Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.765
Filter
1.
J Med Virol ; 96(8): e29829, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109810

ABSTRACT

Lumpy skin disease virus (LSDV), a double-stranded DNA virus from the Capripoxvirus genus, primarily affects Bos indicus, Bos taurus breeds, and water buffalo. Arthropod vectors, including mosquitoes and biting flies, are the main LSDV transmitters. Although LSDV is not zoonotic, this study unexpectedly detected LSDV reads in the upper respiratory tract microbiome of humans from rural and urban areas in Maharashtra, India. Nasopharyngeal and oropharyngeal swab samples collected for SARS-CoV-2 surveillance underwent whole-genome metagenomics sequencing, revealing LSDV reads in 25% of samples. Split kmer analysis provided insights into sample relatedness despite the low coverage of LSDV reads with the reference genome. Our findings, which include the detection of LSDV contigs aligning to specific locations on the reference genome, suggest a common source for LSDV reads, potentially shared water sources, or milk/milk products. Further investigation is needed to ascertain the mode of transmission and reason for the detection of LSDV reads in human upper respiratory tract.


Subject(s)
Lumpy skin disease virus , Metagenomics , Microbiota , Humans , Microbiota/genetics , Metagenomics/methods , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/genetics , Lumpy skin disease virus/classification , Oropharynx/virology , Oropharynx/microbiology , Animals , India , Genome, Viral/genetics , Nasopharynx/virology , Nasopharynx/microbiology , Respiratory System/microbiology , Respiratory System/virology , Male , Whole Genome Sequencing , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/classification , Female , Adult , COVID-19/diagnosis , COVID-19/virology , Lumpy Skin Disease/virology
2.
Br J Nurs ; 33(13): 606-611, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38954452

ABSTRACT

This article aims to outline the fundamental principles of consultations with and clinical assessments of patients with symptoms that may be indicative of respiratory system pathology. The article explores how to perform a respiratory system-focused patient history and physical examination. An evaluation of clinical 'red flags' to reduce the risk of omitting serious illness is also considered, alongside the exploration of features of respiratory pathology and evidence-based clinical decision-making tools that may be used to support clinical diagnosis.


Subject(s)
Physical Examination , Respiratory Tract Diseases , Humans , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/nursing , Medical History Taking , Nursing Assessment , Respiratory System/physiopathology
3.
Mult Scler Relat Disord ; 88: 105742, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964239

ABSTRACT

BACKGROUND: Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE: We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS: We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS: Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.


Subject(s)
Microbiota , Mouth , Multiple Sclerosis , Humans , Multiple Sclerosis/microbiology , Microbiota/physiology , Mouth/microbiology , Lung/microbiology , Animals , Respiratory System/microbiology
4.
Int J Pharm ; 661: 124408, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38969264

ABSTRACT

This paper presents a numerical investigation to understand the transport and deposition of sprays emitted by an impinging-jet inhaler in the human respiratory tract under different inhalation flow rates. An injection model is used for the numerical simulations considering the spreading angles of the spray in the two directions, which are measured from experiments. The model parameter is adjusted to match the mean droplet size measured in the previous experiment. A time-varying sinusoidal inhalation flow rate is utilized as airflow conditions, which is closer to the actual situation when using an inhaler. The results demonstrate that the inhalation airflow rate significantly affects the spray's transport behavior and deposition results in the respiratory tract. Both excessively high and low inhalation flow rates lead to an increase in deposition in the mouth-throat. A moderate inhalation flow rate reduces throat deposition while maximizing lung deposition. Higher inhalation flow rates enable faster delivery of the droplets to the lungs, whereas lower inhalation flow rates achieve a more uniform deposition over time in the lungs. The amount of deposition in different parts of the lung lobes follows a fixed order. This study provides valuable insights for optimizing the inhalation flow rate conditions of the impinging-jet inhaler for clinical applications.


Subject(s)
Nebulizers and Vaporizers , Humans , Administration, Inhalation , Respiratory System/metabolism , Aerosols , Lung/metabolism , Particle Size , Equipment Design , Models, Biological , Computer Simulation
6.
PLoS Pathog ; 20(7): e1012084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976749

ABSTRACT

Little is known about oxygen utilization during infection by bacterial respiratory pathogens. The classical Bordetella species, including B. pertussis, the causal agent of human whooping cough, and B. bronchiseptica, which infects nearly all mammals, are obligate aerobes that use only oxygen as the terminal electron acceptor for electron transport-coupled oxidative phosphorylation. B. bronchiseptica, which occupies many niches, has eight distinct cytochrome oxidase-encoding loci, while B. pertussis, which evolved from a B. bronchiseptica-like ancestor but now survives exclusively in and between human respiratory tracts, has only three functional cytochrome oxidase-encoding loci: cydAB1, ctaCDFGE1, and cyoABCD1. To test the hypothesis that the three cytochrome oxidases encoded within the B. pertussis genome represent the minimum number and class of cytochrome oxidase required for respiratory infection, we compared B. bronchiseptica strains lacking one or more of the eight possible cytochrome oxidases in vitro and in vivo. No individual cytochrome oxidase was required for growth in ambient air, and all three of the cytochrome oxidases conserved in B. pertussis were sufficient for growth in ambient air and low oxygen. Using a high-dose, large-volume persistence model and a low-dose, small-volume establishment of infection model, we found that B. bronchiseptica producing only the three B. pertussis-conserved cytochrome oxidases was indistinguishable from the wild-type strain for infection. We also determined that CyoABCD1 is sufficient to cause the same level of bacterial burden in mice as the wild-type strain and is thus the primary cytochrome oxidase required for murine infection, and that CydAB1 and CtaCDFGE1 fulfill auxiliary roles or are important for aspects of infection we have not assessed, such as transmission. Our results shed light on the environment at the surface of the ciliated epithelium, respiration requirements for bacteria that colonize the respiratory tract, and the evolution of virulence in bacterial pathogens.


Subject(s)
Bordetella Infections , Electron Transport Complex IV , Animals , Mice , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/genetics , Bordetella Infections/microbiology , Respiratory Tract Infections/microbiology , Bordetella bronchiseptica/genetics , Bordetella bronchiseptica/metabolism , Bordetella bronchiseptica/enzymology , Humans , Respiratory System/microbiology , Respiratory System/metabolism , Biological Evolution , Bordetella/genetics , Bordetella/enzymology , Bordetella pertussis/genetics , Bordetella pertussis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
7.
Multimedia | Multimedia Resources, MULTIMEDIA-SMS-SP | ID: multimedia-13290

ABSTRACT

O Programa em Saúde Ambiental relacionado a populações expostas à poluição do ar do Município de São Paulo (VIGIAR) tem por objetivo desenvolver ações de vigilância em saúde ambiental, para populações expostas aos poluentes atmosféricos, de forma a orientar medidas de prevenção, promoção da saúde e de atenção integral, conforme preconizado pelo Sistema Único de Saúde (SUS).


Subject(s)
Air Pollutants , Respiratory System
9.
Curr Opin Immunol ; 87: 102430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38824869

ABSTRACT

Lambda interferons (IFNλs), also termed type III interferons (IFNs) or interleukins-28/29, have been in the shadow of type I IFNs for a long time. Their common induction mechanisms and signalling cascades with type I IFNs have made difficult the unwinding of their unique nonredundant functions. However, this is now changing with mounting evidence supporting a major role of IFNλs as a specialized antiviral defense system in the body, mediating protection at mucosal barrier surfaces while limiting immunopathology. Here, we review the latest progress on the complex activities of IFNλs in the respiratory tract, focusing on their multiple effects in IFNλ receptor-expressing cells, the modulation of innate and adaptive immune responses in the context of infections and respiratory diseases, and their similarities and differences with type I IFNs. We also discuss their potential in therapeutic applications and the most recent developments in that direction.


Subject(s)
Adaptive Immunity , Immunity, Innate , Interferon Lambda , Interferons , Respiratory System , Humans , Animals , Interferons/metabolism , Interferons/immunology , Respiratory System/immunology , Respiratory System/metabolism , Signal Transduction/immunology , Interferon Type I/metabolism , Interferon Type I/immunology
11.
Viruses ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932245

ABSTRACT

BACKGROUND: Respiratory viruses significantly impact global morbidity and mortality, causing more disease in humans than any other infectious agent. Beyond pathogens, various viruses and bacteria colonize the respiratory tract without causing disease, potentially influencing respiratory diseases' pathogenesis. Nevertheless, our understanding of respiratory microbiota is limited by technical constraints, predominantly focusing on bacteria and neglecting crucial populations like viruses. Despite recent efforts to improve our understanding of viral diversity in the human body, our knowledge of viral diversity associated with the human respiratory tract remains limited. METHODS: Following a comprehensive search in bibliographic and sequencing data repositories using keyword terms, we retrieved shotgun metagenomic data from public repositories (n = 85). After manual curation, sequencing data files from 43 studies were analyzed using EVEREST (pipEline for Viral assEmbly and chaRactEriSaTion). Complete and high-quality contigs were further assessed for genomic and taxonomic characterization. RESULTS: Viral contigs were obtained from 194 out of the 868 FASTQ files processed through EVEREST. Of the 1842 contigs that were quality assessed, 8% (n = 146) were classified as complete/high-quality genomes. Most of the identified viral contigs were taxonomically classified as bacteriophages, with taxonomic resolution ranging from the superkingdom level down to the species level. Captured contigs were spread across 25 putative families and varied between RNA and DNA viruses, including previously uncharacterized viral genomes. Of note, airway samples also contained virus(es) characteristic of the human gastrointestinal tract, which have not been previously described as part of the lung virome. Additionally, by performing a meta-analysis of the integrated datasets, ecological trends within viral populations linked to human disease states and their biogeographical distribution along the respiratory tract were observed. CONCLUSION: By leveraging publicly available repositories of shotgun metagenomic data, the present study provides new insights into viral genomes associated with specimens from the human respiratory tract across different disease spectra. Further studies are required to validate our findings and evaluate the potential impact of these viral communities on respiratory tract physiology.


Subject(s)
Genome, Viral , Metagenomics , Respiratory System , Virome , Viruses , Humans , Metagenomics/methods , Respiratory System/virology , Viruses/genetics , Viruses/classification , Viruses/isolation & purification , Metagenome , Computer Simulation , Phylogeny , Computational Biology/methods , Microbiota , Bacteriophages/genetics , Bacteriophages/classification , Bacteriophages/isolation & purification
12.
Sci Rep ; 14(1): 14768, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926469

ABSTRACT

Hypervariable region sequencing of the 16S ribosomal RNA (rRNA) gene plays a critical role in microbial ecology by offering insights into bacterial communities within specific niches. While providing valuable genus-level information, its reliance on data from targeted genetic regions limits its overall utility. Recent advances in sequencing technologies have enabled characterisation of the full-length 16S rRNA gene, enhancing species-level classification. Although current short-read platforms are cost-effective and precise, they lack full-length 16S rRNA amplicon sequencing capability. This study aimed to evaluate the feasibility of a modified 150 bp paired-end full-length 16S rRNA amplicon short-read sequencing technique on the Illumina iSeq 100 and 16S rRNA amplicon assembly workflow by utilising a standard mock microbial community and subsequently performing exploratory characterisation of captive (zoo) and free-ranging African elephant (Loxodonta africana) respiratory microbiota. Our findings demonstrate that, despite generating assembled amplicons averaging 869 bp in length, this sequencing technique provides taxonomic assignments consistent with the theoretical composition of the mock community and respiratory microbiota of other mammals. Tentative bacterial signatures, potentially representing distinct respiratory tract compartments (trunk and lower respiratory tract) were visually identified, necessitating further investigation to gain deeper insights into their implication for elephant physiology and health.


Subject(s)
Bacteria , Elephants , Microbiota , RNA, Ribosomal, 16S , Animals , Elephants/microbiology , Elephants/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Microbiota/genetics , High-Throughput Nucleotide Sequencing/methods , Respiratory System/microbiology , Animals, Zoo/microbiology , Sequence Analysis, DNA/methods , Animals, Wild/microbiology , Phylogeny
13.
BMC Infect Dis ; 24(1): 637, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926682

ABSTRACT

INTRODUCTION: Chronic lung disease is a major cause of morbidity in African children with HIV infection; however, the microbial determinants of HIV-associated chronic lung disease (HCLD) remain poorly understood. We conducted a case-control study to investigate the prevalence and densities of respiratory microbes among pneumococcal conjugate vaccine (PCV)-naive children with (HCLD +) and without HCLD (HCLD-) established on antiretroviral treatment (ART). METHODS: Nasopharyngeal swabs collected from HCLD + (defined as forced-expiratory-volume/second < -1.0 without reversibility postbronchodilation) and age-, site-, and duration-of-ART-matched HCLD- participants aged between 6-19 years enrolled in Zimbabwe and Malawi (BREATHE trial-NCT02426112) were tested for 94 pneumococcal serotypes together with twelve bacteria, including Streptococcus pneumoniae (SP), Staphylococcus aureus (SA), Haemophilus influenzae (HI), Moraxella catarrhalis (MC), and eight viruses, including human rhinovirus (HRV), respiratory syncytial virus A or B, and human metapneumovirus, using nanofluidic qPCR (Standard BioTools formerly known as Fluidigm). Fisher's exact test and logistic regression analysis were used for between-group comparisons and risk factors associated with common respiratory microbes, respectively. RESULTS: A total of 345 participants (287 HCLD + , 58 HCLD-; median age, 15.5 years [IQR = 12.8-18], females, 52%) were included in the final analysis. The prevalence of SP (40%[116/287] vs. 21%[12/58], p = 0.005) and HRV (7%[21/287] vs. 0%[0/58], p = 0.032) were higher in HCLD + participants compared to HCLD- participants. Of the participants positive for SP (116 HCLD + & 12 HCLD-), 66% [85/128] had non-PCV-13 serotypes detected. Overall, PCV-13 serotypes (4, 19A, 19F: 16% [7/43] each) and NVT 13 and 21 (9% [8/85] each) predominated. The densities of HI (2 × 104 genomic equivalents [GE/ml] vs. 3 × 102 GE/ml, p = 0.006) and MC (1 × 104 GE/ml vs. 1 × 103 GE/ml, p = 0.031) were higher in HCLD + compared to HCLD-. Bacterial codetection (≥ any 2 bacteria) was higher in the HCLD + group (36% [114/287] vs. (19% [11/58]), (p = 0.014), with SP and HI codetection (HCLD + : 30% [86/287] vs. HCLD-: 12% [7/58], p = 0.005) predominating. Viruses (predominantly HRV) were detected only in HCLD + participants. Lastly, participants with a history of previous tuberculosis treatment were more likely to carry SP (adjusted odds ratio (aOR): 1.9 [1.1 -3.2], p = 0.021) or HI (aOR: 2.0 [1.2 - 3.3], p = 0.011), while those who used ART for ≥ 2 years were less likely to carry HI (aOR: 0.3 [0.1 - 0.8], p = 0.005) and MC (aOR: 0.4 [0.1 - 0.9], p = 0.039). CONCLUSION: Children with HCLD + were more likely to be colonized by SP and HRV and had higher HI and MC bacterial loads in their nasopharynx. The role of SP, HI, and HRV in the pathogenesis of CLD, including how they influence the risk of acute exacerbations, should be studied further. TRIAL REGISTRATION: The BREATHE trial (ClinicalTrials.gov Identifier: NCT02426112 , registered date: 24 April 2015).


Subject(s)
HIV Infections , Humans , Case-Control Studies , Adolescent , Child , Male , Female , HIV Infections/complications , HIV Infections/microbiology , HIV Infections/epidemiology , Zimbabwe/epidemiology , Malawi/epidemiology , Lung Diseases/microbiology , Lung Diseases/virology , Lung Diseases/epidemiology , Young Adult , Chronic Disease , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Viruses/isolation & purification , Viruses/classification , Viruses/genetics , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Streptococcus pneumoniae/isolation & purification , Respiratory System/microbiology , Respiratory System/virology
14.
Methods Mol Biol ; 2820: 165-185, 2024.
Article in English | MEDLINE | ID: mdl-38941023

ABSTRACT

The upper respiratory tract (URT) is home to a diverse range of microbial species. Respiratory infections disturb the microbial flora in the URT, putting people at risk of secondary infections. The potential dangers and clinical effects of bacterial and fungal coinfections with SARS-CoV-2 support the need to investigate the microbiome of the URT using clinical samples. Mass spectrometry (MS)-based metaproteomics analysis of microbial proteins is a novel approach to comprehensively assess the clinical specimens with complex microbial makeup. The coronavirus that causes severe acute respiratory syndrome (SARS-CoV-2) is responsible for the COVID-19 pandemic resulting in a plethora of microbial coinfections impeding therapy, prognosis, and overall disease management. In this chapter, the corresponding workflows for MS-based shotgun proteomics and metaproteomic analysis are illustrated.


Subject(s)
COVID-19 , Coinfection , Proteomics , SARS-CoV-2 , Humans , COVID-19/virology , COVID-19/complications , Proteomics/methods , Coinfection/microbiology , Coinfection/virology , SARS-CoV-2/isolation & purification , Microbiota , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/diagnosis , Mass Spectrometry/methods , Proteome/analysis , Respiratory System/microbiology , Respiratory System/metabolism , Respiratory System/virology
15.
Vet Immunol Immunopathol ; 274: 110785, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861830

ABSTRACT

The pig is emerging as a physiologically relevant biomedical large animal model. Delineating the functional roles of porcine adaptive T-lymphocyte subsets in health and disease is of critical significance, which facilitates mechanistic understanding of antigen-specific immune memory responses. We identified a novel T-helper/memory lymphocyte subset in pigs and performed phenotypic and functional characterization of these cells under steady state and following vaccination and infection with swine influenza A virus (SwIAV). A novel subset of CD3+CD4lowCD8α+CD8ß+ memory T-helper cells was identified in the blood of healthy adult pigs under homeostatic conditions. To understand the possible functional role/s of these cells, we characterized the antigen-specific T cell memory responses by multi-color flow cytometry in pigs vaccinated with a whole inactivated SwIAV vaccine, formulated with a phytoglycogen nanoparticle/STING agonist (ADU-S100) adjuvant (NanoS100-SwIAV). As a control, a commercial SwIAV vaccine was included in a heterologous challenge infection trial. The frequencies of antigen-specific IL-17A and IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly increased in the lung draining tracheobronchial lymph nodes (TBLN) of intradermal, intramuscular and intranasal inoculated NanoS100-SwIAV vaccine and commercial vaccine administered animals. While the frequencies of antigen-specific, IFNγ secreting CD3+CD4lowCD8α+CD8ß+ memory T-helper cells were significantly enhanced in the blood of intranasal and intramuscular vaccinates. These observations suggest that the CD3+CD4lowCD8α+CD8ß+ T-helper/memory cells in pigs may have a protective and/or regulatory role/s in immune responses against SwIAV infection. These observations highlight the heterogeneity and plasticity of porcine CD4+ T-helper/memory cells in response to respiratory viral infection in pigs. Comprehensive systems immunology studies are needed to further decipher the cellular lineages and functional role/s of this porcine T helper/memory cell subset.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Swine Diseases , Animals , Swine/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Swine Diseases/prevention & control , T-Lymphocytes, Helper-Inducer/immunology , Respiratory System/immunology , Respiratory System/virology , Lymphoid Tissue/immunology , Immunologic Memory , Memory T Cells/immunology , T-Lymphocyte Subsets/immunology , Influenza A virus/immunology , Vaccination/veterinary
16.
Diagn Microbiol Infect Dis ; 110(1): 116368, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906032

ABSTRACT

This study evaluates the performance of the QIAstat-Dx Respiratory SARS-CoV-2 Panel (RS2P) for the detection of respiratory pathogens. RS2P testing was performed on 440 specimens, including 82 negatives and 358 specimens positive for 1 or more targets (520 targets initially detected). Initial testing was performed on multiple platforms during routine laboratory workflow. Specimens with discordant results on RS2P were re-tested on a different platform to obtain a consensus result based on agreement of 2/3 assays. Percent positive, negative and overall agreement (PPA, PNA, POA), as well as concordance by number of targets and CT value range were calculated. RS2P produced valid results in 439 specimens, with a POA of 91.5 % based on consensus results, with 16/31 (51.6 %) discordant specimens with >1 positive target. When individual targets were examined, PPA, PNA and POA were 93.7 %, 99.9 % and 99.6 % compared to consensus results. Overall, RS2P performed well in detection of respiratory pathogens.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , COVID-19/diagnosis , Nasopharynx/virology , Sensitivity and Specificity , Respiratory System/virology , Respiratory System/microbiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , COVID-19 Nucleic Acid Testing/methods
17.
J Virol ; 98(7): e0040924, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38869284

ABSTRACT

Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. Staphylococcus aureus and Streptococcus pneumoniae were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.


Subject(s)
Aerosols , Influenza A virus , Influenza A virus/physiology , Humans , Staphylococcus aureus/physiology , Streptococcus pneumoniae/physiology , Respiratory System/microbiology , Respiratory System/virology , Animals , Influenza, Human/virology , Influenza, Human/transmission , Bacteria , Microbiota , Dogs , Symbiosis , Madin Darby Canine Kidney Cells
19.
Clin Infect Dis ; 79(1): 161-168, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38860786

ABSTRACT

BACKGROUND: This meta-analysis examines the comparative diagnostic performance of polymerase chain reaction (PCR) for the diagnosis of Pneumocystis pneumonia (PCP) on different respiratory tract samples, in both human immunodeficiency virus (HIV) and non-HIV populations. METHODS: A total of 55 articles met inclusion criteria, including 11 434 PCR assays on respiratory specimens from 7835 patients at risk of PCP. QUADAS-2 tool indicated low risk of bias across all studies. Using a bivariate and random-effects meta-regression analysis, the diagnostic performance of PCR against the European Organisation for Research and Treatment of Cancer-Mycoses Study Group definition of proven PCP was examined. RESULTS: Quantitative PCR (qPCR) on bronchoalveolar lavage fluid provided the highest pooled sensitivity of 98.7% (95% confidence interval [CI], 96.8%-99.5%), adequate specificity of 89.3% (95% CI, 84.4%-92.7%), negative likelihood ratio (LR-) of 0.014, and positive likelihood ratio (LR+) of 9.19. qPCR on induced sputum provided similarly high sensitivity of 99.0% (95% CI, 94.4%-99.3%) but a reduced specificity of 81.5% (95% CI, 72.1%-88.3%), LR- of 0.024, and LR+ of 5.30. qPCR on upper respiratory tract samples provided lower sensitivity of 89.2% (95% CI, 71.0%-96.5%), high specificity of 90.5% (95% CI, 80.9%-95.5%), LR- of 0.120, and LR+ of 9.34. There was no significant difference in sensitivity and specificity of PCR according to HIV status of patients. CONCLUSIONS: On deeper respiratory tract specimens, PCR negativity can be used to confidently exclude PCP, but PCR positivity will likely require clinical interpretation to distinguish between colonization and active infection, partially dependent on the strength of the PCR signal (indicative of fungal burden), the specimen type, and patient population tested.


Subject(s)
Bronchoalveolar Lavage Fluid , Immunocompromised Host , Pneumonia, Pneumocystis , Sensitivity and Specificity , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/microbiology , Humans , Bronchoalveolar Lavage Fluid/microbiology , Polymerase Chain Reaction/methods , Sputum/microbiology , Respiratory System/microbiology , Pneumocystis carinii/genetics , Pneumocystis carinii/isolation & purification , HIV Infections/diagnosis , Real-Time Polymerase Chain Reaction/methods
20.
Ecotoxicol Environ Saf ; 281: 116637, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941663

ABSTRACT

Airborne particulate matter (PM) is a global environmental risk factor threatening human health and is a major cause of cardiovascular and respiratory disease-associated death. Current studies on PM exposure have been limited to large-scale cohort and epidemiological investigations, emphasizing the need for detailed individual-level studies to uncover specific differentially expressed genes and their associated signaling mechanisms. Herein, we revealed that PM exposure significantly upregulated inflammatory and immune responses, such as cytokine-mediated signaling pathways, complement system, and the activation and migration of immune cells in gene set enrichment analysis of our RNA sequencing (RNAseq) data. Remarkably, we discovered that the broad gene expression and signaling pathways mediated by macrophages were predominantly expressed in the respiratory system following PM exposure. Consistent with these observations, individual PMs, classified by aerodynamic size and origin, significantly promoted macrophage recruitment to the lungs in the mouse lung inflammation model. Additionally, we confirmed that RNAseq observations from the respiratory system were reproduced in murine bone marrow-derived macrophages and the alveolar macrophage cell line MH-S after individual PM exposure. Our findings demonstrated that PM exposure augmented broad inflammatory and immune responses in the respiratory system and suggested the reinforcement of global strategies for reducing particulate air pollution to prevent respiratory diseases and their exacerbation.


Subject(s)
Air Pollutants , Particulate Matter , Signal Transduction , Particulate Matter/toxicity , Animals , Mice , Signal Transduction/drug effects , Air Pollutants/toxicity , Mice, Inbred C57BL , Respiratory System/drug effects , Macrophages/drug effects , Macrophages, Alveolar/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL