Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.102
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201591

ABSTRACT

Caffeine is the most popular and widely consumed behaviourally active substance in the world. This review describes the influence of caffeine on the cardiovascular system, with a special focus on blood platelets. For many years, caffeine was thought to have a negative effect on the cardiovascular system mainly due to increasing blood pressure. However, more recent data suggest that habitual caffeine consumption may reduce the risk of cardiovascular disease and hypertension. This could be a significant finding as cardiovascular disease is the leading cause of death worldwide. Caffeine is known to inhibit A1 adenosine receptors, through which it is believed to modulate inter alia coronary blood flow, total peripheral resistance, diuresis, and heart rate. It has been shown that coffee possesses antiplatelet activity, but depending on the dose and the term of its use, caffeine may stimulate or inhibit platelet reactivity. Also, chronic exposure to caffeine may sensitize or upregulate the adenosine receptors in platelets causing increased cAMP accumulation and anti-aggregatory effects and decrease calcium levels elicited by AR agonists. The search for new, selective, and safe AR agonists is one of the new strategies for improving antiplatelet therapy involving targeting multiple pathways of platelet activation. Therefore, this review examines the AR-dependent impact of caffeine on blood platelets in the presence of adenosine receptor agonists.


Subject(s)
Blood Platelets , Caffeine , Receptors, Purinergic P1 , Humans , Caffeine/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Receptors, Purinergic P1/metabolism , Animals , Cardiovascular System/drug effects , Cardiovascular System/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Platelet Activation/drug effects
2.
Molecules ; 29(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124905

ABSTRACT

Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.


Subject(s)
Neoplasms , Receptors, Purinergic P1 , Signal Transduction , Humans , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/genetics , Receptors, Purinergic P1/metabolism , Animals , Tumor Microenvironment , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy
3.
Prog Brain Res ; 288: 35-58, 2024.
Article in English | MEDLINE | ID: mdl-39168558

ABSTRACT

Caffeine is an alkaloid obtained from plants and is one of the most consumptive drug in the form of chocolate, coffee and beverages. The potential impact of caffeine within CNS can be easily understood by mechanism of action-antagonism of adenosine receptor, calcium influx, inhibits phosphodiesterases. Adenosine a neuromodulator for adenosine receptors, which are abundantly expressed within the central nervous system. Caffeine antagonized the adenosine receptor, hence stimulate expression of dopamine. It plays pivotal role in many metabolic pathways within the brain and nervous system, it reduced the amyloid-ß-peptide (Aß) accumulation, downregulation of tau protein phosphorylation, stimulate cholinergic neurons and inhibits the acetylcholinestrase (AChE). It also possess antioxidant and antiapoptotic activity. Caffeine act as nutraceutical product, improves mental health. It contains antioxidants, vitamins, minerals and dietary supplements, by reducing the risk factor of several neurodegenerations including Alzheimer's disease, migraine, gallstone, cancer, Huntington's disease and sclerosis. This act as a stimulant and have capability to increase the effectiveness of certain pain killer. Beside positive affects, over-consumption of caffeine leads to negative impact: change in sleep pattern, hallucinations, high blood pressure, mineral loss and even heartburn. This chapter highlights pros and cons of caffeine consumption.


Subject(s)
Caffeine , Caffeine/pharmacology , Humans , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System Stimulants/pharmacology , Receptors, Purinergic P1/metabolism
4.
Front Immunol ; 15: 1434118, 2024.
Article in English | MEDLINE | ID: mdl-38994361

ABSTRACT

The suppressive tumour microenvironment significantly hinders the efficacy of immunotherapy in treating solid tumors. In this context, stromal cells, such as tumour-associated fibroblasts, undergo changes that include an increase in the number and function of immunosuppressive cells. Adenosine, a factor that promotes tumour growth, is produced from ATP breakdown and is markedly elevated in the tumour microenvironment. It acts through specific binding to adenosine receptors, with A2A and A2B adenosine receptor being primary drivers of immunosuppression. This paper presents the roles of various adenosine receptors in different tumour microenvironments. This review focus on the function of adenosine receptors in the stromal cells and non-cellular components of the tumour microenvironment. Additionally, we summarize and discuss recent advances and potential trends in using adenosine receptor antagonists combined with immunotherapy.


Subject(s)
Neoplasms , Receptors, Purinergic P1 , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P1/immunology , Animals , Immunotherapy/methods , Adenosine/metabolism , Adenosine/immunology , Purinergic P1 Receptor Antagonists/pharmacology , Purinergic P1 Receptor Antagonists/therapeutic use
5.
Neurosci Biobehav Rev ; 164: 105771, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880409

ABSTRACT

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.


Subject(s)
Adenosine , Attention Deficit Disorder with Hyperactivity , Nucleoside Transport Proteins , Receptors, Purinergic P1 , Humans , Attention Deficit Disorder with Hyperactivity/metabolism , Attention Deficit Disorder with Hyperactivity/physiopathology , Animals , Nucleoside Transport Proteins/metabolism , Receptors, Purinergic P1/metabolism , Adenosine/metabolism , Dopamine/metabolism , Brain/metabolism , Brain/physiopathology , Signal Transduction/physiology
6.
Biomed Pharmacother ; 177: 116996, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897158

ABSTRACT

Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.


Subject(s)
Adenosine , Metabolic Syndrome , Receptors, Purinergic P1 , Humans , Adenosine/metabolism , Receptors, Purinergic P1/metabolism , Animals , Metabolic Syndrome/metabolism , Signal Transduction , Nervous System Diseases/metabolism , Brain/metabolism , Brain/pathology , Blood-Brain Barrier/metabolism , Insulin Resistance/physiology
7.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891997

ABSTRACT

Inflammatory skin diseases highlight inflammation as a central driver of skin pathologies, involving a multiplicity of mediators and cell types, including immune and non-immune cells. Adenosine, a ubiquitous endogenous immune modulator, generated from adenosine triphosphate (ATP), acts via four G protein-coupled receptors (A1, A2A, A2B, and A3). Given the widespread expression of those receptors and their regulatory effects on multiple immune signaling pathways, targeting adenosine receptors emerges as a compelling strategy for anti-inflammatory intervention. Animal models of psoriasis, contact hypersensitivity (CHS), and other dermatitis have elucidated the involvement of adenosine receptors in the pathogenesis of these conditions. Targeting adenosine receptors is effective in attenuating inflammation and remodeling the epidermal structure, potentially showing synergistic effects with fewer adverse effects when combined with conventional therapies. What is noteworthy are the promising outcomes observed with A2A agonists in animal models and ongoing clinical trials investigating A3 agonists, underscoring a potential therapeutic approach for the management of inflammatory skin disorders.


Subject(s)
Adenosine , Receptors, Purinergic P1 , Humans , Animals , Adenosine/metabolism , Receptors, Purinergic P1/metabolism , Skin Diseases/drug therapy , Skin Diseases/metabolism , Dermatitis/metabolism , Dermatitis/drug therapy , Dermatitis/pathology , Dermatitis/etiology , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Psoriasis/drug therapy , Psoriasis/metabolism , Signal Transduction , Anti-Inflammatory Agents/therapeutic use
8.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893418

ABSTRACT

A set of 2-aryl-9-H or methyl-6-morpholinopurine derivatives were synthesized and assayed through radioligand binding tests at human A1, A2A, A2B, and A3 adenosine receptor subtypes. Eleven purines showed potent antagonism at A1, A3, dual A1/A2A, A1/A2B, or A1/A3 adenosine receptors. Additionally, three compounds showed high affinity without selectivity for any specific adenosine receptor. The structure-activity relationships were made for this group of new compounds. The 9-methylpurine derivatives were generally less potent but more selective, and the 9H-purine derivatives were more potent but less selective. These compounds can be an important source of new biochemical tools and/or pharmacological drugs.


Subject(s)
Purinergic P1 Receptor Antagonists , Humans , Structure-Activity Relationship , Purinergic P1 Receptor Antagonists/pharmacology , Purinergic P1 Receptor Antagonists/chemistry , Receptors, Purinergic P1/metabolism , Molecular Structure , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/pharmacology , Morpholines/chemistry , Morpholines/pharmacology , Purines/chemistry , Purines/pharmacology , Purines/chemical synthesis , CHO Cells
9.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892291

ABSTRACT

Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.


Subject(s)
Bone Regeneration , Purinergic P1 Receptor Agonists , Receptors, Purinergic P1 , Bone Regeneration/drug effects , Humans , Animals , Receptors, Purinergic P1/metabolism , Purinergic P1 Receptor Agonists/pharmacology , Purinergic P1 Receptor Agonists/therapeutic use , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/metabolism , Signal Transduction/drug effects , Translational Research, Biomedical
10.
CNS Neurosci Ther ; 30(5): e14726, 2024 05.
Article in English | MEDLINE | ID: mdl-38715251

ABSTRACT

AIMS: The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS: We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS: Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION: Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.


Subject(s)
Astrocytes , Hypothermia , Nociception , Preoptic Area , Animals , Preoptic Area/drug effects , Preoptic Area/metabolism , Astrocytes/metabolism , Astrocytes/drug effects , Nociception/physiology , Hypothermia/chemically induced , Male , Mice , Receptors, Purinergic P1/metabolism , Mice, Inbred C57BL , Adenosine/metabolism , Capsaicin/pharmacology , Formaldehyde/toxicity , Formaldehyde/pharmacology
11.
Hum Immunol ; 85(3): 110774, 2024 May.
Article in English | MEDLINE | ID: mdl-38521664

ABSTRACT

One of the ways in which macrophages support tumorigenic growth is by producing adenosine, which acts to dampen antitumor immune responses and is generated by both tumor and immune cells in the tumor microenvironment (TME). Two cell surface expressed molecules, CD73 and CD39, boost catalytic adenosine triphosphate, leading to further increased adenosine synthesis, under hypoxic circumstances in the TME. There are four receptors (A1, A2A, A2B, and A3) expressed on macrophages that allow adenosine to perform its immunomodulatory effect. Researchers have shown that adenosine signaling is a key factor in tumor progression and an attractive therapeutic target for treating cancer. Several antagonistic adenosine-targeting biological therapies that decrease the suppressive action of tumor-associated macrophages have been produced and explored to transform this result from basic research into a therapeutic advantage. Here, we'll review the newest findings from studies of pharmacological compounds that target adenosine receptors, and their potential therapeutic value based on blocking the suppressive action of macrophages in tumors.


Subject(s)
Adenosine , Immunotherapy , Neoplasms , Receptors, Purinergic P1 , Signal Transduction , Tumor Microenvironment , Humans , Adenosine/metabolism , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/drug therapy , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Receptors, Purinergic P1/metabolism , Macrophages/immunology , Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Molecular Targeted Therapy , Purinergic P1 Receptor Antagonists/pharmacology , Purinergic P1 Receptor Antagonists/therapeutic use
12.
Neuroscience ; 540: 117-127, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38278472

ABSTRACT

Ethanol is one of the most commonly used and abused substances in the world. While the behavioral effects of ethanol are well characterized, mechanisms of its action on neurons and synapses remain elusive. Prior research suggested that ethanol could affect neurons by interfering with metabolism of biologically active molecules, such as adenosine. Here, we explored the involvement of adenosine A1 receptors (A1R) in mediating ethanol's effects on synaptic transmission to layer 2/3 pyramidal neurons of visual cortex using wild type (WT) and A1R knock-out (KO) mice. Ethanol differentially affected excitatory and inhibitory transmission in WT and KO mice. In slices from WT mice ethanol had heterogeneous effects on excitatory transmission (facilitation, suppression or no change), with no net change. Ethanol's effects remained heterogeneous during acute blockade of A1Rs with a selective antagonist DPCPX. However, in A1RKO mice ethanol consistently suppressed excitatory transmission, with no cases of enhancement observed. Inhibitory transmission was suppressed by ethanol in both WT and A1RKO mice. At both excitatory and inhibitory synapses, changes of response amplitude correlated with changes of paired-pulse ratio, suggesting involvement of presynaptic mechanisms. We conclude that A1Rs are not involved in mediating effects of ethanol on synaptic transmission in mouse visual cortex. However, A1Rs are necessary for development of mechanisms mediating facilitation at some excitatory synapses. Our results add evidence for the diversity of ethanol's effects and mechanisms of action on synaptic transmission in different brain structures, and even in the same brain area (visual cortex) in different species, rats vs mice.


