Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
Front Immunol ; 15: 1407837, 2024.
Article in English | MEDLINE | ID: mdl-39026672

ABSTRACT

The aim of this study was to evaluate the mutation spectrum of homologous recombination repair (HRR) genes and its association with tumor immune infiltration and prognosis in triple-negative breast cancer (TNBC). TNBC patients (434 patients from Ruijin cohort) were evaluated with targeted next-generating sequencing for mutations in HRR genes. The frequencies of mutations were compared with public reference cohorts (320 TNBC patients from METABRIC, 105 from TCGA, and 225 from MSKCC 2018). Associations between mutation status and tumor immune infiltration and prognosis were analyzed. HRR genes mutations were seen in 21.89% patients, with BRCA1/2 mutations significantly enriched in tumors with breast/ovarian cancer family history (P = 0.025) and high Ki-67 levels (P = 0.018). HRR genes mutations were not related with recurrence-free survival (RFS) (adjusted P = 0.070) and overall survival (OS) (adjusted P = 0.318) for TNBC patients, regardless of carboplatin treatment (P > 0.05). Moreover, tumor immune infiltration and PD-L1 expression was positively associated with HRR or BRCA1/2 mutation (all P < 0.001). Patients with both HRR mutation and high CD8+ T cell counts had the best RFS and OS, whereas patients with no HRR mutation and low CD8+ T cell counts had the worst outcomes (RFS P < 0.001, OS P = 0.019). High frequency of HRR gene mutations was found in early TNBC, with no prognostic significance. Immune infiltration and PD-L1 expression was positively associated with HRR mutation, and both HRR mutation and high CD8+ T cell infiltration levels were associated with superior disease outcome.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Mutation , Recombinational DNA Repair , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/mortality , Female , Prognosis , Middle Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Recombinational DNA Repair/genetics , Adult , BRCA1 Protein/genetics , B7-H1 Antigen/genetics , Aged , BRCA2 Protein/genetics , Biomarkers, Tumor/genetics
2.
Magy Onkol ; 68(2): 137-141, 2024 Jul 16.
Article in Hungarian | MEDLINE | ID: mdl-39013087

ABSTRACT

The best predictive marker for the expected efficacy of PARP inhibitor therapy is mutations in BRCA1/2 or other homologous recombination repair genes. These tests are part of routine molecular pathology diagnostics. Among 281 patients with prostate adenocarcinoma, somatic pathogenic mutations in one of these genes were identified in 21.4% of patients. In 28.5% of the patients, the test was unsuccessful; the main limitation of successful testing was the age of the paraffin blocks and low DNA concentration. In the case of BRCA1/2 testing, the success rate was significantly reduced for samples older than 5 years, while in tests involving a broader set of homologous recombination repair genes, the success rate was significantly reduced for samples older than 2 years. Therefore, it is very important to test high-risk prostate cancers at the time of primary diagnosis, and probably also liquid biopsy testing of circulating tumor DNA will play an important role in safe diagnosis in the near future.


Subject(s)
Adenocarcinoma , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/drug therapy , Recombinational DNA Repair/genetics , Mutation , BRCA2 Protein/genetics , Mutation Rate , BRCA1 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Biomarkers, Tumor/genetics , Aged , Middle Aged
3.
BMC Cancer ; 24(1): 706, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851712

ABSTRACT

BACKGROUND: Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD: We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS: Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION: PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION: CRD42023454079.


Subject(s)
Bayes Theorem , Mutation , Phthalazines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Male , Phthalazines/therapeutic use , Phthalazines/adverse effects , Phthalazines/administration & dosage , Network Meta-Analysis , Piperazines/therapeutic use , Piperazines/adverse effects , Piperazines/administration & dosage , BRCA2 Protein/genetics , Recombinational DNA Repair/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Randomized Controlled Trials as Topic , Progression-Free Survival , Indoles/therapeutic use , Indoles/adverse effects , Indoles/administration & dosage , BRCA1 Protein/genetics , Treatment Outcome , Quinazolines
4.
JNCI Cancer Spectr ; 8(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38848470

ABSTRACT

CHEK2 is considered to be involved in homologous recombination repair (HRR). Individuals who have germline pathogenic variants (gPVs) in CHEK2 are at increased risk to develop breast cancer and likely other primary cancers. PARP inhibitors (PARPi) have been shown to be effective in the treatment of cancers that present with HRR deficiency-for example, caused by inactivation of BRCA1/2. However, clinical trials have shown little to no efficacy of PARPi in patients with CHEK2 gPVs. Here, we show that both breast and non-breast cancers from individuals who have biallelic gPVs in CHEK2 (germline CHEK2 deficiency) do not present with molecular profiles that fit with HRR deficiency. This finding provides a likely explanation why PARPi therapy is not successful in the treatment of CHEK2-deficient cancers.


Subject(s)
Breast Neoplasms , Checkpoint Kinase 2 , Germ-Line Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Checkpoint Kinase 2/genetics , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Male , Neoplasms/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Middle Aged , Recombinational DNA Repair/genetics , Adult , Breast Neoplasms, Male/genetics
5.
Adv Ther ; 41(6): 2196-2216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38767824

ABSTRACT

Despite advances in our understanding of the molecular landscape of prostate cancer and the development of novel biomarker-driven therapies, the prognosis of patients with metastatic prostate cancer that is resistant to conventional hormonal therapy remains poor. Data suggest that a significant proportion of patients with metastatic castration-resistant prostate cancer (mCRPC) have mutations in homologous recombination repair (HRR) genes and may benefit from poly(ADP-ribose) polymerase (PARP) inhibitors. However, the adoption of HRR gene mutation testing in prostate cancer remains low, meaning there is a missed opportunity to identify patients who may benefit from targeted therapy with PARP inhibition, with or without novel hormonal agents. Here, we review the current knowledge regarding the clinical significance of HRR gene mutations in prostate cancer and discuss the efficacy of PARP inhibition in patients with mCRPC. This comprehensive overview aims to increase the clinical implementation of HRR gene mutation testing and inform future efforts in personalized treatment of prostate cancer.


Subject(s)
Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Humans , Male , Recombinational DNA Repair/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prevalence , Prognosis
6.
JCO Precis Oncol ; 8: e2300628, 2024 May.
Article in English | MEDLINE | ID: mdl-38748947

ABSTRACT

PURPOSE: The prevalence of homologous recombination repair gene mutations (HRRm) in patients with metastatic castration-resistant prostate cancer (mCRPC) in Latin America and the Caribbean (LAC) is unknown. Prevalence of homologous Recombination repair (HRR) gene mutatiOns in patientS with metastatic castration resistant ProstatE Cancer in LaTin America (PROSPECT) aimed to determine this prevalence and to describe the demographic and clinical characteristics of the participants. MATERIALS AND METHODS: This was a prospective, cross-sectional, multicenter study across 11 cancer centers in seven LAC countries. After informed consent, all eligible participants underwent genomic testing by provided blood samples for germline HRR testing; they also provided PC tissue blocks if available for somatic HRR testing. RESULTS: Between April 2021 and April 2022, 387 patients (median age, 70 years [49-89], 94.3% Eastern Cooperative Oncology Group 0-1) with mCRPC were enrolled in the study. Almost 40% of them had a family history of cancer, and the overall time from their initial PC and mCRPC diagnosis was 3 years and 1 year, respectively. The overall prevalence of germline HRRm was 4.2%. The mutations detected included the genes CHEK2 (n = 4, 1%), ATM (n = 3, 0.8%), BRCA2 (n = 3, 0.8%), BRIP1 (n = 2, 0.5%), RAD51B (n = 2, 0.5%), BRCA1 (n = 1, 0.3%), and MRE11 (n = 1, 0.3%). The prevalence of somatic HRRm could not be assessed because of high HRR testing failure rates (79%, 199/251) associated with insufficient DNA, absence of tumor cells, and poor-quality DNA. CONCLUSION: Despite the study's limitations, to our knowledge, PROSPECT was the first attempt to describe the prevalence of HRRm in patients with PC from LAC. Notably, the germline HRRm prevalence in this study was inferior to that observed in North American and European populations. The somatic HRR testing barriers identified are being addressed by several projects to improve access to HRR testing and biomarker-based therapies in LAC.


Subject(s)
Mutation , Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Humans , Male , Aged , Prospective Studies , Middle Aged , Cross-Sectional Studies , Latin America/epidemiology , Aged, 80 and over , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/epidemiology , Prostatic Neoplasms, Castration-Resistant/pathology , Recombinational DNA Repair/genetics , Prevalence
7.
Breast Cancer Res Treat ; 207(2): 331-342, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38814507

