Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.651
Filter
1.
Ren Fail ; 46(2): 2396455, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39229866

ABSTRACT

Renal fibrosis is a long-term and progressively worsening condition that impacts kidney function during aging and in the context of chronic kidney disease (CKD). CKD and renal fibrosis affect approximately 10% of the global population and are prevalent in about half of individuals over the age of 70. Despite ongoing research, the mechanisms underlying renal fibrosis are still not well understood, and there is currently a lack of effective treatments available. In the present study, we demonstrated a significant increase of circPWWP2A in renal tubular cells both in vivo and in vitro models of renal fibrosis. Suppressing circPWWP2A has the potential to reduce mitochondrial dysfunction and the production of mitochondrial reactive oxygen species (mtROS), ultimately leading to the inhibition of renal fibrosis. Whereas, supplementation of circPWWP2A led to more serve mitochondrial dysfunction, mtROS production and renal fibrosis. Mechanistically, we found the expression of circPWWP2A was negatively correlated with the expression of miR-182. And we further confirmed miR-182 was the direct target of circPWWP2A by dual-luciferase reporter assay and RIP assay. Then, we found miR-182 suppressed the expression of ROCK1 in both in vitro and in vivo models of renal fibrosis. Luciferase microRNA target reporter assay further indicated ROCK1 as a direct target of miR-182. Knockdown of ROCK1 inhibits renal fibrosis and mitochondrial dysfunction, suggesting ROCK1 not only served as an injurious role in mitochondrial homeostasis but also a pro-fibrotic factor in CKD. Taking together, our findings suggest that circPWWP2A may promote renal interstitial fibrosis by modulating miR-182/ROCK1-mediated mitochondrial dysfunction.


Subject(s)
Fibrosis , Kidney , MicroRNAs , RNA, Circular , Renal Insufficiency, Chronic , rho-Associated Kinases , MicroRNAs/metabolism , MicroRNAs/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Mice , Kidney/pathology , Kidney/metabolism , Male , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Disease Models, Animal , Mice, Inbred C57BL
2.
Theranostics ; 14(11): 4536-4553, 2024.
Article in English | MEDLINE | ID: mdl-39113797

ABSTRACT

Rationale: Acute kidney injury (AKI) has substantial rates of mortality and morbidity, coupled with an absence of efficacious treatment options. AKI commonly transits into chronic kidney disease (CKD) and ultimately culminates in end-stage renal failure. The interferon-stimulated gene 15 (ISG15) level was upregulated in the kidneys of mice injured by ischemia-reperfusion injury (IRI), cisplatin, or unilateral ureteral obstruction (UUO), however, its role in AKI development and subsequent AKI-to-CKD transition remains unknown. Methods: Isg15 knockout (Isg15 KO) mice challenged with bilateral or unilateral IRI, cisplatin, or UUO were used to investigate its role in AKI. We established cellular models with overexpression or knockout of ISG15 and subjected them to hypoxia-reoxygenation, cisplatin, or transforming growth factor- ß1 (TGF-ß1) stimulation. Renal RNA-seq data obtained from AKI models sourced from public databases and our studies, were utilized to examine the expression profiles of ISG15 and its associated genes. Additionally, published single cell RNA-seq data from human kidney allograft biopsies and mouse IRI model were analyzed to investigate the expression patterns of ISG15 and the type I TGF-ß receptor (TGFßR1). Western blotting, qPCR, co-immunoprecipitation, and immunohistochemical staining assays were performed to validate our findings. Results: Alleviated pathological injury and renal function were observed in Isg15 KO mice with IRI-, cisplatin-, or UUO-induced AKI and the following AKI-to-CKD transition. In hypoxia-reoxygenation, cisplatin or TGF-ß1 treated HK-2 cells, knockout ISG15 reduced stimulus-induced cell fibrosis, while overexpression of ISG15 with modification capacity exacerbated cell fibrosis. Immunoprecipitation assays demonstrated that ISG15 promoted ISGylation of TGFßR1, and inhibited its ubiquitination. Moreover, knockout of TGFßR1 blocked ISG15's fibrosis-exacerbating effect in HK-2 cells, while overexpression of TGFßR1 abolished the renal protective effect of ISG15 knockout during IRI-induced kidney injury. Conclusions: ISG15 plays an important role in the development of AKI and subsequent AKI-to-CKD transition by promoting TGFßR1 ISGylation.


Subject(s)
Acute Kidney Injury , Cisplatin , Cytokines , Mice, Knockout , Reperfusion Injury , Ubiquitins , Animals , Humans , Male , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Cisplatin/pharmacology , Cytokines/metabolism , Disease Models, Animal , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Ubiquitins/metabolism , Ubiquitins/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/genetics
3.
Nutr Diabetes ; 14(1): 62, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39143076

ABSTRACT

BACKGROUND & AIM: Chronic kidney disease (CKD) is a heterogeneous disorder that affects the kidney structure and function. This study investigated the effect of the interaction between genetic factors and dietary pattern on kidney dysfunction in Korean adults. METHODS: Baseline data were obtained from the Ansan and Ansung Study of the Korean Genome and Epidemiology Study involving 8230 participants aged 40-69 years. Kidney dysfunction was defined as an estimated glomerular filtration rate < 90 mL/minute/1.73 m2. Genomic DNAs genotyped on the Affymetrix® Genome-Wide Human SNP array 5.0 were isolated from peripheral blood. A genome-wide association study using a generalized linear model was performed on 1,590,162 single-nucleotide polymorphisms (SNPs). To select significant SNPs, the threshold criterion was set at P-value < 5 × 10-8. Linkage disequilibrium clumping was performed based on the R2 value, and 94 SNPs had a significant effect. Participants were divided into two groups based on their generic risk score (GRS): the low-GR group had GRS > 0, while the high-GR group had GRS ≤ 0. RESULTS: Three distinct dietary patterns were extracted, namely, the "prudent pattern," "flour-based and animal food pattern," and "white rice pattern," to analyze the effect of dietary pattern on kidney function. In the "flour-based and animal food pattern," higher pattern scores were associated with a higher prevalence of kidney dysfunction in both the low and high GR groups (P for trend < 0.0001 in the low-, high-GR groups of model 1; 0.0050 and 0.0065 in the low-, high-GR groups of model 2, respectively). CONCLUSIONS: The results highlight a significant association between the 'flour-based and animal food pattern' and higher kidney dysfunction prevalence in individuals with both low and high GR. These findings suggest that personalized nutritional interventions based on GR profiles may become the basis for presenting GR-based individual dietary patterns for kidney dysfunction.


Subject(s)
Diet , Genome-Wide Association Study , Glomerular Filtration Rate , Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic , Humans , Middle Aged , Male , Female , Adult , Aged , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/epidemiology , Republic of Korea/epidemiology , Genetic Predisposition to Disease , Risk Factors , Cohort Studies , Genetic Risk Score , Dietary Patterns
4.
Sci Adv ; 10(32): eado2849, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39110788

ABSTRACT

Acute kidney injury (AKI) causes epithelial damage followed by subsequent repair. While successful repair restores kidney function, this process is often incomplete and can lead to chronic kidney disease (CKD) in a process called failed repair. To better understand the epigenetic reprogramming driving this AKI-to-CKD transition, we generated a single-nucleus multiomic atlas for the full mouse AKI time course, consisting of ~280,000 single-nucleus transcriptomes and epigenomes. We reveal cell-specific dynamic alterations in gene regulatory landscapes reflecting, especially, activation of proinflammatory pathways. We further generated single-nucleus multiomic data from four human AKI samples including validation by genome-wide identification of nuclear factor κB binding sites. A regularized regression analysis identifies key regulators involved in both successful and failed repair cell fate, identifying the transcription factor CREB5 as a regulator of both successful and failed tubular repair that also drives proximal tubular cell proliferation after injury. Our interspecies multiomic approach provides a foundation to comprehensively understand cell states in AKI.


Subject(s)
Acute Kidney Injury , Epigenesis, Genetic , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Mice , Humans , Transcriptome , NF-kappa B/metabolism , NF-kappa B/genetics , Disease Models, Animal , Cellular Reprogramming/genetics , Cell Proliferation/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism
5.
Sci Rep ; 14(1): 18466, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122851

ABSTRACT

The bidirectional effect of hyperuricemia on chronic kidney disease (CKD) underscores the importance of hyperuricemia as a risk factor for CKD. We evaluated the effect of hyperuricemia on the presence and development of CKD after considering genetic background by calculating polygenic risk scores (PRSs). We employed genome-wide association study summary statistics-excluding the United Kingdom Biobank (UKB) datasets among published CKD Gen Consortium papers-to calculate the PRSs for CKD in white background subjects. To validate PRS performance, we divided the UKB into two datasets to validate and test the data. We used logistic regression analysis to evaluate the association between hyperuricemia and CKD, and performed Kaplan-Meier survival analysis exclusively for subjects with available follow-up data. In total, 438,253 clinical data and 4,307,940 single nucleotide polymorphisms from 459,155 samples were included. We observed a significant positive association between PRS and CKD and the presence and development of CKD. Hyperuricemia significantly increased CKD risk (adjusted odds ratio 1.55, 95% confidence interval 1.48-1.61). The impact of hyperuricemia on CKD was maintained irrespective of PRS range. In addition, negative interaction between hyperuricemia and PRS for CKD was found. Survival analysis indicates that the presence of hyperuricemia significantly increased the risk of CKD development. The PRS for CKD thoroughly reflects the risk of CKD development. Hyperuricemia is a significant indicator of CKD risk, even after incorporating the genetic risk score for CKD. Irrespective of genetic risk, patients with a prospective risk of developing CKD require uric acid monitoring and management.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Hyperuricemia , Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic , Humans , Hyperuricemia/genetics , Hyperuricemia/complications , Renal Insufficiency, Chronic/genetics , Male , Female , Middle Aged , Risk Factors , Cohort Studies , United Kingdom/epidemiology , Aged , Adult , Multifactorial Inheritance
6.
Front Endocrinol (Lausanne) ; 15: 1429159, 2024.
Article in English | MEDLINE | ID: mdl-39129920

ABSTRACT

Background: Despite the potential demonstrated by targeted plasma metabolite modulators in halting the progression of chronic kidney disease (CKD), a lingering uncertainty persists concerning the causal relationship between distinct plasma metabolites and the onset and progression of CKD. Methods: A genome-wide association study was conducted on 1,091 metabolites and 309 metabolite ratios derived from a cohort of 8,299 unrelated individuals of European descent. Employing a bidirectional two-sample Mendelian randomization (MR) analysis in conjunction with colocalization analysis, we systematically investigated the associations between these metabolites and three phenotypes: CKD, creatinine-estimated glomerular filtration rate (creatinine-eGFR), and urine albumin creatinine ratio (UACR). In the MR analysis, the primary analytical approach employed was inverse variance weighting (IVW), and sensitivity analysis was executed utilizing the MR-Egger method and MR-pleiotropy residual sum and outlier (MR-PRESSO). Heterogeneity was carefully evaluated through Cochrane's Q test. To ensure the robustness of our MR results, the leave-one-out method was implemented, and the strength of causal relationships was subjected to scrutiny via Bonferroni correction. Results: Our thorough MR analysis involving 1,400 plasma metabolites and three clinical phenotypes yielded a discerning identification of 21 plasma metabolites significantly associated with diverse outcomes. Specifically, in the forward MR analysis, 6 plasma metabolites were determined to be causally associated with CKD, 16 with creatinine-eGFR, and 7 with UACR. Substantiated by robust evidence from colocalization analysis, 6 plasma metabolites shared causal variants with CKD, 16 with creatinine-eGFR, and 7 with UACR. In the reverse analysis, a diminished creatinine-eGFR was linked to elevated levels of nine plasma metabolites. Notably, no discernible associations were observed between other plasma metabolites and CKD, creatinine-eGFR, and UACR. Importantly, our analysis detected no evidence of horizontal pleiotropy. Conclusion: This study elucidates specific plasma metabolites causally associated with CKD and renal functions, providing potential targets for intervention. These findings contribute to an enriched understanding of the genetic underpinnings of CKD and renal functions, paving the way for precision medicine applications and therapeutic strategies aimed at impeding disease progression.


Subject(s)
Genome-Wide Association Study , Glomerular Filtration Rate , Mendelian Randomization Analysis , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Female , Male , Creatinine/blood , Polymorphism, Single Nucleotide , Biomarkers/blood , Cohort Studies , Kidney/metabolism , Middle Aged
7.
BMC Nephrol ; 25(1): 261, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138396

ABSTRACT

BACKGROUND: Accurate detection of kidney damage is key to preventing renal failure, and identifying biomarkers is essential for this purpose. We aimed to assess the accuracy of miRNAs as diagnostic tools for chronic kidney disease (CKD). METHODS: We thoroughly searched five databases (MEDLINE, Web of Science, Embase, Scopus, and CENTRAL) and performed a meta-analysis using R software. We assessed the overall diagnostic potential using the pooled area under the curve (pAUC), sensitivity (SEN), and specificity (SPE) values and the risk of bias by using the QUADAS-2 tool. The study protocol was registered on PROSPERO (CRD42021282785). RESULTS: We analyzed data from 8351 CKD patients, 2989 healthy individuals, and 4331 people with chronic diseases. Among the single miRNAs, the pooled SEN was 0.82, and the SPE was 0.81 for diabetic nephropathy (DN) vs. diabetes mellitus (DM). The SEN and SPE were 0.91 and 0.89 for DN and healthy controls, respectively. miR-192 was the most frequently reported miRNA in DN patients, with a pAUC of 0.91 and SEN and SPE of 0.89 and 0.89, respectively, compared to those in healthy controls. The panel of miRNAs outperformed the single miRNAs (pAUC of 0.86 vs. 0.79, p < 0.05). The SEN and SPE of the panel miRNAs were 0.89 and 0.73, respectively, for DN vs. DM. In the lupus nephritis (LN) vs. systemic lupus erythematosus (SLE) cohorts, the SEN and SPE were 0.84 and 0.81, respectively. Urinary miRNAs tended to be more effective than blood miRNAs (p = 0.06). CONCLUSION: MiRNAs show promise as effective diagnostic markers for CKD. The detection of miRNAs in urine and the use of a panel of miRNAs allows more accurate diagnosis.


Subject(s)
Biomarkers , MicroRNAs , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics , Biomarkers/blood , Biomarkers/urine , MicroRNAs/urine , MicroRNAs/blood , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/genetics , Diabetic Nephropathies/urine , Lupus Nephritis/genetics , Lupus Nephritis/diagnosis , Lupus Nephritis/urine , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/blood
8.
Clin Exp Pharmacol Physiol ; 51(10): e13916, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39155151

ABSTRACT

Bombesin receptor-activated protein (BRAP), encoded by the C6orf89 gene in humans, is expressed in various cells with undefined functions. BC004004, the mouse homologue of C6orf89, has been shown to play a role in bleomycin-induced pulmonary fibrosis through the use of a BC004004 gene knockout mouse (BC004004-/-). In this study, we investigated the potential involvement of BRAP in renal fibrosis using two mouse models: unilateral ureteral obstruction (UUO) and type 2 diabetes mellitus induced by combination of a high-fat diet (HFD) and streptozocin (STZ). BRAP or its homologue was expressed in tubular epithelial cells (TECs) in the kidneys of patients with chronic kidney disease (CKD) and in BC004004+/+ mice. Compared to control mice, BC004004-/- mice exhibited attenuated renal injury and renal fibrosis after UUO or after HFD/STZ treatment. Immunohistochemistry and immunoblot analyses of the kidneys of BC004004+/+ mice after UUO surgery showed a more significant decrease in E-cadherin expression and a more significant increase in both α smooth muscle actin (α-SMA) and vimentin expression compared to BC004004-/- mice. Additionally, stimulation with transforming growth factor-ß1 (TGF-ß1) led to a more significant decrease in E-cadherin expression and a more significant increase in α-SMA and vimentin expression in isolated TECs from BC004004+/+ than in those from BC004004-/- mice. These results suggest that an enhanced epithelial-mesenchymal transition (EMT) process occurred in TECs in BC004004+/+ mice during renal injury, which might contribute to renal fibrosis. The loss of the BRAP homologue in BC004004-/- mice suppressed EMT activation in kidneys and contributed to the suppression of fibrosis during renal injury.


Subject(s)
Fibrosis , Animals , Mice , Male , Humans , Epithelial-Mesenchymal Transition , Mice, Knockout , Ureteral Obstruction/pathology , Ureteral Obstruction/complications , Kidney/pathology , Kidney/metabolism , Transforming Growth Factor beta1/metabolism , Actins/metabolism , Mice, Inbred C57BL , Cadherins/metabolism , Cadherins/genetics , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/genetics
9.
Mayo Clin Proc ; 99(9): 1399-1410, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39115510

ABSTRACT

OBJECTIVE: To investigate the causal dose-response association between cognitive function and the risk of chronic kidney disease (CKD) by a longitudinal cohort and mendelian randomization study. METHODS: The longitudinal cohort study included 396,600 participants without prior dementia and CKD from the UK Biobank. Cognitive function (including prospective memory, numeric memory, visuospatial memory, reaction time, and reasoning ability) was assessed by computerized touchscreen tests. Global cognitive function was defined as a composite score of those specific cognitive domains. A 2-stage mendelian randomization analysis was conducted with 12,979 cases of CKD and 379,424 controls. Genetically predicted global cognitive function was instrumented with 91 confirmed genome-wide significant variants. The study outcome was new-onset CKD. The study was conducted from March 13, 2006, to September 30, 2021. RESULTS: During a median follow-up of 12.5 years, new-onset CKD developed in 13,090 participants. Per 1 SD score increments in reaction time (adjusted hazard ratio [HR], 0.97; 95% CI, 0.95 to 0.99), reasoning ability (adjusted HR, 0.91; 95% CI, 0.88 to 0.94), and global cognitive function (adjusted HR, 0.96; 95% CI, 0.95 to 0.98) were associated with a significantly lower risk of new-onset CKD. Compared with an incorrect answer in the prospective memory test, a correct answer was associated with a lower risk of new-onset CKD (adjusted HR, 0.82; 95% CI, 0.76 to 0.88). Mendelian randomization analyses found that per 1 SD score increments in genetically predicted global cognitive function resulted in a significantly (7%; 95% CI, 2% to 12%) lower risk of new-onset CKD. CONCLUSION: A better cognitive function is causally associated with a lower risk of CKD in participants without prior dementia.


Subject(s)
Cognition , Mendelian Randomization Analysis , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , Female , Male , Longitudinal Studies , Middle Aged , Cognition/physiology , Aged , United Kingdom/epidemiology , Risk Factors
11.
Nutrients ; 16(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999730

ABSTRACT

With rapid increases in incidence, diverse subtypes, and complicated etiologies, kidney disease remains a global public health problem. Iron, as an essential trace element, has pleiotropic effects on renal function and the progression of kidney diseases. A two-sample Mendelian randomization (MR) analysis was implemented to determine the potential causal effects between systemic iron status on different kidney diseases. Systemic iron status was represented by four iron-related biomarkers: serum iron, ferritin, transferrin saturation (TfSat), and total iron binding capacity (TIBC). For systemic iron status, 163,511, 246,139, 131,471, and 135,430 individuals were included in the genome-wide association study (GWAS) of serum iron, ferritin, TfSat, and TIBC, respectively. For kidney diseases, 653,143 individuals (15,658 cases and 637,485 controls), 657,076 individuals (8160 cases and 648,916 controls), and 659,320 individuals (10,404 cases and 648,916 controls) were included for immunoglobulin A nephropathy (IgAN), acute kidney disease (AKD), and chronic kidney disease (CKD), respectively. Our MR results showed that increased serum iron [odds ratio (OR): 1.10; 95% confidence interval (95% CI): 1.04, 1.16; p < 0.0042], ferritin (OR: 1.30; 95% CI: 1.14, 1.48; p < 0.0042), and TfSat (OR: 1.07; 95% CI: 1.04, 1.11; p < 0.0042)] and decreased TIBC (OR: 0.92; 95% CI: 0.88, 0.97; p < 0.0042) were associated with elevated IgAN risk. However, no significant associations were found between systemic iron status and AKD or CKD. In our MR study, the genetic evidence supports elevated systemic iron status as a causal effect on IgAN, which suggests a potential protective effect of iron chelation on IgAN patients.


Subject(s)
Ferritins , Genome-Wide Association Study , Iron , Mendelian Randomization Analysis , Humans , Iron/blood , Ferritins/blood , Biomarkers/blood , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/genetics , Transferrin/analysis , Transferrin/metabolism , Risk Factors , Kidney Diseases/blood , Kidney Diseases/genetics , Glomerulonephritis, IGA/blood , Glomerulonephritis, IGA/genetics , Male , Polymorphism, Single Nucleotide , Female
12.
Sci Rep ; 14(1): 17757, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39085340

ABSTRACT

Chronic kidney disease (CKD) impacts about 1 in 7 adults in the United States, but African Americans (AAs) carry a disproportionately higher burden of disease. Epigenetic modifications, such as DNA methylation at cytosine-phosphate-guanine (CpG) sites, have been linked to kidney function and may have clinical utility in predicting the risk of CKD. Given the dynamic relationship between the epigenome, environment, and disease, AAs may be especially sensitive to environment-driven methylation alterations. Moreover, risk models incorporating CpG methylation have been shown to predict disease across multiple racial groups. In this study, we developed a methylation risk score (MRS) for CKD in cohorts of AAs. We selected nine CpG sites that were previously reported to be associated with estimated glomerular filtration rate (eGFR) in epigenome-wide association studies to construct a MRS in the Hypertension Genetic Epidemiology Network (HyperGEN). In logistic mixed models, the MRS was significantly associated with prevalent CKD and was robust to multiple sensitivity analyses, including CKD risk factors. There was modest replication in validation cohorts. In summary, we demonstrated that an eGFR-based CpG score is an independent predictor of prevalent CKD, suggesting that MRS should be further investigated for clinical utility in evaluating CKD risk and progression.


Subject(s)
CpG Islands , DNA Methylation , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/epidemiology , Male , Female , Middle Aged , Risk Factors , Black or African American/genetics , Aged , Genome-Wide Association Study , Epigenesis, Genetic , Adult , Genetic Predisposition to Disease
13.
Ren Fail ; 46(2): 2383727, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39082753

ABSTRACT

INTRODUCTION: Chronic kidney disease is a growing health issue, and the options of prevention and therapy remain limited. Although a number of observational studies have linked higher Lp(a) [lipoprotein(a)] levels to the kidney impairment, the causal relationship remains to be determined. The purpose of this study was to assess the causal association between Lp(a) levels and CKD. METHODS: We selected eight single-nucleotide polymorphisms (SNPs) significantly associated with Lp(a) levels as instrumental variables. Genome-wide association study (GWAS) from CKDGen consortium yielded the summary data information for CKD. We designed the bidirectional two-sample Mendelian randomization (MR) analyses. The estimates were computed using inverse-variance weighted (IVW), simple median, weighted median, and maximum likelihood. MR-Egger regression was used to detect pleiotropy. RESULTS: Fixed-effect IVW analysis indicated that genetically predicted Lp(a) levels were associated with CKD significantly (odds ratio, 1.039; 95% CI, 1.009-1.069; p = 0.010). The SNPs showed no pleiotropy according to result of MR-Egger test. Results from sensitivity analyses were consistent. In the inverse MR analysis, random-effect IVW method showed CKD had no causal effect on the elevated Lp(a) (odds ratio, 1.154; 95% CI, 0.845-1.576; p = 0.367). CONCLUSION: In this bidirectional two-sample MR analysis, the causal deteriorating effects of genetically predicted plasma Lp(a) levels on the risk of CKD were identified. On the contrary, there is no evidence to support a causal effect of CKD on Lp(a) levels.


Subject(s)
Genome-Wide Association Study , Lipoprotein(a) , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Renal Insufficiency, Chronic , Humans , Lipoprotein(a)/blood , Lipoprotein(a)/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/blood , White People/genetics , Genetic Predisposition to Disease , Risk Factors
14.
Eur J Pharmacol ; 979: 176806, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38986830

ABSTRACT

Chronic kidney disease (CKD) is a clinical syndrome characterized by persistent renal function decline. Renal fibrosis is the main pathological process in CKD, but an effective treatment does not exist. Stratifin (SFN) is a highly-conserved, multi-function soluble acidic protein. Therefore, this study explored the effects of SFN on renal fibrosis. First, we found that SFN was highly expressed in patients with CKD, as well as in renal fibrosis animal and cell models. Next, transforming growth factor-beta 1 (TGF-ß1) induced injury and fibrosis in human renal tubule epithelial cells, and SFN knockdown reversed these effects. Furthermore, SFN knockdown mitigated unilateral ureteral obstruction (UUO)-induced renal tubular dilatation and renal interstitial fibrosis in mice. Liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP), and immunofluorescence co-localization assays demonstrated that SFN bound the non-muscle myosin-encoding gene, myosin heavy chain 9 (MYH9), in the cytoplasm of renal tubular epithelial cells. MYH9 knockdown also reduced Col-1 and α-SMA expression, which are fibrosis markers. Finally, silencing SFN decreased MYH9 expression, alleviating renal fibrosis. These results suggest that SFN promotes renal fibrosis in CKD by interacting with MYH9. This study may provide potential strategies for the treatment of CKD.


Subject(s)
Kidney , Myosin Heavy Chains , Renal Insufficiency, Chronic , Animals , Humans , Male , Mice , Cell Line , Disease Models, Animal , Fibrosis , Kidney/pathology , Kidney/metabolism , Mice, Inbred C57BL , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/genetics , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Protein Binding , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/genetics , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/complications
15.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987851

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Subject(s)
Cellular Senescence , Epithelial Cells , Exosomes , Kidney Tubules , Macrophages , MicroRNAs , Telomere , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Exosomes/metabolism , Exosomes/genetics , Animals , Epithelial Cells/metabolism , Epithelial Cells/pathology , Macrophages/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Mice , Telomere/genetics , Telomere/metabolism , Humans , Mice, Inbred C57BL , Male , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Fibrosis/genetics , Angiotensin II
16.
J Clin Lab Anal ; 38(11-12): e25086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38958113

ABSTRACT

BACKGROUND: The importance of long noncoding RNAs (lncRNAs) in various biological processes has been increasingly recognized in recent years. This study investigated how gene polymorphism in HOX transcript antisense RNA (HOTAIR) lncRNA affects the predisposition to chronic kidney disease (CKD). METHODS: This study comprised 150 patients with CKD and 150 healthy controls. A PCR-RFLP and ARMS-PCR techniques were used for genotyping the five target polymorphisms. RESULTS: According to our findings, rs4759314 confers strong protection against CKD in allelic, dominant, and codominant heterozygote genetic patterns. Furthermore, rs3816153 decreased CKD risk by 78% when TT versus GG, 55% when GG+GT versus TT, and 74% when GT versus TT+GG. In contrast, the CC+CT genotype [odds ratio (OR) = 1.66, 95% confidence intervals (CIs) = 1.05-2.63] and the T allele (OR = 1.50, 95% CI = 1.06-2.11) of rs12826786, as well as the TT genotype (OR = 2.52, 95% CI = 1.06-5.98) of rs3816153 markedly increased the risk of CKD in the Iranian population. Although no linkage disequilibrium was found between the studied variants, the Crs12826786Trs920778Grs1899663Grs4759314Grs3816153 haplotype was associated with a decreased risk of CKD by 86% (OR = 0.14, 95% CI = 0.03-0.66). CONCLUSION: The rs920778 was not correlated with CKD risk, whereas the HOTAIR rs4759314, rs12826786, rs1899663, and rs3816153 polymorphisms affected the risk of CKD in our population. It seems essential to conduct repeated studies across various ethnic groups to explore the link between HOTAIR variants and their impact on the disease outcome.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Renal Insufficiency, Chronic , Adult , Female , Humans , Male , Middle Aged , Case-Control Studies , Renal Insufficiency, Chronic/genetics , RNA, Long Noncoding/genetics
17.
Funct Integr Genomics ; 24(4): 131, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078513

ABSTRACT

BACKGROUND: Macrophages are the main inflammatory cells involved in kidney injury and play a significant role in the development of acute kidney injury (AKI) and progression of chronic kidney disease (CKD). Emodin is believed to stabilize macrophage homeostasis under pathological conditions. The objective of this study aimed to explore the underlying mechanisms and effects of Emodin on M1 macrophages. METHODS: Network pharmacology methods were used to predict target proteins associated with renal injury and identify the pathways affected by emodin. RAW264.7 macrophages were induced into M1 polarization using LPS and then treated with emodin at 20, 40, and 80 µM. The effects of emodin on cell viability, cytokines (IL-1ß, IL-6, TNF-α), M1 macrophage markers (F4/80 + CD86+), and the EGFR/MAPK pathway were evaluated. Additionally, we transfected RAW264.7 cells with an EGFR shRNA interference lentivirus to assess its effects on RAW264.7 cells function and MAPK pathway. After RAW264.7 cells were passaged to expanded culture and transfected with EGFR-interfering plasmid, macrophages were induced to polarize towards M1 with LPS and then treated with 80 µM emodin. CKD modeling was performed to test how emodin is regulated during CKD. RESULTS: There are 15 common targets between emodin and kidney injury, of which the EGFR/MAPK pathway is the pathway through which emodin affects macrophage function. Emodin significantly reduced the levels of IL-6, IL-1ß and TNF-α (p < 0.05) and the ratio of M1 macrophage surface markers F4/80 + CD86+ (p < 0.01) in the supernatant of RAW264.7 cells in a dose-dependent manner. Furthermore, the inhibitory effect of emodin on RAW264.7 cells was achieved by interfering with the EGFR/MAPK pathway. Moreover, emodin also affected the mRNA and protein expression of EGFR and Ras, leading to a decrease in the rate of M1 macrophages, thus inhibiting the pro-inflammatory effect of M1 macrophages. The addition of emodin reduced the rate of M1 macrophages in CKD and inhibited the further polarization of M1 macrophages, thus maintaining the pro-inflammatory and anti-inflammatory homeostasis in CKD, and these effects were achieved by emodin through the control of the EGRF/ERK pathway. CONCLUSION: Emodin attenuates M1 macrophage polarization and pro-inflammatory responses via the EGFR/MAPK signalling pathway. And the addition of emodin maintains pro- and anti-inflammatory homeostasis, which is important for maintaining organ function and tissue repair.


Subject(s)
Acute Kidney Injury , Emodin , ErbB Receptors , MAP Kinase Signaling System , Macrophage Activation , Macrophages , Renal Insufficiency, Chronic , Animals , Mice , Emodin/pharmacology , ErbB Receptors/metabolism , ErbB Receptors/genetics , RAW 264.7 Cells , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Macrophage Activation/drug effects , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Macrophages/drug effects , Macrophages/metabolism , MAP Kinase Signaling System/drug effects , Cytokines/metabolism , Cytokines/genetics
18.
Medicine (Baltimore) ; 103(30): e33705, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058890

ABSTRACT

Chronic kidney disease (CKD) inevitably progresses to end-stage renal disease if intervention does not occur timely. However, there are limitations in predicting the progression of CKD by solely relying on changes in renal function. A biomarker with high sensitivity and specificity that can predict CKD progression early is required. We used the online Gene Expression Omnibus microarray dataset GSE45980 to identify differentially expressed genes (DEGs) in patients with progressive and stable CKD. We then performed functional enrichment and protein-protein interaction network analysis on DEGs and identified key genes. Finally, the expression patterns of key genes were verified using the GSE60860 dataset, and the receiver operating characteristic curve analysis was performed to clarify their predictive ability of progressive CKD. Ultimately, we verified the expression profiles of these hub genes in an in vitro renal interstitial fibrosis model by real-time PCR and western blot analysis. Differential expression analysis identified 50 upregulated genes and 47 downregulated genes. The results of the functional enrichment analysis revealed that upregulated DEGs were mainly enriched in immune response, inflammatory response, and NF-κB signaling pathways, whereas downregulated DEGs were mainly related to angiogenesis and the extracellular environment. Protein-protein interaction network and key gene analysis identified CCR7 as the most important gene. CCR7 mainly plays a role in immune response, and its only receptors, CCL19 and CCL21, have also been identified as DEGs. The receiver operating characteristic curve analysis of CCR7, CCL19, and CCL21 found that CCR7 and CCL19 present good disease prediction ability. CCR7 may be a stable biomarker for predicting CKD progression, and the CCR7-CCL19/CCL21 axis may be a therapeutic target for end-stage renal disease. However, further experiments are needed to explore the relationship between these genes and CKD.


Subject(s)
Biomarkers , Computational Biology , Disease Progression , Protein Interaction Maps , Receptors, CCR7 , Renal Insufficiency, Chronic , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Humans , Computational Biology/methods , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Biomarkers/metabolism , Protein Interaction Maps/genetics , Gene Expression Profiling , ROC Curve
20.
Circulation ; 150(10): 746-757, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39005209

ABSTRACT

BACKGROUND: Chronic kidney disease represents one of the strongest risk factors for cardiovascular diseases, and particularly for heart failure. Despite improved pharmaceutical treatments, mortality remains high. Recently, experimental studies demonstrated that mosaic loss of Y chromosome (LOY) associates with cardiac fibrosis in male mice. Since diffuse cardiac fibrosis is the common denominator for progression of all forms of heart failure, we determined the association of LOY on mortality and cardiovascular disease outcomes in patients with chronic kidney disease. METHODS: LOY was quantified in men with stable chronic kidney disease (CARE for HOMe study, n=279) and dialysis patients (4D study, n=544). The association between LOY and mortality, combined cardiovascular and heart failure-specific end points, and echocardiographic measures was assessed. RESULTS: In CARE for HOMe, the frequency of LOY increased with age. LOY >17% was associated with increased mortality (heart rate, 2.58 [95% CI, 1.33-5.03]) and risk for cardiac decompensation or death (heart rate, 2.30 [95% CI, 1.23-4.27]). Patients with LOY >17% showed a significant decline of ejection fraction and an increase of E/E' within 5 years. Consistently, in the 4D study, LOY >17% was significantly associated with increased mortality (heart rate, 2.76 [95% CI, 1.83-4.16]), higher risk of death due to heart failure and sudden cardiac death (heart rate, 4.11 [95% CI, 2.09-8.08]), but not atherosclerotic events. Patients with LOY >17% showed significantly higher plasma levels of soluble interleukin 1 receptor-like 1, a biomarker for myocardial fibrosis. Mechanistically, intermediate monocytes from patients with LOY >17% showed significantly higher C-C chemokine receptor type 2 expression and higher plasma levels of the C-C chemokine receptor type 2 chemokine (C-C motif) ligand 2, which may have contributed to increased heart failure events. CONCLUSIONS: LOY identifies male patients with chronic kidney disease at high risk for mortality and heart failure events.


Subject(s)
Chromosomes, Human, Y , Renal Insufficiency, Chronic , Humans , Male , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/genetics , Aged , Middle Aged , Chromosomes, Human, Y/genetics , Cardiovascular Diseases/mortality , Cardiovascular Diseases/genetics , Heart Failure/genetics , Heart Failure/mortality , Aged, 80 and over , Risk Factors , Fibrosis
SELECTION OF CITATIONS
SEARCH DETAIL