Subject(s)
Ethanol , Visual Cortex , Rats , Mice , Animals , Ethanol/pharmacology , Adenosine/metabolism , Mice, Knockout , Synaptic Transmission/physiology , Synapses/metabolism , Receptors, Purinergic P1/metabolism , Visual Cortex/physiology
13.
J Phys Chem B ; 128(4): 914-936, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38236582

ABSTRACT

A structure-based drug design pipeline that considers both thermodynamic and kinetic binding data of ligands against a receptor will enable the computational design of improved drug molecules. For unresolved GPCR-ligand complexes, a workflow that can apply both thermodynamic and kinetic binding data in combination with alpha-fold (AF)-derived or other homology models and experimentally resolved binding modes of relevant ligands in GPCR-homologs needs to be tested. Here, as test case, we studied a congeneric set of ligands that bind to a structurally unresolved G protein-coupled receptor (GPCR), the inactive human adenosine A3 receptor (hA3R). We tested three available homology models from which two have been generated from experimental structures of hA1R or hA2AR and one model was a multistate alphafold 2 (AF2)-derived model. We applied alchemical calculations with thermodynamic integration coupled with molecular dynamics (TI/MD) simulations to calculate the experimental relative binding free energies and residence time (τ)-random accelerated MD (τ-RAMD) simulations to calculate the relative residence times (RTs) for antagonists. While the TI/MD calculations produced, for the three homology models, good Pearson correlation coefficients, correspondingly, r = 0.74, 0.62, and 0.67 and mean unsigned error (mue) values of 0.94, 1.31, and 0.81 kcal mol-1, the τ-RAMD method showed r = 0.92 and 0.52 for the first two models but failed to produce accurate results for the multistate AF2-derived model. With subsequent optimization of the AF2-derived model by reorientation of the side chain of R1735.34 located in the extracellular loop 2 (EL2) that blocked ligand's unbinding, the computational model showed r = 0.84 for kinetic data and improved performance for thermodynamic data (r = 0.81, mue = 0.56 kcal mol-1). Overall, after refining the multistate AF2 model with physics-based tools, we were able to show a strong correlation between predicted and experimental ligand relative residence times and affinities, achieving a level of accuracy comparable to an experimental structure. The computational workflow used can be applied to other receptors, helping to rank candidate drugs in a congeneric series and enabling the prioritization of leads with stronger binding affinities and longer residence times.


Subject(s)
Furylfuramide , Molecular Dynamics Simulation , Humans , Ligands , Workflow , Thermodynamics , Protein Binding , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P1/metabolism , Drug Design , Adenosine
14.
Mol Pharmacol ; 105(3): 213-223, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38182432

ABSTRACT

This study describes the localization and computational prediction of a binding site for the A3 adenosine receptor (A3AR) positive allosteric modulator 2-cyclohexyl-1H-imidazo[4,5-c]quinolin-4-(3,4-dichlorophenyl)amine (LUF6000). The work reveals an extrahelical lipid-facing binding pocket disparate from the orthosteric binding site that encompasses transmembrane domain (TMD) 1, TMD7, and Helix (H) 8, which was predicted by molecular modeling and validated by mutagenesis. According to the model, the nearly planar 1H-imidazo[4,5-c]quinolinamine ring system lies parallel to the transmembrane segments, inserted into an aromatic cage formed by π-π stacking interactions with the side chains of Y2847.55 in TMD7 and Y2938.54 in H8 and by π-NH bonding between Y2847.55 and the exocyclic amine. The 2-cyclohexyl group is positioned "upward" within a small hydrophobic subpocket created by residues in TMDs 1 and 7, while the 3,4-dichlorophenyl group extends toward the lipid interface. An H-bond between the N-1 amine of the heterocycle and the carbonyl of G291.49 further stabilizes the interaction. Molecular dynamics simulations predicted two metastable intermediates, one resembling a pose determined by molecular docking and a second involving transient interactions with Y2938.54; in simulations, each of these intermediates converges into the final bound state. Structure-activity-relationships for replacement of either of the identified exocyclic or endocyclic amines with heteroatoms lacking H-bond donating ability were consistent with the hypothetical pose. Thus, we characterized an allosteric pocket for 1H-imidazo[4,5-c]quinolin-4-amines that is consistent with data generated by orthogonal methods, which will aid in the rational design of improved A3AR positive allosteric modulators. SIGNIFICANCE STATEMENT: Orthosteric A3AR agonists have advanced in clinical trials for inflammatory conditions, liver diseases, and cancer. Thus, the clinical appeal of selective receptor activation could extend to allosteric enhancers, which would induce site- and time-specific activation in the affected tissue. By identifying the allosteric site for known positive allosteric modulators, structure-based drug discovery modalities can be enabled to enhance the pharmacological properties of the 1H-imidazo[4,5-c]quinolin-4-amine class of A3AR positive allosteric modulators.


Subject(s)
Amines , Receptors, Purinergic P1 , Molecular Docking Simulation , Allosteric Regulation , Receptors, Purinergic P1/metabolism , Binding Sites , Allosteric Site , Molecular Dynamics Simulation , Lipids
15.
Br J Pharmacol ; 181(4): 547-563, 2024 02.
Article in English | MEDLINE | ID: mdl-37218380

ABSTRACT

Traditionally, platelets are known to play an important role in haemostasis and thrombosis; however, they serve also as important modulators of inflammation and immunity. Platelets secrete adhesion molecules and cytokines, interact with leukocytes and endothelium, and express toll-like receptors involved in a direct interaction with pathogens. Platelets express A2A and A2B subtypes of receptors for adenosine. The activation of these receptors leads to an increase in cAMP concentration in the cytoplasm, thereby resulting in inhibited secretion of pro-inflammatory mediators and reduced cell activation. Therefore, platelet adenosine receptors could be a potential target for inhibiting platelet activation and thus down-regulating inflammation or immunity. The biological effects of adenosine are short-lasting, because the compound is rapidly metabolized; hence, its lability has triggered efforts to synthesize new, longer-lasting adenosine analogues. In this article, we have reviewed the literature regarding the pharmacological potential of adenosine and other agonists of A2A and A2B receptors to affect platelet function during inflammation. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.


Subject(s)
Blood Platelets , Thrombosis , Humans , Adenosine/pharmacology , Adenosine/metabolism , Receptors, Purinergic P1/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Platelet Activation , Thrombosis/metabolism
16.
Purinergic Signal ; 20(1): 35-45, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36918461

ABSTRACT

Interest has been focused in recent years on the analgesic effects exerted by adenosine and its receptors, A1, A2A, A2B, and A3 adenosine receptor (AR) subtypes, in different in vivo models of chronic pain. In particular, it was demonstrated that selective A3AR agonists reduced pro-nociceptive N-type Ca2+ channels in dorsal root ganglion (DRG) neurons isolated from rats and, by this mechanism, inhibit post inflammatory visceral hypersensitivity. In the present study, we investigate the effect of a previously reported irreversibly binding A3AR agonist, ICBM, on Ca2+ currents (ICa) in rat DRG neurons. Present data demonstrate that ICBM, an isothiocyanate derivative designed for covalent binding to the receptor, concentration-dependently inhibits ICa. This effect is irreversible, since it persists after drug removal, differently from the prototypical A3AR agonist, Cl-IB-MECA. ICBM pre-exposure inhibits the effect of a subsequent Cl-IB-MECA application. Thus, covalent A3AR agonists such as ICBM may represent an innovative, beneficial, and longer-lasting strategy to achieve efficacious chronic pain control versus commonly used, reversible, A3AR agonists. However, the possible limitations of this drug and other covalent drugs may be, for example, a characteristic adverse effect profile, suggesting that more pre-clinical studies are needed.


Subject(s)
Chronic Pain , Ganglia, Spinal , Rats , Animals , Ganglia, Spinal/metabolism , Chronic Pain/metabolism , Neurons/metabolism , Adenosine/metabolism , Receptors, Purinergic P1/metabolism , Receptor, Adenosine A3/metabolism , Adenosine A3 Receptor Agonists/pharmacology
17.
mBio ; 15(1): e0257123, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38108639

ABSTRACT

IMPORTANCE: Staphylococcus aureus is one of the leading causes of antimicrobial-resistant infections whose success as a pathogen is facilitated by its massive array of immune evasion tactics, including intracellular survival within critical immune cells such as neutrophils, the immune system's first line of defense. In this study, we describe a novel pathway by which intracellular S. aureus can suppress the antimicrobial capabilities of human neutrophils by using the anti-inflammatory adenosine receptor, adora2a (A2aR). We show that signaling through A2aR suppresses the pentose phosphate pathway, a metabolic pathway used to fuel the antimicrobial NADPH oxidase complex that generates reactive oxygen species (ROS). As such, neutrophils show enhanced ROS production and reduced intracellular S. aureus when treated with an A2aR inhibitor. Taken together, we identify A2aR as a potential therapeutic target for combatting intracellular S. aureus infection.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Humans , Neutrophils , Staphylococcus aureus/metabolism , Reactive Oxygen Species/metabolism , Pentose Phosphate Pathway , Host-Pathogen Interactions , Anti-Infective Agents/metabolism , Receptors, Purinergic P1/metabolism
18.
Front Immunol ; 14: 1273837, 2023.
Article in English | MEDLINE | ID: mdl-38077336

ABSTRACT

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Astrocytes/metabolism , Olfactory Bulb/metabolism , Cyclic AMP/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Receptors, Purinergic P1/metabolism
19.
Neurobiol Dis ; 188: 106341, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37918757

ABSTRACT

The antagonistic effect of adenosine on dopaminergic transmission in the basal ganglia indirect motor control pathway is mediated by dopamine D2 (D2R) and adenosine A2A (A2AR) receptors co-expressed on medium spiny striatal neurons. The pathway is unbalanced in Parkinson's disease (PD) and an A2AR blocker has been approved for use with levodopa in the therapy of the disease. However, it is not known whether the therapy is acting on individually expressed receptors or in receptors forming A2A-D2 receptor heteromers, whose functionality is unique. For two proteins prone to interact, a very recently developed technique, MolBoolean, allows to determine the number of proteins that are either non-interacting or interacting. After checking the feasibility of the technique and reliability of data in transfected cells and in striatal primary neurons, the Boolean analysis of receptors in the striatum of rats and monkeys showed a high percentage of D2 receptors interacting with the adenosine receptor, while, on the contrary, a significant proportion of A2A receptors do not interact with dopamine receptors. The number of interacting receptors increased when rats and monkeys were lesioned to become a PD model. The use of a tracer of the indirect pathway in monkeys confirmed that the data was restricted to the population of striatal neurons projecting to the GPe. The results are not only relevant for being the first study quantifying individual versus interacting G protein-coupled receptors, but also for showing that the D2R in these specific neurons, in both control and PD animals, is under the control of the A2AR. The tight adenosine/dopamine receptor coupling suggest benefits of early antiparkinsonian treatment with adenosine receptor blockers.


Subject(s)
Parkinson Disease , Rats , Animals , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Dopamine/metabolism , Medium Spiny Neurons , Adenosine/metabolism , Reproducibility of Results , Corpus Striatum/metabolism , Receptors, Dopamine/metabolism , Primates/metabolism , Receptors, Purinergic P1/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Dopamine D1/metabolism
20.
ChemMedChem ; 18(21): e202300299, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37675643

ABSTRACT

The A3 adenosine receptor is an interesting target whose role in cancer is controversial. In this work, a structural investigation at the 2-position of the [1,2,4]triazolo[1,5-c]pyrimidine nucleus was performed, finding new potent and selective A3 adenosine receptor antagonists such as the ethyl 2-(4-methoxyphenyl)-5-(methylamino)-[1,2,4]triazolo[1,5-c]pyrimidine-8-carboxylate (20, DZ123) that showed a Ki value of 0.47 nM and an exceptional selectivity profile over the other adenosine receptor subtypes. Computational studies were performed to rationalize the affinity and the selectivity profile of the tested compounds at the A3 adenosine receptor and the A1 and A2A adenosine receptors. Compound 20 was tested on both A3 adenosine receptor positive cell lines (CHO-A3 AR transfected, THP1 and HCT16) and on A3 negative cancer cell lines, showing no effect in the latter and a pro-proliferative effect at a low concentration in the former. These interesting results pave the way to further investigation on both the mechanism involved and potential therapeutic applications.


Subject(s)
Neoplasms , Receptor, Adenosine A3 , Cricetinae , Animals , Structure-Activity Relationship , Receptor, Adenosine A3/metabolism , Receptors, Purinergic P1/chemistry , Receptors, Purinergic P1/metabolism , Cell Line , Pyrimidines/chemistry , Purinergic P1 Receptor Antagonists/pharmacology , Purinergic P1 Receptor Antagonists/chemistry , CHO Cells , Receptor, Adenosine A2A
SELECTION OF CITATIONS
SEARCH DETAIL