ABSTRACT

PURPOSE: Genetically predisposed breast cancer (BC) patients represent a minor but clinically meaningful subgroup of the disease, with 25% of all cases associated with actionable variants in BRCA1/2. Diagnostic implementation of next-generation sequencing (NGS) resulted in the rare identification of BC patients with double heterozygosity for deleterious variants in genes partaking in homologous recombination repair of DNA. As clinical heterogeneity poses challenges for genetic counseling, this study focused on the occurrence and clinical relevance of double heterozygous BC in South Africa. METHODS: DNA samples were diagnostically screened using the NGS-based Oncomine™ BRCA Expanded Research Assay. Data was generated on the Ion GeneStudio S5 system and analyzed using the Torrent Suite™ and reporter software. The clinical significance of the variants detected was determined using international variant classification guidelines and treatment implications. RESULTS: Six of 1600 BC patients (0.375%) tested were identified as being bi-allelic for two germline likely pathogenic or pathogenic variants. Most of the variants were present in BRCA1/2, including two founder-related small deletions in three cases, with family-specific variants detected in ATM, BARD1, FANCD2, NBN, and TP53. The scientific interpretation and clinical relevance were based on the clinical and tumor characteristics of each case. CONCLUSION: This study increased current knowledge of the risk implications associated with the co-occurrence of more than one pathogenic variant in the BC susceptibility genes, confirmed to be a rare condition in South Africa. Further molecular pathology-based studies are warranted to determine whether clinical decision-making is affected by the detection of a second pathogenic variant in BRCA1/2 and TP53 carriers.


Subject(s)
BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Genetic Predisposition to Disease , Heterozygote , High-Throughput Nucleotide Sequencing , Recombinational DNA Repair , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , High-Throughput Nucleotide Sequencing/methods , Recombinational DNA Repair/genetics , South Africa , Middle Aged , BRCA1 Protein/genetics , Adult , BRCA2 Protein/genetics , Germ-Line Mutation , Aged , Clinical Relevance
8.
CRISPR J ; 7(2): 111-119, 2024 04.
Article in English | MEDLINE | ID: mdl-38635329

ABSTRACT

Integration of a point mutation to correct or edit a gene requires the repair of the CRISPR-Cas9-induced double-strand break by homology-directed repair (HDR). This repair pathway is more active in late S and G2 phases of the cell cycle, whereas the competing pathway of nonhomologous end-joining (NHEJ) operates throughout the cell cycle. Accordingly, modulation of the cell cycle by chemical perturbation or simply by the timing of gene editing to shift the editing toward the S/G2 phase has been shown to increase HDR rates. Using a traffic light reporter in mouse embryonic stem cells and a fluorescence conversion reporter in human-induced pluripotent stem cells, we confirm that a transient cold shock leads to an increase in the rate of HDR, with a corresponding decrease in the rate of NHEJ repair. We then investigated whether a similar cold shock could lead to an increase in the rate of HDR in the mouse embryo. By analyzing the efficiency of gene editing using single nucleotide polymorphism changes and loxP insertion at three different genetic loci, we found that a transient reduction in temperature after zygote electroporation of CRISPR-Cas9 ribonucleoprotein with a single-stranded oligodeoxynucleotide repair template did indeed increase knockin efficiency, without affecting embryonic development. The efficiency of gene editing with and without the cold shock was first assessed by genotyping blastocysts. As a proof of concept, we then confirmed that the modified embryo culture conditions were compatible with live births by targeting the coat color gene tyrosinase and observing the repair of the albino mutation. Taken together, our data suggest that a transient cold shock could offer a simple and robust way to improve knockin outcomes in both stem cells and zygotes.


Subject(s)
Gene Editing , Hypothermia , Animals , Humans , Mice , CRISPR-Cas Systems/genetics , Zygote/metabolism , Hypothermia/metabolism , Recombinational DNA Repair/genetics
9.
J Mol Diagn ; 26(6): 479-486, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522840

ABSTRACT

Targeted tumor only sequencing has become a standard practice in cancer diagnostics. This study aims to develop an approach for robust copy number variant calling in tumor samples using only off-target region (OTR) reads. We also established a clinical use case for homologous recombination deficiency (HRD) score estimation (HRDest) using the sum of telomeric-allelic imbalance and large-scale state transition scores without the need for loss of heterozygosity information. A strong correlation was found between HRD score and the sum of telomeric-allelic imbalance + large-scale state transition in The Cancer Genome Atlas cohort (ρ = 0.99, P < 2.2 × 10-16) and in a clinical in-house cohort of 34 tumors (ρ = 0.9, P = 5.1 × 10-13) comparing whole-exome sequencing and targeted sequencing data. HRDest scores from 1086 clinical cases were compared with The Cancer Genome Atlas data set. There were no significant differences in HRD score distribution within the analyzed tumor types. As a control, commercially available HRD standards were also sequenced, and the HRDest scores obtained from the OTR reads were well within the HRD reference range provided by the manufacturer. In conclusion, OTR reads of tumor-only panel sequencing can be used to determine genome-wide copy number variant profiles and to approximate HRD scores.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , High-Throughput Nucleotide Sequencing , Neoplasms , Humans , Neoplasms/genetics , Exome Sequencing/methods , High-Throughput Nucleotide Sequencing/methods , Recombinational DNA Repair/genetics , Allelic Imbalance
10.
J Clin Oncol ; 42(14): 1687-1698, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38484203

ABSTRACT

PURPOSE: We performed a pooled analysis of multiple trials of poly(ADP-ribose) polymerase inhibitors (PARPi) in metastatic castration-resistant prostate cancer (mCRPC) to investigate the efficacy of PARPi in each individual homologous recombination repair (HRR) mutated (m) gene. PATIENTS AND METHODS: We pooled patient-level data from trials of PARPi in mCRPC that reported mutation status in individual HRR genes. Any HRR gene with available data across all the randomized trials of PARPi in first-line mCRPC was selected. The hazard ratios (HRs; 95% CI) for radiographic progression-free survival (rPFS; by blinded independent review) and overall survival (OS) of a PARPi plus an androgen receptor pathway inhibitor (ARPI) relative to placebo plus an ARPI in the pool of three randomized trials in first-line mCRPC were calculated using Kaplan-Meier estimates and a Cox proportional hazards model. RESULTS: In ATMm (N = 268), rPFS HR was 1.05 (0.74 to 1.49) and OS HR was 1.18 (0.82 to 1.71). In BRCA1m (N = 64), rPFS HR was 0.51 (0.23 to 1.1) and OS HR was 0.74 (0.34 to 1.61). In BRCA2m (N = 422), rPFS HR was 0.31 (0.23 to 0.42) and OS HR was 0.66 (0.49 to 0.89). In CDK12m (N = 164), rPFS HR was 0.50 (0.32 to 0.80) and OS HR was 0.63 (0.39 to 0.99). In CHEK2m (N = 172), rPFS HR was 1.06 (0.67 to 1.66) and OS HR was 1.53 (0.95 to 2.46). In PALB2m (N = 41) rPFS HR was 0.52 (0.23 to 1.17) and OS HR was 0.78 (0.34 to 1.8). CONCLUSION: In this pooled analysis, benefit from PARPi appeared greatest for patients with BRCA1m, BRCA2m, CDK12m, and PALB2m. Given limitations of this exploratory analysis, the apparent lack of benefit from PARPi in patients with CHEK2m or ATMm should be further explored in future clinical trials.


Subject(s)
BRCA2 Protein , Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Randomized Controlled Trials as Topic , Recombinational DNA Repair , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Male , Recombinational DNA Repair/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , United States , Checkpoint Kinase 2/genetics , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Progression-Free Survival , Androgen Receptor Antagonists/therapeutic use , Aged , Receptors, Androgen/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
11.
J Gynecol Oncol ; 35(4): e55, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38330378

ABSTRACT

OBJECTIVE: To determine the useful biomarker for predicting the effects of poly-(ADP ribose)-polymerase (PARP) inhibitors in Japanese patients with ovarian cancer. METHODS: We collected clinical information and performed molecular biological analysis on 42 patients with ovarian, fallopian tube, and primary peritoneal carcinomas who received PARP inhibitors. RESULTS: Among the analyzed patients with ovarian cancer, 23.8% had germline BRCA mutation (gBRCAm), 42.9% had homologous recombination repair-related gene mutation (HRRm), and 61.1% had a genomic instability score (GIS) of ≥42. Patients with HRRm had a significantly longer progression-free survival (PFS) than those without HRRm (median PFS 35.6 vs. 7.9 months; p=0.009), with a particularly marked increase in PFS in patients with gBRCAm (median PFS 42.3 months). Similarly, among patients with recurrent ovarian cancer, those with HRRm had a longer PFS than those without HRRm (median PFS 42.3 vs. 7.7 months; p=0.040). Multivariate Cox proportional hazards regression analysis found that performance status and gBRCAm status were independent factors associated with prolonged PFS with PARP inhibitors. In recurrent ovarian cancer, multivariate regression analysis identified platinum-free interval (PFI) in addition to performance status as a significant predictor of PFS. On the contrary, no significant association was observed between PFS and a GIS of ≥42 used in clinical practice. CONCLUSION: We found that HRRm can be a useful biomarker for predicting the effects of PARP inhibitors in treating ovarian cancer and that the PFI can also be useful in recurrent ovarian cancer.


Subject(s)
Biomarkers, Tumor , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Progression-Free Survival , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Middle Aged , Aged , Biomarkers, Tumor/genetics , Adult , Germ-Line Mutation , Genomic Instability , Aged, 80 and over , Fallopian Tube Neoplasms/drug therapy , Fallopian Tube Neoplasms/genetics , Fallopian Tube Neoplasms/mortality , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/drug therapy , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/genetics , Recombinational DNA Repair/genetics , Recombinational DNA Repair/drug effects
12.
Ann Oncol ; 35(5): 458-472, 2024 May.
Article in English | MEDLINE | ID: mdl-38417742

ABSTRACT

BACKGROUND: Although germline BRCA mutations have been associated with adverse outcomes in prostate cancer (PC), understanding of the association between somatic/germline alterations in homologous recombination repair (HRR) genes and treatment outcomes in metastatic castration-resistant PC (mCRPC) is limited. The aim of this study was to investigate the prevalence and outcomes associated with somatic/germline HRR alterations, particularly BRCA1/2, in patients initiating first-line (1L) mCRPC treatment with androgen receptor signalling inhibitors (ARSi) or taxanes. PATIENTS AND METHODS: Data from 729 mCRPC patients were pooled for CAPTURE from four multicentre observational studies. Eligibility required 1L treatment with ARSi or taxanes, adequate tumour samples and biomarker panel results. Patients underwent paired normal and tumour DNA analyses by next-generation sequencing using a custom gene panel including ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2, RAD51B and RAD54L. Patients were divided into subgroups based on somatic/germline alteration(s): with BRCA1/2 mutations (BRCA); with HRR mutations except BRCA1/2 (HRR non-BRCA); and without HRR alterations (non-HRR). Patients without BRCA1/2 mutations were classified as non-BRCA. Radiographic progression-free survival (rPFS), progression-free survival 2 (PFS2) and overall survival (OS) were assessed. RESULTS: Of 729 patients, 96 (13.2%), 127 (17.4%) and 506 (69.4%) were in the BRCA, HRR non-BRCA and non-HRR subgroups, respectively. BRCA patients performed significantly worse for all outcomes than non-HRR or non-BRCA patients (P < 0.05), while PFS2 and OS were significantly shorter for BRCA than HRR non-BRCA patients (P < 0.05). HRR non-BRCA patients also had significantly worse rPFS, PFS2 and OS than non-HRR patients. Exploratory analyses suggested that for BRCA patients, there were no significant differences in outcomes associated with 1L treatment choice (ARSi or taxanes) or with the somatic/germline origin of the alterations. CONCLUSIONS: Worse outcomes were observed for mCRPC patients in the BRCA subgroup compared with non-BRCA subgroups, either HRR non-BRCA or non-HRR. Despite its heterogeneity, the HRR non-BRCA subgroup presented worse outcomes than the non-HRR subgroup. Screening early for HRR mutations, especially BRCA1/2, is crucial in improving mCRPC patient prognosis.


Subject(s)
Germ-Line Mutation , Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/mortality , Aged , Recombinational DNA Repair/genetics , Middle Aged , BRCA2 Protein/genetics , Aged, 80 and over , Taxoids/therapeutic use , BRCA1 Protein/genetics , Androgen Receptor Antagonists/therapeutic use , Biomarkers, Tumor/genetics , Progression-Free Survival , Mutation
13.
JCO Precis Oncol ; 7: e2300378, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38061006

ABSTRACT

PURPOSE: Homologous recombination deficiency (HRD) is a well-described phenotype of some prostate cancers; however, current biomarkers for HRD are imperfect and rely on detection of single gene alterations in the homologous recombination repair (HRR) pathway, which may not capture the complexity of HRD biology. RNA signature-based methods of HRD identification present a potentially dynamic assessment of the HRD phenotype; however, its relationship with HRR gene alterations is not well characterized in prostate cancer. METHODS: A HRD assay on the basis of an RNA signature associated with biallelic BRCA1/2 loss was applied to a retrospective cohort study of 985 men with prostate cancer analyzed on the Tempus xT platform. HRD status was defined by a binary threshold on a continuous scale. RESULTS: In this cohort, of the 126 (13%) patients found to be HRD+ by RNA signature (HRD-RNA+), 100 (79%) had no coexisting HRR gene alteration. Among samples with biallelic BRCA1/2 loss, 78% (7/9) were classified as HRD-RNA+, while 8% (2/25) of samples with BRCA1/2 monoallelic loss were HRD-RNA+. Biallelic and monoallelic ATM loss exhibited HRD-RNA+ at a lower prevalence: 6.7% (1/15) and 7.1% (1/14), respectively, compared with HRD-RNA+ prevalence among samples without any HRR gene loss (13%; 100/782). HRD-RNA+ was associated with a significantly higher prevalence of TP53 and AR gene alterations relative to HRD-RNA- after correction for multiple comparisons, 59% versus 39% (q = 0.003) and 23% versus 12% (q = 0.024), respectively. CONCLUSION: Use of an RNA-based HRD signature significantly expands the fraction of patients with prostate cancer who may derive benefit from poly (ADP-ribose) polymerase inhibitors (PARPis) compared with using HRR gene mutations alone. Further studies are needed to evaluate functional HRD significance and inform future usage as a predictive biomarker for PARPi selection.


Subject(s)
BRCA1 Protein , Prostatic Neoplasms , Male , Humans , BRCA1 Protein/genetics , Recombinational DNA Repair/genetics , Homologous Recombination/genetics , Retrospective Studies , BRCA2 Protein/genetics , Prostatic Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors
14.
JCO Precis Oncol ; 7: e2300195, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37972338

ABSTRACT

PURPOSE: Mutations in BRCA1 and/or BRCA2 (BRCAm), other homologous recombination repair genes (HRRm), and homologous recombination deficiency (HRD) lead to an accumulation of genomic alterations that can drive tumorigenesis. The prognostic impact of these HRR pathway defects on overall survival (OS) in patients not receiving poly (ADP-ribose) polymerase inhibitors (PARPi) or immunotherapy is unclear. We evaluated the association of HRR biomarkers with OS in patients with advanced solid tumors receiving therapy excluding PARPi and immunotherapy. METHODS: Deidentified data were collected through December 31, 2020, from a real-world clinicogenomic database (CGDB) with data originating from approximately 280 cancer clinics in the United States. Patients age 18 years and older with an advanced/metastatic diagnosis between 2018 and 2019 for 1 of 15 solid tumors and available data in the CGDB were included. The primary analysis evaluated the association between HRR pathway biomarkers and OS, using start of second-line therapy as the index date (to reduce immortal time bias). RESULTS: A total of 9,457 patients had available data for BRCA/HRR and 5,792 for HRD status; 4,890 (51.7%) were women and mean (SD) age was 65.9 (11.5) years. For the primary analysis, adjusted hazard ratios for OS were BRCAm (n = 156) versus BRCA wild-type (wt; n = 3,131; 0.83 [95% CI, 0.60 to 1.17]); for HRRm (n = 467) versus HRRwt (n = 282; 0.95 [95% CI, 0.79 to 1.14]); and for HRD-positive (n = 447) versus -negative (n = 1,687; 1.22 [95% CI, 1.02 to 1.47]). Results were similar using start of first-line and start of third-line therapy as index dates. CONCLUSION: This large, real-world study found no association between OS and either BRCA or HRR status but identified a possible linkage between HRD positivity and shorter median OS in patients with advanced solid tumors who did not receive PARPi or immunotherapy.


Subject(s)
Neoplasms , Recombinational DNA Repair , Humans , Female , Adolescent , Aged , Male , Recombinational DNA Repair/genetics , Neoplasms/genetics , Neoplasms/therapy , DNA Repair , Poly(ADP-ribose) Polymerase Inhibitors , Biomarkers, Tumor/genetics
15.
Adv Sci (Weinh) ; 10(36): e2302494, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37985839

ABSTRACT

Stromal antigen 2 (STAG2), a subunit of the cohesin complex, is recurrently mutated in various tumors. However, the role of STAG2 in DNA repair and its therapeutic implications are largely unknown. Here it is reported that knockout of STAG2 results in increased double-stranded breaks (DSBs) and chromosomal aberrations by reducing homologous recombination (HR) repair, and confers hypersensitivity to inhibitors of ataxia telangiectasia mutated (ATMi), Poly ADP Ribose Polymerase (PARPi), or the combination of both. Of note, the impaired HR by STAG2-deficiency is mainly attributed to the restored expression of KMT5A, which in turn methylates H4K20 (H4K20me0) to H4K20me1 and thereby decreases the recruitment of BRCA1-BARD1 to chromatin. Importantly, STAG2 expression correlates with poor prognosis of cancer patients. STAG2 is identified as an important regulator of HR and a potential therapeutic strategy for STAG2-mutant tumors is elucidated.


Subject(s)
Neoplasms , Recombinational DNA Repair , Humans , Recombinational DNA Repair/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , DNA Repair/genetics , Neoplasms/drug therapy , Cohesins , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
16.
Mol Genet Genomics ; 298(6): 1527-1543, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37861816

ABSTRACT

Hematologic malignancies (HMs) are a collection of malignant transformations, originating from the cells in the bone marrow and lymphoid organs. HMs comprise three main types; leukemia, lymphoma, and multiple myeloma. Globally, HMS accounts for approximately 10% of newly diagnosed cancer. DNA repair pathways defend the cells from recurrent DNA damage. Defective DNA repair mechanisms such as homologous recombination repair (HRR), nucleotide excision repair (NER), and base excision repair (BER) pathways may lead to genomic instability, which initiates HM progression and carcinogenesis. Expression deregulation of HRR, NER, and BER has been investigated in various malignancies. However, no studies have been reported to assess the differential expression of selected DNA repair genes combinedly in HMs. The present study was designed to assess the differential expression of HRR and BER pathway genes including RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 in blood cancer patients to highlight their significance as diagnostic/ prognostic marker in hematological malignancies. The study cohort comprised of 210 blood cancer patients along with an equal number of controls. For expression analysis, q-RT PCR was performed. DNA damage was measured in blood cancer patients and controls using the comet assay and LORD Q-assay. Data analysis showed significant downregulation of selected genes in blood cancer patients compared to healthy controls. To check the diagnostic value of selected genes, the Area under curve (AUC) was calculated and 0.879 AUC was observed for RAD51 (p < 0.0001) and 0.830 (p < 0.0001) for APEX1. Kaplan-Meier analysis showed that downregulation of RAD51 (p < 0.0001), XRCC3 (p < 0.02), and APEX1 (p < 0.0001) was found to be associated with a significant decrease in survival of blood cancer patients. Cox regression analysis showed that deregulation of RAD51 (p < 0.0001), XRCC2 (p < 0.02), XRCC3 (p < 0.003), and APEX1 (p < 0.00001) was found to be associated with the poor prognosis of blood cancer patients. Comet assay showed an increased number of comets in blood cancer patients compared to controls. These results are confirmed by performing the LORD q-assay and an increased frequency of lesions/Kb was observed in selected genes in cancer patients compared to controls. Our results showed significant downregulation of RAD51, XRCC2, XRCC3, APEX1, FEN1, PARP1, and XRCC1 genes with increased DNA damage in blood cancer patients. The findings of the current research suggested that deregulated expression of HRR and BER pathway genes can act as a diagnostic/prognostic marker in hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Neoplasms , Humans , Recombinational DNA Repair/genetics , DNA Repair/genetics , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Genetic Predisposition to Disease , X-ray Repair Cross Complementing Protein 1/genetics , DNA-Binding Proteins/genetics
17.
Adv Med Sci ; 68(2): 359-365, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37757663

ABSTRACT

Prostate cancer (PC) is the second most common cancer in men worldwide. Homologous recombination repair (HRR) gene defects have been identified in a significant proportion of metastatic castration-resistant PC (mCRPC) and are associated with an increased risk of PC and more aggressive PC. Importantly, it has been well-documented that poly ADP-ribose polymerase (PARP) inhibition in cells with HR deficiency (HRD) can cause cell death. This has been exploited for the targeted treatment of PC patients with HRD by PARP inhibitors. Moreover, it has been shown that platinum-based chemotherapy is more effective in mCRPC patients with HRR gene alterations. This review highlights the prognosis and therapeutic implications of HRR gene alterations in PC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Recombinational DNA Repair , Male , Humans , Recombinational DNA Repair/genetics , Prognosis , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
18.
BMC Cancer ; 23(1): 686, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37479966

ABSTRACT

BACKGROUND: SETD2 protects against genomic instability via maintenance of homologous recombination repair (HRR) and mismatch repair (MMR) in neoplastic cells. However, it remains unclear whether SETD2 dysfunction is a complementary or independent factor to microsatellite instability-high (MSI-H) and tumor mutational burden-high (TMB-H) for immunocheckpoint inhibitor (ICI) treatment, and little is known regarding whether this type of dysfunction acts differently in various types of cancer. METHODS: This cohort study used multidimensional genomic data of 6726 sequencing samples from our cooperative and non-public GenePlus institute from April 1 through April 10, 2020. MSIsensor score, HRD score, RNAseq, mutational data, and corresponding clinical data were obtained from the TCGA and MSKCC cohort for seven solid tumor types. RESULTS: A total of 1021 genes underwent target panel sequencing reveal that SETD2 mutations were associated with a higher TMB. SETD2 deleterious mutation dysfunction affected ICI treatment prognosis independently of TMB-H (p < 0.01) and had a lower death hazard than TMB-H in pancancer patients (0.511 vs 0.757). Significantly higher MSI and lower homologous recombination deficiency were observed in the SETD2 deleterious mutation group. Improved survival rate was found in the MSKCC-IO cohort (P < 0.0001) and was further confirmed in our Chinese cohort. CONCLUSION: We found that SETD2 dysfunction affects ICI treatment prognosis independently of TMB-H and has a lower death hazard than TMB-H in pancancer patients. Therefore, SETD2 has the potential to serve as a candidate biomarker for ICI treatment. Additionally, SETD2 should be considered when dMMR is detected by immunohistochemistry.


Subject(s)
DNA Repair , Microsatellite Instability , Pancreatic Neoplasms , Humans , Asian People , Cohort Studies , DNA Mismatch Repair/genetics , DNA Repair/genetics , Genomic Instability , Immunotherapy , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Recombinational DNA Repair/genetics
19.
Genes Chromosomes Cancer ; 62(12): 710-720, 2023 12.
Article in English | MEDLINE | ID: mdl-37436117

ABSTRACT

Prostate cancer (PrCa) is one of the three most frequent and deadliest cancers worldwide. The discovery of PARP inhibitors for the treatment of tumors with deleterious variants in homologous recombination repair (HRR) genes has placed PrCa on the roadmap of precision medicine. However, the overall contribution of HRR genes to the 10%-20% of carcinomas arising in men with early-onset/familial PrCa has not been fully clarified. We used targeted next-generation sequencing (T-NGS) covering eight HRR genes (ATM, BRCA1, BRCA2, BRIP1, CHEK2, NBN, PALB2, and RAD51C) and an analysis pipeline querying both small and large genomic variations to clarify their global and relative contribution to hereditary PrCa predisposition in a series of 462 early-onset/familial PrCa cases. Deleterious variants were found in 3.9% of the patients, with CHEK2 and ATM being the most frequently mutated genes (38.9% and 22.2% of the carriers, respectively), followed by PALB2 and NBN (11.1% of the carriers, each), and finally by BRCA2, RAD51C, and BRIP1 (5.6% of the carriers, each). Using the same NGS data, exonic rearrangements were found in two patients, one pathogenic in BRCA2 and one of unknown significance in BRCA1. These results contribute to clarify the genetic heterogeneity that underlies PrCa predisposition in the early-onset and familial disease, respectively.


Subject(s)
Breast Neoplasms , Carcinoma , Prostatic Neoplasms , Male , Humans , Recombinational DNA Repair/genetics , Genetic Predisposition to Disease , Genotype , Prostatic Neoplasms/genetics , Germ-Line Mutation , Homologous Recombination
20.
Br J Cancer ; 129(3): 475-485, 2023 08.
Article in English | MEDLINE | ID: mdl-37365284

ABSTRACT

PURPOSE: To determine the safety and efficacy of PARP plus PD-L1 inhibition (olaparib + durvalumab, O + D) in patients with advanced solid, predominantly rare cancers harbouring homologous recombination repair (HRR) defects. PATIENTS AND METHODS: In total, 48 patients were treated with O + D, 16 with BRCA1/2 alterations (group 1) and 32 with other select HRR alterations (group 2). Overall, 32 (66%) patients had rare or less common cancers. The primary objective of this single-arm Phase II trial was a progression-free survival rate at 6 months (PFS6). Post hoc exploratory analyses were conducted on archival tumour tissue and serial bloods. RESULTS: The PFS6 rate was 35% and 38% with durable objective tumour responses (OTR) in 3(19%) and 3(9%) in groups 1 and 2, respectively. Rare cancers achieving an OTR included cholangiocarcinoma, perivascular epithelioid cell (PEComa), neuroendocrine, gallbladder and endometrial cancer. O + D was safe, with five serious adverse events related to the study drug(s) in 3 (6%) patients. A higher proportion of CD38 high B cells in the blood and higher CD40 expression in tumour was prognostic of survival. CONCLUSIONS: O + D demonstrated no new toxicity concerns and yielded a clinically meaningful PFS6 rate and durable OTRs across several cancers with HRR defects, including rare cancers.


Subject(s)
BRCA1 Protein , Endometrial Neoplasms , Female , Humans , BRCA1 Protein/genetics , Recombinational DNA Repair/genetics , BRCA2 Protein/genetics , Phthalazines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL