Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.551
Filter
1.
Int J Med Mushrooms ; 26(8): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38967207

ABSTRACT

Ganoderma lucidum is a medicinal mushroom that has been used since ancient times. We studied whether chronic oral administration of G. lucidum extract withstands increases in levels of proinflammatory TNF-α and lipid peroxide (LPO), an indicator of oxidative stress, in the gingival tissues of periodontitis model rats. G. lucidum extract was initially examined for inhibition of in vitro oxidative stress, produced by Fenton's reagents in whole homogenates of fresh gum tissues from rats. Prior to in vivo and in vitro experiments with rats, G. lucidum extract was quantitatively tested for its total polyphenol and/or flavonoid contents and ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH)-free radicals. Chronic oral administration of G. lucidum extract (300 mg/kg BW) significantly decreased TNF-α and LPO levels in the gingival tissues of periodontitis model rats. G. lucidum extract also inhibited (P < 0.05) in vitro oxidative stress, as indicated by reduced levels of LPO in G. lucidum extract-preincubated gum tissue homogenates of fresh rats. The in vitro results were, thus, consistent with the in vivo inhibition of lipid peroxidation, DPPH free radical-scavenging effects, and the presence of total polyphenols/flavonoids in G. lucidum extract. Our results provide the evidence, at least partially, for the beneficial effects of G. lucidum on periodontitis, an inflammatory condition of gums which is associated with oxidative stress and preceded by infectious gum diseases.


Subject(s)
Gingiva , Oxidative Stress , Periodontitis , Reishi , Tumor Necrosis Factor-alpha , Animals , Oxidative Stress/drug effects , Periodontitis/drug therapy , Periodontitis/prevention & control , Tumor Necrosis Factor-alpha/metabolism , Reishi/chemistry , Gingiva/drug effects , Gingiva/metabolism , Rats , Male , Administration, Oral , Disease Models, Animal , Antioxidants/pharmacology , Antioxidants/administration & dosage , Rats, Wistar
2.
Int J Med Mushrooms ; 26(8): 27-40, 2024.
Article in English | MEDLINE | ID: mdl-38967209

ABSTRACT

Lingzhi or reishi mushroom, Ganoderma lucidum, is a medicinal mushroom quite widely developed as herbal medicine because it has acted as an anticancer, antitumor, antioxidant, and anti-inflammatory. The active mycochemical compounds of G. lucidum mushrooms, such as flavonoids and polysaccharides, can suppress the release of pro-inflammatory cytokines and prevent lipid peroxidation due to oxidative stress. Rheumatoid arthritis (RA) is an autoimmune disease where the exact cause is unknown, and RA prevalence continues to increase yearly. In patients with RA, joint damage and inflammation occur. This study aims to evaluate the effectiveness of G. lucidum nanogels as anti-arthritis, anti-inflammatory, and antioxidative. The research method was a true experiment using a control group and treatment group that randomly assigned, using 24 male Wistar rats (Rattus norvegicus) induced with complete Freund's adjuvant (CFA) 0.1 mL. The rats were divided into six groups; healthy control/HCt (did not receive the treatment), negative control/NCt (induced by CFA), and positive control/PCt (given 0.012 diclofenac sodium). TG1 (given 250 mg G. lucidum nanogels), TG2 (given 500 mg G. lucidum nanogels), TG3 (given 750 mg G. lucidum nanogels). IgG, eNOS, IL-1ß, COX-2, NOS, TNF-α, and IL-6 parameters were measured using ELISA, and the data obtained were analyzed by one-way ANOVA using SPSS (P < 0.05). The results showed that administering G. lucidum nanogels significantly reduced IgG, NOS, TNF-α, COX-2, IL-1ß, and IL-6 and increased eNOS levels. The anti-inflammatory and antioxidative activities in suppressing pro-inflammatory cytokines and increasing eNOS levels prove that the nanogel extract G. lucidum have the potential to be developed as anti-arthritis natural therapeutic.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Arthritis, Rheumatoid , Freund's Adjuvant , Rats, Wistar , Reishi , Animals , Male , Reishi/chemistry , Arthritis, Rheumatoid/drug therapy , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Rats , Nanogels , Disease Models, Animal , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced , Cytokines/metabolism , Polyethylene Glycols , Polyethyleneimine
3.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893392

ABSTRACT

Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Reishi , Neurodegenerative Diseases/drug therapy , Humans , Reishi/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Animals , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use
4.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893471

ABSTRACT

Ganoderma lucidum, renowned as an essential edible and medicinal mushroom in China, remains shrouded in limited understanding concerning the intrinsic mechanisms governing the accumulation of active components and potential protein expression across its diverse developmental stages. Accordingly, this study employed a meticulous integration of metabolomics and proteomics techniques to scrutinize the dynamic alterations in metabolite accumulation and protein expression in G. lucidum throughout its growth phases. The metabolomics analysis unveiled elevated levels of triterpenoids, steroids, and polyphenolic compounds during the budding stage (BS) of mushroom growth, with prominent compounds including Diplazium and Ganoderenic acids E, H, and I, alongside key steroids such as cholesterol and 4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol. Additionally, nutrients such as polysaccharides, flavonoids, and purines exhibited heightened presence during the maturation stage (FS) of ascospores. Proteomic scrutiny demonstrated the modulation of triterpenoid synthesis by the CYP450, HMGR, HMGS, and ERG protein families, all exhibiting a decline as G. lucidum progressed, except for the ARE family, which displayed an upward trajectory. Therefore, BS is recommended as the best harvesting period for G. lucidum. This investigation contributes novel insights into the holistic exploitation of G. lucidum.


Subject(s)
Proteomics , Reishi , Triterpenes , Reishi/metabolism , Reishi/growth & development , Reishi/chemistry , Triterpenes/metabolism , Triterpenes/chemistry , Proteomics/methods , Metabolomics/methods , Fungal Proteins/metabolism
5.
Carbohydr Polym ; 341: 122298, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876710

ABSTRACT

Cutaneous melanoma is a lethal skin cancer variant with pronounced aggressiveness and metastatic potential. However, few targeted medications inhibit the progression of melanoma. Ganoderma lucidum, which is a type of mushroom, is widely used as a non-toxic alternative adjunct therapy for cancer patients. This study determines the effect of WSG, which is a water-soluble glucan that is derived from G. lucidum, on melanoma cells. The results show that WSG inhibits cell viability and the mobility of melanoma cells. WSG induces changes in the expression of epithelial-to-mesenchymal transition (EMT)-related markers. WSG also downregulates EMT-related transcription factors, Snail and Twist. Signal transduction assays show that WSG reduces the protein levels in transforming growth factor ß receptors (TGFßRs) and consequently inhibits the phosphorylation of intracellular signaling molecules, such as FAK, ERK1/2 and Smad2. An In vivo study shows that WSG suppresses melanoma growth in B16F10-bearing mice. To enhance transdermal drug delivery and prevent oxidation, two highly biocompatible compounds, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), are used to synthesize a dissolvable microneedle patch that is loaded with WSG (MN-WSG). A functional assay shows that MN-WSG has an effect that is comparable to that of WSG alone. These results show that WSG has significant potential as a therapeutic agent for melanoma treatment. MN-WSG may allow groundbreaking therapeutic approaches and offers a novel method for delivering this potent compound effectively.


Subject(s)
Reishi , Snail Family Transcription Factors , Animals , Mice , Reishi/chemistry , Snail Family Transcription Factors/metabolism , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Epithelial-Mesenchymal Transition/drug effects , Cell Survival/drug effects , Mice, Inbred C57BL , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polyvinyl Alcohol/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction/drug effects
6.
Org Biomol Chem ; 22(24): 4978-4986, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38832762

ABSTRACT

Ganoderma lucidum, a fungus used in traditional Chinese medicine, is known for its medicinal value attributed to its active components called Ganoderma triterpenoids (GTs). However, the limited isolation rate of these GTs has hindered their potential as promising drug candidates. Therefore, it is imperative to achieve large-scale preparation of GTs. In this study, four GTs were effectively synthesised from lanosterol. The antitumor activity of these GTs was evaluated in vivo. Endertiin B exhibited potent inhibitory activity against breast cancer cells (9.85 ± 0.91 µM and 12.12 ± 0.95 µM). Further investigations demonstrated that endertiin B significantly upregulated p21 and p27 and downregulated cyclinD1 expression, arresting the cell cycle at the G0/G1 phase and inducing apoptosis by decreasing BCL-2 and increasing BAX and BAK levels. Additionally, endertiin B was found to reduce the expression of proteins associated with the PI3K-AKT signaling pathway. To summarize, endertiin B effectively inhibited cell proliferation by blocking the cell cycle and inducing apoptosis through the PI3K-AKT pathway.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/chemical synthesis , Triterpenes/isolation & purification , Reishi/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Apoptosis/drug effects , Drug Screening Assays, Antitumor , Animals , Mice , Cell Line, Tumor , Dose-Response Relationship, Drug , Structure-Activity Relationship , Female , Cell Cycle/drug effects , Molecular Structure
7.
Redox Biol ; 74: 103227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865903

ABSTRACT

Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.


Subject(s)
Heat-Shock Response , Homeostasis , Hydrogen Sulfide , Membrane Potential, Mitochondrial , Mitochondria , Reishi , Triterpenes , Hydrogen Sulfide/metabolism , Reishi/metabolism , Reishi/genetics , Triterpenes/metabolism , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Quinone Reductases/metabolism , Quinone Reductases/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex III/metabolism , Electron Transport Complex III/genetics
8.
Environ Sci Pollut Res Int ; 31(29): 42372-42387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874757

ABSTRACT

Globally, the circular efficiency of biomass resources has become a priority due to the depletion and negative environmental impacts of fossil fuels. This study aimed to quantify the atmosphere-dependent combustion of Ganoderma lucidum (GL) biomass and its thermodynamic and kinetic parameters toward enhancing its circularity and transformability characteristics. The GL combustion occurred in the three stages of moisture removal, volatile release, and coke combustion. Combustion performance characteristics were more favorable in the N2/O2 atmosphere than in the CO2/O2 atmosphere under the same heating rates. The rising heating rate facilitated the release of volatiles. According to the model-free methods of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose, the activation energies essential for the primary reaction were 283.09 kJ/mol and 288.28 kJ/mol in the N2/O2 atmosphere and 233.09 kJ/mol and 235.64 kJ/mol in the CO2/O2 atmosphere. The gaseous products of the GL combustion included CH4, H2O, C = O, CO, CO2, NH3, C = C, and C-O(H). Ash prepared in both atmospheres exhibited a tendency for slag formation, with oxy-fuel combustion lowering its risk. This study thus provides a theoretical and practical basis for transforming GL residues into a sustainable energy source.


Subject(s)
Biomass , Reishi , Reishi/chemistry , Atmosphere/chemistry , Carbon Dioxide/chemistry , Carbon Dioxide/analysis
9.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931214

ABSTRACT

The excessive employment of acetaminophen (APAP) is capable of generating oxidative stress and apoptosis, which ultimately result in acute liver injury (ALI). Ganoderma lucidum polysaccharides (GLPs) exhibit hepatoprotective activity, yet the protective impact and potential mechanism of GLPs in relation to APAP-induced ALI remain ambiguous. The intention of this research was to scrutinize the effect of GLPs on APAP-induced ALI and to shed light on their potential mechanism. The results demonstrated that GLPs were capable of notably alleviating the oxidative stress triggered by APAP, as shown through a significant drop in the liver index, the activities of serum ALT and AST, and the amounts of ROS and MDA in liver tissue, along with an increase in the levels of SOD, GSH, and GSH-Px. Within these, the hepatoprotective activity at the high dose was the most conspicuous, and its therapeutic efficacy surpassed that of the positive drug (bifendate). The results of histopathological staining (HE) and apoptosis staining (TUNEL) indicated that GLPs could remarkably inhibit the necrosis of hepatocytes, the permeation of inflammatory cells, and the occurrence of apoptosis induced by APAP. Moreover, Western blot analysis manifested that GLPs enhanced the manifestation of Nrf2 and its subsequent HO-1, GCLC, and NQO1 proteins within the Nrf2 pathway. The results of qPCR also indicated that GLPs augmented the expression of antioxidant genes Nrf2, HO-1, GCLC, and NQO1. The results reveal that GLPs are able to set off the Nrf2 signaling path and attenuate ALI-related oxidative stress and apoptosis, which is a potential natural medicine for the therapy of APAP-induced liver injury.


Subject(s)
Acetaminophen , Apoptosis , Chemical and Drug Induced Liver Injury , NF-E2-Related Factor 2 , Oxidative Stress , Polysaccharides , Reishi , Acetaminophen/adverse effects , Oxidative Stress/drug effects , Apoptosis/drug effects , Reishi/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , NF-E2-Related Factor 2/metabolism , Animals , Male , Polysaccharides/pharmacology , Signal Transduction/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Fungal Polysaccharides/pharmacology , Antioxidants/pharmacology
10.
Anim Sci J ; 95(1): e13957, 2024.
Article in English | MEDLINE | ID: mdl-38783587

ABSTRACT

The purpose of this study was to investigate the time-dependent change in Reishi (Ganoderma lingzhi) triterpenoids in rumen fluid. G. lingzhi fruiting bodies were milled and incubated in a tube with rumen fluid for 0, 4, 8, 12, 24, and 48 h at 39°C. After incubation, all the tubes were freeze-dried and extracted by ethanol. The contents of 18 triterpenoids in the ethanol extract were quantitated by liquid chromatography-mass spectrometry (LC-MS/MS). Based on the results, triterpenoids were categorized into three groups: (1) rapid decrease, indicating reductions of more than 50% within 8 h; (2) mild decrease, with reductions of more than 50% within 48 h; and (3) minimal change, even after 48 h, there was not much change. Ganoderic acid C6, DM, H, K, and TR as well as Ganoderenic acid D were classified in (1); Ganoderic acid LM2 and T-Q as well as Ganoderiol F in (2); and Ganoderic acid A, B, C1, C2, I, and TN; Gnoderenic acid C; and Ganodermanontriol in (3). In addition, a relationship between chemical structure and metabolic speed was observed in some cases. The results of this study revealed that G. lingzhi triterpenoids are digested and metabolized at different speeds in ruminant fluid.


Subject(s)
Rumen , Triterpenes , Animals , Rumen/metabolism , Triterpenes/metabolism , Triterpenes/analysis , Time Factors , Reishi/metabolism , Reishi/chemistry , Chromatography, Liquid , Body Fluids/metabolism , Tandem Mass Spectrometry
11.
Int J Med Mushrooms ; 26(5): 25-41, 2024.
Article in English | MEDLINE | ID: mdl-38780421

ABSTRACT

Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.


Subject(s)
Fermentation , Reishi , Triterpenes , Triterpenes/metabolism , Reishi/metabolism , Reishi/genetics , Reishi/chemistry , Genetic Engineering , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/chemistry , Mutagenesis , Mycelium/metabolism
12.
Sci Rep ; 14(1): 10097, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698154

ABSTRACT

To explore the impacts of continuous Ganoderma lucidum cultivation on soil physicochemical factors, soil enzyme activity, and the metabolome of Ganoderma lucidum fruiting bodies, this study conducted two consecutive years of cultivation on the same plot of land. Soil physicochemical factors and enzyme activity were assessed, alongside non-targeted metabolomic analysis of the Ganoderma lucidum fruiting bodies under continuous cultivation. The findings unveiled that in the surface soil layer (0-15 cm), there was a declining trend in organic matter, ammonium nitrogen, available phosphorus, available potassium, pH, polyphenol oxidase, peroxidase, alkaline phosphatase, and sucrase, whereas nitrate nitrogen, electrical conductivity (EC), and salt content exhibited an upward trend. Conversely, in the deeper soil layer (15-30 cm), organic matter, ammonium nitrogen, available potassium, alkaline phosphatase, and sucrase demonstrated a decreasing trend, while nitrate nitrogen, available phosphorus, pH, EC, salt content, polyphenol oxidase, and soil peroxidase showed an increasing trend. Metabolomic analysis of Ganoderma lucidum fruiting bodies distinguished 64 significantly different metabolites between the GCK and GT groups, with 39 components having markedly higher relative contents in GCK and 25 components having significantly lower relative contents in GCK compared to GT. Moreover, among these metabolites, there were more types with higher contents in the fruiting bodies harvested in the first year (GCK) compared to those harvested in the second year (GT), with pronounced differences. KEGG pathway analysis revealed that GCK exhibited more complex metabolic pathways compared to GT. The metabolites of Ganoderma lucidum fruiting bodies were predominantly influenced by soil physicochemical factors and soil enzyme activity. In the surface soil layer (0-15 cm), the metabolome was significantly affected by soil pH, soil organic matter, available phosphorus, and soil alkaline phosphatase, while in the deeper soil layer (15-30 cm), differences in the Ganoderma lucidum metabolome were more influenced by soil alkaline phosphatase, soil catalase, pH, nitrate nitrogen, and soil sucrase.


