Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 939
1.
Sheng Li Xue Bao ; 76(2): 329-340, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38658381

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.


Dinoprostone , Liver Diseases , Receptors, Prostaglandin E , Humans , Dinoprostone/metabolism , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E/physiology , Liver Diseases/metabolism , Chronic Disease , Animals , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
2.
ACS Appl Bio Mater ; 7(2): 579-587, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-37058420

G-protein coupled receptors (GPCRs) are eukaryotic integral membrane proteins that regulate signal transduction cascade pathways implicated in a variety of human diseases and are consequently of interest as drug targets. For this reason, it is of interest to investigate the way in which specific ligands bind and trigger conformational changes in the receptor during activation and how this in turn modulates intracellular signaling. In the present study, we investigate the way in which the ligand Prostaglandin E2 interacts with three GPCRs in the E-prostanoid family: EP1, EP2, and EP3. We examine information transfer pathways based on long-time scale molecular dynamics simulations using transfer entropy and betweenness centrality to measure the physical transfer of information among residues in the system. We monitor specific residues involved in binding to the ligand and investigate how the information transfer behavior of these residues changes upon ligand binding. Our results provide key insights that enable a deeper understanding of EP activation and signal transduction functioning pathways at the molecular level, as well as enabling us to make some predictions about the activation pathway for the EP1 receptor, for which little structural information is currently available. Our results should advance ongoing efforts in the development of potential therapeutics targeting these receptors.


Dinoprostone , Receptors, Prostaglandin E , Humans , Dinoprostone/metabolism , Receptors, Prostaglandin E/chemistry , Receptors, Prostaglandin E/metabolism , Ligands , Prostaglandins , Receptors, G-Protein-Coupled
3.
FASEB J ; 37(6): e22958, 2023 06.
Article En | MEDLINE | ID: mdl-37171267

In Type 2 diabetes (T2D), elevated lipid levels have been suggested to contribute to insulin resistance and ß-cell dysfunction. We previously reported that the expression of the PGE2 receptor EP3 is elevated in islets of T2D individuals and is preferentially stimulated by palmitate, leading to ß-cell failure. The mouse EP3 receptor generates three isoforms by alternative splicing which differ in their C-terminal domain and are referred to as mEP3α, mEP3ß, and mEP3γ. We bring evidence that the expression of the mEP3γ isoform is elevated in islets of diabetic db/db mice and is selectively upregulated by palmitate. Specific knockdown of the mEP3γ isoform restores the expression of ß-cell-specific genes and rescues MIN6 cells from palmitate-induced dysfunction and apoptosis. This study indicates that palmitate stimulates the expression of the mEP3γ by a posttranscriptional mechanism, compared to the other spliced isoforms, and that the de novo synthesized ceramide plays an important role in FFA-induced mEP3γ expression in ß-cells. Moreover, induced levels of mEP3γ mRNA by palmitate or ceramide depend on p38 MAPK activation. Our findings suggest that mEP3γ gene expression is regulated at the posttranscriptional level and defines the EP3 signaling axis as an important pathway mediating ß-cell-impaired function and demise.


Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Mice , Animals , Receptors, Prostaglandin E/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Palmitates/metabolism , Ceramides/metabolism , Receptors, Prostaglandin E, EP3 Subtype/genetics , Receptors, Prostaglandin E, EP3 Subtype/metabolism
4.
Cell Rep ; 40(11): 111323, 2022 09 13.
Article En | MEDLINE | ID: mdl-36103815

Prostaglandin receptors have been implicated in a wide range of functions, including inflammation, immune response, reproduction, and cancer. Our group has previously determined the crystal structure of the active-like EP3 bound to its endogenous agonist, prostaglandin E2. Here, we present the single-particle cryoelectron microscopy (cryo-EM) structure of the human EP3-Gi signaling complex at a resolution of 3.4 Å. The structure reveals the binding mode of Gi to EP3 and the structural changes induced in EP3 by Gi binding. In addition, we compare the structure of the EP3-Gi complex with other subtypes of prostaglandin receptors (EP2 and EP4) bound to Gs that have been previously reported and examine the differences in amino acid composition at the receptor-G protein interface. Mutational analysis reveals that the selectivity of the G protein depends on specific amino acid residues in the second intracellular loop and TM5.


Dinoprostone , Receptors, Prostaglandin E , Amino Acids , Cryoelectron Microscopy , Dinoprostone/pharmacology , Humans , Receptors, Prostaglandin E/agonists , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 875425, 2022.
Article En | MEDLINE | ID: mdl-35813612

Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.


Dinoprostone , Receptors, Prostaglandin E , Animals , Blood Pressure , Dinoprostone/metabolism , Dinoprostone/pharmacology , Mice , Mice, Knockout , Receptors, Prostaglandin E/metabolism , Water-Electrolyte Balance
6.
Biol Pharm Bull ; 45(6): 698-702, 2022.
Article En | MEDLINE | ID: mdl-35650098

Colorectal cancer (CRC) is one of the common types of cancer in humans. Prostaglandin E2 (PGE2) is a well-known mediator of colorectal cancer through stimulation of four E-type prostanoid (EP) receptor subtypes: EP1, EP2, EP3, and EP4 receptors. All subtypes of EP receptors are involved in CRC promotion or malignancy. However, the characteristics of CRC that highly expresses EP receptor subtypes have not been clarified. In the present study, we classified CRC from a cancer genomic database and identified CRC clusters which highly express EP receptor subtypes. Most of these clusters predominantly expressed one subtype of EP receptor and showed different gene expression patterns. Among them, we focused on the cluster highly expressing the EP3 receptor (CL-EP3). As the result of characterization of gene expression, CL-EP3 was characterized as: epithelial mesenchymal transition (EMT)-induced progressed cancer with activation of transforming growth factor-ß pathway, activation of hypoxia-inducible factor-1α, and suppression of runt-related transcription factor 3. Since we previously reported that EP3 receptor is involved in and induce colon cancer cell migration, EP3 receptor-expressing CRC may induce metastasis through these signaling pathways. Thus, the findings suggest the effectiveness of cancer clustering by gene expression of the EP receptor subtype to elucidate the mechanism of human CRC.


Colorectal Neoplasms , Receptors, Prostaglandin E , Colorectal Neoplasms/genetics , Dinoprostone/metabolism , Humans , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/metabolism , Signal Transduction
7.
Neuroscience ; 494: 25-37, 2022 07 01.
Article En | MEDLINE | ID: mdl-35550162

This study aimed to re-examine the receptor subtype that mediates the fever-producing effects of prostaglandin E2 (PGE2) in the rostral ventromedial preoptic area (rvmPOA) of the hypothalamus. Among the four subtypes of PGE2 receptors (EP1, EP2, EP3, and EP4), EP3 receptor is crucially involved in the febrile effects of PGE2. However, it is possible for other subtypes of PGE2 receptor to contribute in the central mechanism of fever generation. Accordingly, effects of microinjection of PGE2 receptor subtype-specific agonists or antagonists were examined at the locus where a microinjection of a small amount (420 fmol) of PGE2 elicited prompt increases in the O2 consumption rate (VO2), heart rate, and colonic temperature (Tc) in the rvmPOA of urethane-chloralose-anesthetized rats. The EP3 agonist sulprostone mimicked, whereas its antagonist L-798,106 reduced, the febrile effects of PGE2 microinjected into the same site. Similarly, the EP4 agonist rivenprost mimicked, whereas its antagonist ONO-AE3-208 reduced, the effects of PGE2 microinjected into the same site. In contrast, microinjection of the EP1 agonist iloprost induced a very small increase in VO2 but did not have significant influences on the heart rate and Tc, whereas its antagonist, AH6809, did not affect the PGE2-induced responses. Microinjection of the EP2 agonist butaprost had no effects on the VO2, heart rate, and Tc. The results suggest that the EP3 and EP4 receptor subtypes are both involved in the fever generated by PGE2 in the rvmPOA.


Preoptic Area , Receptors, Prostaglandin E , Animals , Hypothalamus/metabolism , Preoptic Area/metabolism , Rats , Receptors, Prostaglandin E/agonists , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP4 Subtype
8.
Eur J Pharmacol ; 927: 175043, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35598847

Prostaglandins are bioactive lipids involved in many physiological and pathophysiological conditions, such as pain, atherosclerosis, type II diabetes, and parturition. Prostaglandin E2 (PGE2) activates four G protein-coupled receptors (GPCRs), named the PGE2 types 1-4 receptors (EP1-4), to elicit the intracellular signaling responsible for their physiological actions. There are more than twelve EP3 isoforms in humans that differ only by the sequence of their C-termini. However, the signaling mechanisms engaged by the various isoforms have never been clearly defined. In this study, we used a recently described BRET-based biosensor technology to define the signaling profiles for each of the human isoforms on a selection of signaling pathways using the agonists, PGE2 and sulprostone, and the purportedly EP3-specific antagonist L798106. We found that L798106 is a biased agonist of the Gαz pathway for some human EP3 isoforms, an effect that is not detected in the close ortholog mouse EP3 isoform α. We also found that the presence of a threonine residue at position 107 in the binding site of human EP3, which is a serine in most other species including mice, is important for L798106-mediated Gαz efficacy. Given the reported importance of EP3-Gαz signaling on the potential therapeutic efficacy of EP3 and since many preclinical studies for these mechanisms have been performed in rodents, this finding demonstrates the importance of determining a detailed signaling profile of ligands for different species and receptor isoforms, which constitutes an important step to better understand the therapeutic potential of the EP3.


Diabetes Mellitus, Type 2 , Animals , Mice , Pain , Protein Isoforms/metabolism , Receptors, Prostaglandin E/metabolism , Signal Transduction
9.
Proc Natl Acad Sci U S A ; 119(18): e2115960119, 2022 05 03.
Article En | MEDLINE | ID: mdl-35482924

Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy belonging to the ciliopathy disorders and known as the most common cause of hereditary end-stage renal disease in children. Yet, no curative treatment is available. The major gene, NPHP1, encodes a protein playing key functions at the primary cilium and cellular junctions. Using a medium-throughput drug-screen in NPHP1 knockdown cells, we identified 51 Food and Drug Administration-approved compounds by their ability to alleviate the cellular phenotypes associated with the loss of NPHP1; 11 compounds were further selected for their physicochemical properties. Among those compounds, prostaglandin E1 (PGE1) rescued ciliogenesis defects in immortalized patient NPHP1 urine-derived renal tubular cells, and improved ciliary and kidney phenotypes in our NPH zebrafish and Nphp1 knockout mouse models. Furthermore, Taprenepag, a nonprostanoid prostaglandin E2 receptor agonist, alleviated the severe retinopathy observed in Nphp1−/− mice. Finally, comparative transcriptomics allowed identification of key signaling pathways downstream PGE1, including cell cycle progression, extracellular matrix, adhesion, or actin cytoskeleton organization. In conclusion, using in vitro and in vivo models, we showed that prostaglandin E2 receptor agonists can ameliorate several of the pleotropic phenotypes caused by the absence of NPHP1; this opens their potential as a first therapeutic option for juvenile NPH-associated ciliopathies.


Ciliopathies , Polycystic Kidney Diseases , Animals , Cilia/metabolism , Ciliopathies/drug therapy , Ciliopathies/genetics , Ciliopathies/metabolism , Female , Humans , Kidney Diseases, Cystic/congenital , Male , Mice , Polycystic Kidney Diseases/metabolism , Prostaglandins/metabolism , Receptors, Prostaglandin E/metabolism , Zebrafish
10.
Epigenomics ; 14(3): 153-162, 2022 02.
Article En | MEDLINE | ID: mdl-35021853

Smoking could predispose individuals to a more severe COVID-19 by upregulating a particular gene known as mdig, which is mediated through a number of well-known histone modifications. Smoking might regulate the transcription-activating H3K4me3 mark, along with the transcription-repressing H3K9me3 and H3K27me3 marks, in a way to favor SARS-CoV-2 entry by enhancing the expression of ACE2, NRP1 and NRP2, AT1R, CTSD and CTSL, PGE2 receptors 2-4, SLC6A20 and IL-6, all of which interact either directly or indirectly with important receptors, facilitating viral entry in COVID-19.


Lay abstract The role of smoking in development of several respiratory diseases has been clearly established. A significant proportion of these deleterious effects is mediated through epigenetic mechanisms, particularly histone modifications. Recent evidence indicates that smoking induces the expression of a mediator known as mdig, which in turn alters the transcription of several key proteins that have been implicated in development of COVID-19.


COVID-19/genetics , Dioxygenases/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , Histones/genetics , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Smoking/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/virology , Cathepsin D/genetics , Cathepsin D/metabolism , Cathepsin L/genetics , Cathepsin L/metabolism , Dioxygenases/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Methylation , Neuropilin-1/genetics , Neuropilin-1/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/metabolism , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Smoking/metabolism , Smoking/pathology , Virus Internalization
11.
Int J Dev Biol ; 65(7-8-9): 505-511, 2021.
Article En | MEDLINE | ID: mdl-34549801

The molecular expression profiles of zebrafish ep2a and ep4b have not been defined to date. Phylogenetic trees of EP2a and EP4b in zebrafish and other species revealed that human EP4 and zebrafish EP4b were more closely related than EP2a. Zebrafish EP2a is a 281 amino acid protein which shares high identity with that of human (43%), mouse (44%), rat (43%), dog (44%), cattle (41%), and chicken (41%). Zebrafish EP4b encoded a 497 amino acid precursor with high amino acid identity to that of mammals, including human (57%), mouse (54%), rat (55%), dog (55%), cattle (56%), and chicken (54%). Whole-mount in situ hybridization revealed that ep2a was robustly expressed in the anterior four somites at the 10-somites stages, but was absent in the somites at 19 hpf. It was observed again in the pronephric duct at 24 hpf, in the intermediate cell mass located in the trunk, and in the rostral blood island at 30 hpf. Ep2a was also expressed in the notochord at 48 hpf. During somitogenesis, ep4b was highly expressed in the eyes, somites, and the trunk neural crest. From 30 to 48 hpf, ep4b could be detected in the posterior cardinal vein and the neighboring inner cell mass. From these data we conclude that ep2a and ep4b are conserved in vertebrates and that the presence of ep2a and ep4b transcripts during developmental stages infers their role during early zebrafish larval development. In addition, the variable expression of the two receptor isoforms was strongly suggestive of divergent roles of molecular regulation.


Receptors, Prostaglandin E , Zebrafish Proteins , Zebrafish , Amino Acids , Animals , Embryo, Nonmammalian , Embryonic Development , Gene Expression Regulation, Developmental , Phylogeny , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E, EP4 Subtype , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
12.
Front Immunol ; 12: 680020, 2021.
Article En | MEDLINE | ID: mdl-34484178

Lipid-derived signaling molecules known as eicosanoids have integral roles in mediating immune and inflammatory processes across metazoans. This includes the function of prostaglandins and their cognate G protein-coupled receptors (GPCRs) to employ their immunological actions. In insects, prostaglandins have been implicated in the regulation of both cellular and humoral immune responses, yet in arthropods of medical importance, studies have been limited. Here, we describe a prostaglandin E2 receptor (AgPGE2R) in the mosquito Anopheles gambiae and demonstrate that its expression is most abundant in oenocytoid immune cell populations. Through the administration of prostaglandin E2 (PGE2) and AgPGE2R-silencing, we demonstrate that prostaglandin E2 signaling regulates a subset of prophenoloxidases (PPOs) and antimicrobial peptides (AMPs) that are strongly expressed in populations of oenocytoids. We demonstrate that PGE2 signaling via the AgPGE2R significantly limits both bacterial replication and Plasmodium oocyst survival. Additional experiments establish that PGE2 treatment increases phenoloxidase (PO) activity through the increased expression of PPO1 and PPO3, genes essential to anti-Plasmodium immune responses that promote oocyst killing. We also provide evidence that the mechanisms of PGE2 signaling are concentration-dependent, where high concentrations of PGE2 promote oenocytoid lysis, negating the protective effects of lower concentrations of PGE2 on anti-Plasmodium immunity. Taken together, our results provide new insights into the role of PGE2 signaling on immune cell function and its contributions to mosquito innate immunity that promote pathogen killing.


Anopheles/immunology , Anopheles/microbiology , Anopheles/parasitology , Dinoprostone/metabolism , Oocysts/immunology , Plasmodium/immunology , Signal Transduction , Animals , Anopheles/classification , Hemocytes/metabolism , Host-Pathogen Interactions/immunology , Immunity, Innate , Microbial Viability , Mosquito Vectors/immunology , Mosquito Vectors/microbiology , Mosquito Vectors/parasitology , Phylogeny , Plasmodium/growth & development , Pore Forming Cytotoxic Proteins/metabolism , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/metabolism
13.
Cells ; 10(2)2021 02 01.
Article En | MEDLINE | ID: mdl-33535605

Genetic predisposition, traumatic events, or excessive mechanical exposure provoke arthritic changes in the temporomandibular joint (TMJ). We analysed the impact of mechanical stress that might be involved in the development and progression of TMJ osteoarthritis (OA) on murine synovial fibroblasts (SFs) of temporomandibular origin. SFs were subjected to different protocols of mechanical stress, either to a high-frequency tensile strain for 4 h or to a tensile strain of varying magnitude for 48 h. The TMJ OA induction was evaluated based on the gene and protein secretion of inflammatory factors (Icam-1, Cxcl-1, Cxcl-2, Il-1ß, Il-1ra, Il-6, Ptgs-2, PG-E2), subchondral bone remodelling (Rankl, Opg), and extracellular matrix components (Col1a2, Has-1, collagen and hyaluronic acid deposition) using RT-qPCR, ELISA, and HPLC. A short high-frequency tensile strain had only minor effects on inflammatory factors and no effects on the subchondral bone remodelling induction or matrix constituent production. A prolonged tensile strain of moderate and advanced magnitude increased the expression of inflammatory factors. An advanced tensile strain enhanced the Ptgs-2 and PG-E2 expression, while the expression of further inflammatory factors were decreased. The tensile strain protocols had no effects on the RANKL/OPG expression, while the advanced tensile strain significantly reduced the deposition of matrix constituent contents of collagen and hyaluronic acid. The data indicates that the application of prolonged advanced mechanical stress on SFs promote PG-E2 protein secretion, while the deposition of extracellular matrix components is decreased.


Fibroblasts/metabolism , Osteoarthritis/physiopathology , Receptors, Prostaglandin E/metabolism , Stress, Mechanical , Temporomandibular Joint/physiopathology , Animals , Mice
14.
Brain Res Bull ; 168: 45-51, 2021 03.
Article En | MEDLINE | ID: mdl-33370588

BACKGROUND: Prostaglandin E2 (PGE2) binds to four receptor subtypes (EP1, EP2, EP3 and EP4) and plays an important role in response to stress. However, the identity of the receptor(s) responsible for PGE2 regulation of neuronal activity and signaling through activation of the hypothalamic-pituitary-adrenal (HPA) axis under immobilization stress is unknown. PURPOSE: The present study aimed to investigate the role of the hypothalamic PGE2 receptors in the activation of the HPA axis and neuronal activity in a rat model of stress. METHODS: Stress was induced by immobilization of the animals, after which the stress-induced profile of PGE2 receptor signaling in the rat hypothalamus was determined by real-time polymerase chain reaction and immunohistochemistry. The effect of a selective EP3 receptor antagonist on corticosterone concentrations and c-Fos immunoreactivity was measured. RESULTS: Expression of EP2 and EP3 receptor genes, but not EP1 and EP4, was increased following immobilization stress. The EP3 receptor was localized to the paraventricular nucleus (PVN) of the hypothalamus, and the integrated density of the EP3 receptor was increased after immobilization stress. Rats given L-798,106, a selective antagonist of the EP3 receptor, showed significant attenuation of stress-increased serum corticosterone levels. EP3 antagonist also significantly suppressed the increase in the gene expression of c-Fos and the number of c-Fos-immunoreactive cells in the PVN of the hypothalamus following immobilization stress. CONCLUSIONS: These results suggest that immobilization stress may result in increased activation of the HPA axis and neuronal activity through regulating the function of the EP3 receptor.


Hypothalamo-Hypophyseal System/metabolism , Neurons/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism , Receptors, Prostaglandin E/metabolism , Stress, Mechanical , Animals , Dinoprostone/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamus/metabolism , Male , Paraventricular Hypothalamic Nucleus/drug effects , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiopathology , Rats
15.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R287-R296, 2021 03 01.
Article En | MEDLINE | ID: mdl-33296281

Prostaglandins are critical lipid mediators involved in the wound healing response, with prostaglandin E2 (PGE2) being the most complex and exhibiting the most diverse physiological outputs. PGE2 signals via four G protein-coupled receptors, termed EP-receptors 1-4 that induce distinct signaling pathways upon activation and lead to an array of different outputs. Recent studies examining the role of PGE2 and EP receptor signaling in wound healing following various forms of tissue damage are discussed in this review.


Dinoprostone/metabolism , Receptors, Prostaglandin E/metabolism , Wound Healing , Humans , Male , Signal Transduction
16.
Biochem Pharmacol ; 184: 114363, 2021 02.
Article En | MEDLINE | ID: mdl-33309520

Overactive bladder (OAB) syndrome is a prevalent condition of the lower urinary tract that causes symptoms, such as urinary frequency, urinary urgency, urge incontinence, and nocturia, and disproportionately affects women and the elderly. Current medications for OAB merely provide symptomatic relief with considerable limitations, as they are no more than moderately effective, not to mention that they may cause substantial adverse effects. Identifying novel molecular targets to facilitate the development of new medical therapies with higher efficacy and safety for OAB is in an urgent unmet need. Although the molecular mechanisms underlying the pathophysiology of OAB largely remain elusive and are likely multifactorial, mounting evidence from preclinical studies over the past decade reveals that the pro-inflammatory pathways engaging cyclooxygenases and their prostanoid products, particularly the prostaglandin E2 (PGE2), may play essential roles in the progression of OAB. The goals of this review are to summarize recent progresses in our knowledge on the pathogenic roles of PGE2 in the OAB and to provide new mechanistic insights into the signaling pathways transduced by its four G-protein-coupled receptors (GPCRs), i.e., EP1-EP4, in the overactive detrusor smooth muscle. We also discuss the feasibility of targeting these GPCRs as an emerging strategy to treat OAB with better therapeutic specificity than the current medications.


Receptors, Prostaglandin E/metabolism , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/metabolism , Animals , Dinoprostone/metabolism , Humans , Prostaglandin-Endoperoxide Synthases/metabolism , Urinary Bladder/physiology
17.
Brain Res ; 1750: 147153, 2021 01 01.
Article En | MEDLINE | ID: mdl-33049240

Prostaglandin E2 (PGE2) is a lipid mediator which plays a role in the generation of inflammatory and neuropathic pain. In the peripheral nervous system, PGE2 sensitizes nociceptive afferent neurons through E-prostanoid (EP) receptors. In the central nervous system, PGE2 modulates pain sensitivity and contributes to the development of neuropathic pain. However, the distribution of PGE2 and EP receptors in the spinal cord remains unclear. In the present study, we examined the expression of PGE2 synthases (microsomal PGE synthase [mPGES]-1, mPGES-2, and cytosolic PGE synthase [cPGES]) and EP receptors (EP1-4) in a rat model of neuropathic pain. We identified that mPGES-1 mRNA was upregulated in spinal endothelial cells after nerve injury and exhibited co-localization with cyclooxygenase-2 (COX-2). We detected that mPGES-2 mRNA and cPGES mRNA were expressed in spinal neurons and noted that their expression level was not affected by nerve injury. With respect to EP receptors, EP2 mRNA and EP4 mRNA were expressed in spinal neurons in the dorsal horn. EP3 mRNA was expressed in motor neurons, whereas EP1 mRNA was not detected in the spinal cord. Intrathecal injection of tumor necrosis factor alpha (TNFα) upregulated mPGES-1 mRNA in blood vessels in the spinal cord. Intrathecal injection of a TNFα-neutralizing antibody partially inhibited the upregulation of mPGES-1 mRNA after nerve injury. These results indicate that PGE2 is synthesized by COX-2/mPGES-1 in spinal endothelial cells after nerve injury. These results suggest that in neuropathic pain condition, endothelial cell-derived PGE2 may act on EP2 and EP4 receptors on spinal neurons and modulate pain sensitivity.


Neuralgia/physiopathology , Prostaglandin-E Synthases/metabolism , Receptors, Prostaglandin E/metabolism , Animals , Central Nervous System/metabolism , Cyclooxygenase 2/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Gene Expression/genetics , Intramolecular Oxidoreductases/metabolism , Male , Pain Threshold/drug effects , Prostaglandin-E Synthases/physiology , Rats , Rats, Sprague-Dawley , Receptors, Prostaglandin E/physiology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Spinal Cord/physiology
18.
Pharmacol Res ; 163: 105238, 2021 01.
Article En | MEDLINE | ID: mdl-33053444

Over the past two decades the interest has waned in therapeutically targeting cyclooxygenase-2 (COX-2) due to growing concerns over the potential cardiovascular and cerebrovascular toxicities of the long-term use of COX-2 inhibitors. Attention thus has recently been shifted downstream to the prostaglandin signaling pathways for new druggable anti-inflammatory targets aiming for higher therapeutic specificity. Prostaglandin E2 (PGE2) is robustly synthesized in the ischemic cortex by quickly induced COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) following cerebral ischemia. The elevated PGE2, in turn, divergently regulates the excitotoxic injury and neuroinflammation by acting on four membrane-bound G protein-coupled receptors (GPCRs), namely, EP1-EP4. Markedly, all four EP receptors have been implicated in the excitotoxicity-associated brain inflammation and injury in animal models of cerebral ischemia. However promising, these preclinical studies have not yet led to a clinical trial targeting any PGE2 receptor for ischemic stroke. The goal of this article is to review the recent progress in understanding the pathogenic roles of PGE2 in cerebral ischemia as well as to provide new mechanistic insights into the PGE2 signaling via these four GPCRs in neuronal excitotoxicity and inflammation. We also discuss the feasibility of targeting EP1-EP4 receptors as an emerging delayed treatment, together with the first-line reperfusion strategy, to manage acute ischemic stroke with potentially extended window as well as improved specificity.


Ischemic Stroke/metabolism , Receptors, Prostaglandin E/metabolism , Animals , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Encephalitis/metabolism , Humans
19.
Mediators Inflamm ; 2020: 4301072, 2020.
Article En | MEDLINE | ID: mdl-33273889

A complex inflammatory process mediated by proinflammatory cytokines and prostaglandins commonly occurs in the synovial tissue of patients with joint trauma (JT), osteoarthritis (OA), and rheumatoid arthritis (RA). This study systematically investigated the distinct expression profile of prostaglandin E2 (PGE2), its processing enzymes (COX-2), and microsomal PGES-1 (mPGES-1) as well as the corresponding prostanoid receptor subtypes (EP1-4) in representative samples of synovial tissue from these patients (JT, OA, and RA). Quantitative TaqMan®-PCR and double immunofluorescence confocal microscopy of synovial tissue determined the abundance and exact immune cell types expressing these target molecules. Our results demonstrated that PGE2 and its processing enzymes COX-2 and mPGES-1 were highest in the synovial tissue of RA, followed by the synovial tissue of OA and JT patients. Corresponding prostanoid receptor, subtypes EP3 were highly expressed in the synovium of RA, followed by the synovial tissue of OA and JT patients. These proinflammatory target molecules were distinctly identified in JT patients mostly in synovial granulocytes, in OA patients predominantly in synovial macrophages and fibroblasts, whereas in RA patients mainly in synovial fibroblasts and plasma cells. Our findings show a distinct expression profile of EP receptor subtypes and PGE2 as well as the corresponding processing enzymes in human synovium that modulate the inflammatory process in JT, OA, and RA patients.


Inflammation/metabolism , Joint Diseases/metabolism , Receptors, Prostaglandin E/metabolism , Aged , Arthritis, Rheumatoid/metabolism , Biopsy , Cyclooxygenase 2/biosynthesis , Cytokines/metabolism , Dinoprostone/biosynthesis , Female , Fibroblasts/metabolism , Humans , Ligands , Macrophages/metabolism , Male , Microscopy, Confocal , Middle Aged , Osteoarthritis/metabolism , Prostaglandin-E Synthases/biosynthesis , Synovial Membrane/metabolism
20.
Cell Commun Signal ; 18(1): 185, 2020 11 23.
Article En | MEDLINE | ID: mdl-33228717

BACKGROUND: The matrix metalloproteinase-9 (MMP-9) is up-regulated by several proinflammatory mediators in the central nervous system (CNS) diseases. Increasing reports show that MMP-9 expression is an inflammatory biomarker of several CNS disorders, including the CNS inflammation and neurodegeneration. Bradykinin (BK) is a common proinflammatory mediator and elevated in several brain injury and inflammatory disorders. The raised BK may be detrimental effects on the CNS that may aggravate brain inflammation through MMP-9 up-regulation or cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) production in brain astrocytes. However, the relationship between BK-induced MMP-9 expression and COX-2-derived PGE2 release in brain astrocytes remains unclear. METHODS: Herein we used rat brain astrocytes (RBA) to investigate the role of the COX-2/PGE2 system in BK-induced MMP-9 expression. We used zymographic, RT-PCR, EIA, and Western blotting analyses to confirm that BK induces MMP-9 expression via a COX-2/PGE2-dependent pathway. RESULTS: Our results show activation of native COX-2 by BK led to PGE2 production and release. Subsequently, PGE2 induced MMP-9 expression via PGE2 receptor (EP)-mediated c-Src, Jak2, ERK1/2, and then activated signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, up-regulation of MMP-9 by BK via the pathway may promote astrocytic migration. CONCLUSION: These results demonstrated that a novel autocrine pathway for BK-induced MMP-9 protein expression is mediated through activation of STAT3 by native COX-2/PGE2-mediated c-Src/Jak2/ERK cascades in brain astrocytes. Video Abstract.


Astrocytes/cytology , Astrocytes/enzymology , Autocrine Communication , Bradykinin/pharmacology , Cell Movement/drug effects , Dinoprostone/metabolism , Matrix Metalloproteinase 9/metabolism , STAT3 Transcription Factor/metabolism , Animals , Astrocytes/drug effects , Autocrine Communication/drug effects , Celecoxib/pharmacology , Cell Line , Janus Kinase 2/metabolism , MAP Kinase Signaling System/drug effects , Rats , Receptors, Prostaglandin E/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects , src-Family Kinases/metabolism
...