study, NRAGE was identified as a tumor promoter in AML, which had an effect on cell proliferation, cell survival, and cell cycle through the ERK signaling pathway in AML cells.


Subject(s)
Leukemia, Myeloid, Acute , Melanoma , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Receptors, Nerve Growth Factor/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Cell Proliferation , Cell Cycle , Leukemia, Myeloid, Acute/genetics , Melanoma/genetics , Cell Line, Tumor , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...