Subject(s)
Fruiting Bodies, Fungal , Reishi , Soil , Reishi/metabolism , Reishi/growth & development , Soil/chemistry , Fruiting Bodies, Fungal/metabolism , Fruiting Bodies, Fungal/growth & development , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Nutrients/metabolism , Nutrients/analysis , Metabolome , Metabolomics/methods , Hydrogen-Ion Concentration
13.
Int J Biol Macromol ; 270(Pt 1): 131949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749890

ABSTRACT

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.


Subject(s)
Myeloid-Derived Suppressor Cells , Reishi , Spores, Fungal , Triple Negative Breast Neoplasms , Tumor Microenvironment , beta-Glucans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , beta-Glucans/pharmacology , beta-Glucans/chemistry , Reishi/chemistry , Female , Tumor Microenvironment/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Lectins, C-Type
14.
Molecules ; 29(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38792209

ABSTRACT

Ganoderma lucidum spore powder, valued for its nutritional and medicinal properties, contains polysaccharides crucial for its efficacy. However, the complex structural nature of these polysaccharides necessitates further investigation to fully realize their potential. This study aimed to investigate the effects of acid heat treatment on Ganoderma lucidum spore polysaccharides (GLSPs) to enhance their properties and application in antitumor activity. The GLSP was obtained via acid heat treatment, concentration, and centrifugal separation. This process led to a notable reduction in polysaccharide molecular weight, increasing water solubility and bioavailability. Analytical techniques including NMR spectroscopy and methylation analysis revealed a polysaccharide composition comprising four distinct monosaccharides, with molecular weights of 3291 Da (Mw) and 3216 Da (Mn). Six different linkage modes were identified, with a molar ratio of 1:5:2:3:4:3. In vivo experiments demonstrated the GLSP's significant inhibitory effect on the growth of four tumor models (sarcoma S180, Lewis lung cancer, liver cancer H22, and colon cancer C26) in mice, with no observed toxicity. These findings suggest the GLSP's potential as an antitumor therapeutic agent for clinical use.


Subject(s)
Antineoplastic Agents , Reishi , Spores, Fungal , Animals , Reishi/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Fungal Polysaccharides/chemistry , Fungal Polysaccharides/pharmacology , Cell Line, Tumor , Molecular Weight
15.
J Agric Food Chem ; 72(21): 12072-12082, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38750669

ABSTRACT

Ganoderma lucidum polysaccharide (GLP) is a prebiotic with immunomodulatory effects. However, the therapeutic potential of GLP in tumor immunotherapy has not been fully explored, especially in T cell-mediated antitumor immunity. In this study, we found that GLP significantly inhibited tumor growth and activated antitumor immunity in colorectal cancer (CRC). In the spleens and tumor tissues, the proportion of cytotoxic CD8+T cells and Th1 helper cells increased, while immunosuppressive Tregs decreased. Additionally, microbiota dysbiosis was alleviated by GLP, and short-chain fatty acid production was increased. Meanwhile, GLP decreased the ratio of kynurenine and tryptophan (Kyn/Trp) in the serum, which contributed to antitumor immunity of T cells. More importantly, the combination of GLP and the immune checkpoint inhibitor anti-PD-1 monoclonal antibody further enhanced the efficacy of anti-PD-1 immunotherapy. Thus, GLP as a prebiotic has the potential to be used in tumor immunotherapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Polysaccharides , Programmed Cell Death 1 Receptor , Reishi , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Animals , Reishi/chemistry , Mice , Humans , Programmed Cell Death 1 Receptor/immunology , Polysaccharides/pharmacology , Mice, Inbred BALB C , Cell Line, Tumor , Male , Female , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immunity, Cellular/drug effects
16.
Chemosphere ; 358: 142209, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697564

ABSTRACT

Elevated usage of pharmaceutical products leads to the accumulation of emerging contaminants in sewage. In the current work, Ganoderma lucidum (GL) was used to remove pharmaceutical compounds (PCs), proposed as a tertiary method in sewage treatment plants (STPs). The PCs consisted of a group of painkillers (ketoprofen, diclofenac, and dexamethasone), psychiatrists (carbamazepine, venlafaxine, and citalopram), beta-blockers (atenolol, metoprolol, and propranolol), and anti-hypertensives (losartan and valsartan). The performance of 800 mL of synthetic water, effluent STP, and hospital wastewater (HWW) was evaluated. Parameters, including treatment time, inoculum volume, and mechanical agitation speed, have been tested. The toxicity of the GL after treatment is being studied based on exposure levels to zebrafish embryos (ZFET) and the morphology of the GL has been observed via Field Emission Scanning Electron Microscopy (FESEM). The findings conclude that GL can reduce PCs from <10% to >90%. Diclofenac and valsartan are the highest (>90%) in the synthetic model, while citalopram and propranolol (>80%) are in the real wastewater. GL effectively removed pollutants in 48 h, 1% of the inoculum volume, and 50 rpm. The ZFET showed GL is non-toxic (LC50 is 209.95 mg/mL). In the morphology observation, pellets GL do not show major differences after treatment, showing potential to be used for a longer treatment time and to be re-useable in the system. GL offers advantages to removing PCs in water due to their non-specific extracellular enzymes that allow for the biodegradation of PCs and indicates a good potential in real-world applications as a favourable alternative treatment.


Subject(s)
Reishi , Wastewater , Water Pollutants, Chemical , Zebrafish , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Reishi/metabolism , Waste Disposal, Fluid/methods , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Malaysia , Sewage/chemistry , Sewage/microbiology , Biodegradation, Environmental , Diclofenac/toxicity
17.
Ecotoxicol Environ Saf ; 279: 116450, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38768540

ABSTRACT

The purpose of this study is to evaluate the decolorization ability and detoxification effect of LAC-4 laccase on various types of single and mixed dyes, and lay a good foundation for better application of laccase in the efficient treatment of dye pollutants. The reaction system of the LAC-4 decolorizing single dyes (azo, anthraquinone, triphenylmethane, and indigo dyes, 17 dyes in total) were established. To explore the decolorization effect of the dye mixture by LAC-4, two dyes of the same type or different types were mixed at the same concentration (100 mg/L) in the reaction system containing 0.5 U laccase, and time-course decolorization were performed on the dye mixture. The combined dye mixtures consisted of azo + azo, azo + anthraquinone, azo + indigo, azo + triphenylmethane, indigo + triphenylmethane, and triphenylmethane + triphenylmethane. The results obtained in this study were as follows. Under optimal conditions of 30 °C and pH 5.0, LAC-4 (0.5 U) can efficiently decolorize four different types of dyes. The 24-hour decolorization efficiencies of LAC-4 for 800 mg/L Orange G and Acid Orange 7 (azo), Remazol Brilliant Blue R (anthraquinone), Bromophenol Blue and Methyl Green (triphenylmethane), and Indigo Carmine (indigo) were 75.94%, 93.30%, 96.56%, 99.94%, 96.37%, and 37.23%, respectively. LAC-4 could also efficiently decolorize mixed dyes with different structures. LAC-4 can achieve a decolorization efficiency of over 80% for various dye mixtures such as Orange G + Indigo Carmine (100 mg/L+100 mg/L), Reactive Orange 16 + Methyl Green (100 mg/L+100 mg/L), and Remazol Brilliant Blue R + Methyl Green (100 mg/L+100 mg/L). During the decolorization process of the mixed dyes by laccase, four different interaction relationships were observed between the dyes. Decolorization efficiencies and rates of the dyes that were difficult to be degraded by laccase could be greatly improved when mixed with other dyes. Degradable dyes could greatly enhance the ability of LAC-4 to decolorize extremely difficult-to-degrade dyes. It was also found that the decolorization efficiencies of the two dyes significantly increased after mixing. The possible mechanisms underlying the different interaction relationships were further discussed. Free, but not immobilized, LAC-4 showed a strong continuous batch decolorization ability for single dyes, two-dye mixtures, and four-dye mixtures with different structures. LAC-4 exhibited high stability, sustainable degradability, and good reusability in the continuous batch decolorization. The LAC-4-catalyzed decolorization markedly reduced or fully abolished the toxic effects of single dyes (azo, anthraquinone, and indigo dye) and mix dyes (nine dye mixtures containing four structural types of dyes) on plants. Our findings indicated that LAC-4 laccase had significant potential for use in bioremediation due to its efficient degradation and detoxification of single and mixed dyes with different structural types.


Subject(s)
Azo Compounds , Coloring Agents , Laccase , Reishi , Trityl Compounds , Coloring Agents/chemistry , Coloring Agents/toxicity , Coloring Agents/metabolism , Laccase/metabolism , Azo Compounds/toxicity , Azo Compounds/metabolism , Trityl Compounds/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Anthraquinones/chemistry , Anthraquinones/metabolism , Indigo Carmine/metabolism , Hydrogen-Ion Concentration , Water Decolorization , White
18.
Phytochemistry ; 224: 114148, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763311

ABSTRACT

Seven previously undescribed triterpenes (1-7), as well as one triterpene (8) previously described as a synthetic product, were isolated from the antler-shaped fruiting body of Ganoderma lucidum. Their structures were established based on comprehensive spectroscopy analysis. At a concentration of 10 µM, (24E)-3-oxo-15α-acetoxy-lanosta-7,9(11),24-trien-26-al (3) and (24R,25S)-3-oxo-lanosta-7,9(11)-dien-25-ethoxyl-24,26-diol (5) provided significant protection against acetaminophen-induced necrosis in human HepG2 liver cancer cells, and the cell survival rates were 69.7 and 76.1% respectively, similar to that of the positive control (glutathione, 72.1%). Based on the present results, these compounds could be potential hepatoprotective agents.


Subject(s)
Fruiting Bodies, Fungal , Protective Agents , Reishi , Triterpenes , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/isolation & purification , Humans , Hep G2 Cells , Fruiting Bodies, Fungal/chemistry , Reishi/chemistry , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification , Molecular Structure , Cell Survival/drug effects , Acetaminophen/pharmacology , Structure-Activity Relationship , Liver/drug effects , Dose-Response Relationship, Drug
19.
Fitoterapia ; 176: 106031, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768793

ABSTRACT

Five undescribed meroterpenoids, baosglucidnes A - E (1-5), were isolated from the fruiting bodies of Ganoderma lucidum. Among them, baosglucidne B (2) as a racemic mixture was obtained. Chiral HPLC was employed to separate a pair of enantiomers (+)-2 and (-)-2. The structures and stereochemical features of these substances were characterized by utilizing spectroscopic data and ECD calculations. Finally, the results of anti-renal fibrosis activity evaluation showed that baosglucidne E (5) could inhibit the expression of collagen I in TGF-ß1-induced rat kidney proximal tubular cells at 20 µM.


Subject(s)
Reishi , Terpenes , Animals , Reishi/chemistry , Rats , Terpenes/pharmacology , Terpenes/isolation & purification , Molecular Structure , Fruiting Bodies, Fungal/chemistry , Transforming Growth Factor beta1/metabolism , Fibrosis , China , Kidney Diseases/drug therapy , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Collagen Type I/metabolism , Cell Line , Kidney Tubules, Proximal/drug effects
20.
World J Microbiol Biotechnol ; 40(7): 225, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822208

ABSTRACT

Ganoderma lucidum is known for its bioactive compounds, such as polysaccharides and triterpenoids, which are crucial in food and medicine. However, liquid fermentation encounters challenges in terms of strain differentiation and stability. In this research, we employed atmospheric room temperature plasma mutation and a microbial microdroplet culture system to identify strains with enhanced biomass and triterpenoid production. The three mutant strains, YB05, YB09, and YB18, exhibited accelerated growth rates and antagonized the initial strain G0023 more effectively than the controls. Notably, YB18 displayed the fastest growth, with a 17.25% increase in colony radius. Shake flask cultivation demonstrated that, compared with the initial strain, YB05 and YB18 had 26.33% and 17.85% greater biomass, respectively. Moreover, the triterpenoid production of YB05 and YB18 surpassed that of the control by 32.10% and 15.72%, respectively, as confirmed by colorimetric detection. Importantly, these mutant strains remained stable for five generations. This study revealed a comprehensive screening system utilizing atmospheric pressure, room temperature plasma mutation technology and microbial droplet cultivation. This innovative approach offers a promising pathway for obtaining advantageous Ganoderma strains for liquid fermentation. The methodology of atmospheric room temperature plasma mutation and microbial microdroplet culture systems is detailed for better comprehension.


Subject(s)
Fermentation , Mutation , Reishi , Triterpenes , Reishi/growth & development , Reishi/metabolism , Reishi/genetics , Triterpenes/metabolism , Biomass , Temperature , Plasma Gases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL