Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 611
1.
Front Immunol ; 15: 1358036, 2024.
Article En | MEDLINE | ID: mdl-38690262

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


DNA Helicases , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Stress Granules , Virus Replication , Animals , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , RNA Recognition Motif Proteins/metabolism , DNA Helicases/metabolism , DNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , Stress Granules/metabolism , Cattle , Eukaryotic Initiation Factor-2/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Host-Pathogen Interactions/immunology , Phosphorylation , Cell Line , Cytoplasmic Granules/metabolism
2.
J Biol Chem ; 300(4): 107200, 2024 Apr.
Article En | MEDLINE | ID: mdl-38508315

Interferon (IFN) regulatory factors (IRF) are key transcription factors in cellular antiviral responses. IRF7, a virus-inducible IRF, expressed primarily in myeloid cells, is required for transcriptional induction of interferon α and antiviral genes. IRF7 is activated by virus-induced phosphorylation in the cytoplasm, leading to its translocation to the nucleus for transcriptional activity. Here, we revealed a nontranscriptional activity of IRF7 contributing to its antiviral functions. IRF7 interacted with the pro-inflammatory transcription factor NF-κB-p65 and inhibited the induction of inflammatory target genes. Using knockdown, knockout, and overexpression strategies, we demonstrated that IRF7 inhibited NF-κB-dependent inflammatory target genes, induced by virus infection or toll-like receptor stimulation. A mutant IRF7, defective in transcriptional activity, interacted with NF-κB-p65 and suppressed NF-κB-induced gene expression. A single-action IRF7 mutant, active in anti-inflammatory function, but defective in transcriptional activity, efficiently suppressed Sendai virus and murine hepatitis virus replication. We, therefore, uncovered an anti-inflammatory function for IRF7, independent of transcriptional activity, contributing to the antiviral response of IRF7.


Interferon Regulatory Factor-7 , NF-kappa B , Animals , Humans , Mice , HEK293 Cells , Inflammation/genetics , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Sendai virus/physiology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology , Virus Replication , Mutation , Gene Expression Regulation/genetics , Murine hepatitis virus/physiology , Coronavirus Infections/immunology , Respirovirus Infections/immunology
3.
J Immunol ; 208(6): 1467-1482, 2022 03 15.
Article En | MEDLINE | ID: mdl-35173037

Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.


Age Factors , Aging/physiology , Asthma/immunology , COVID-19/immunology , Influenza A virus/physiology , Influenza, Human/immunology , Lung/immunology , Orthomyxoviridae Infections/immunology , Respirovirus Infections/immunology , SARS-CoV-2/physiology , Sendai virus/physiology , Th2 Cells/immunology , Animals , Asthma/epidemiology , COVID-19/epidemiology , Cytokines/metabolism , Humans , Influenza, Human/epidemiology , Mice , Mice, Inbred C57BL , United States/epidemiology
4.
J Immunol ; 207(10): 2589-2597, 2021 11 15.
Article En | MEDLINE | ID: mdl-34625522

Respiratory syncytial virus (RSV) infection in infancy is associated with increased risk of asthma, except in those with allergic disease at the time of infection. Using house dust mite allergen, we examined the effect of pre-existing atopy on postviral airway disease using Sendai virus in mice, which models RSV infection in humans. Sendai virus drives postviral airway disease in nonatopic mice; however, pre-existing atopy protected against the development of airway disease. This protection depended upon neutrophils, as depletion of neutrophils at the time of infection restored the susceptibility of atopic mice to postviral airway disease. Associated with development of atopy was an increase in polymorphonuclear neutrophil-dendritic cell hybrid cells that develop in Th2 conditions and demonstrated increased viral uptake. Systemic inhibition of IL-4 reversed atopic protection against postviral airway disease, suggesting that increased virus uptake by neutrophils was IL-4 dependent. Finally, human neutrophils from atopic donors were able to reduce RSV infection of human airway epithelial cells in vitro, suggesting these findings could apply to the human. Collectively our data support the idea that pre-existing atopy derives a protective neutrophil response via potential interaction with IL-4, preventing development of postviral airway disease.


Hypersensitivity, Immediate/immunology , Neutrophils/immunology , Respiratory Syncytial Virus Infections/immunology , Respirovirus Infections/immunology , Animals , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Viruses/immunology , Sendai virus/immunology
5.
PLoS Pathog ; 17(9): e1009908, 2021 09.
Article En | MEDLINE | ID: mdl-34529742

Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection.


Cholesterol/biosynthesis , Respiratory Mucosa/virology , Respirovirus Infections/metabolism , Respirovirus Infections/virology , A549 Cells , Humans , Interferons/immunology , Parainfluenza Virus 1, Human/immunology , Parainfluenza Virus 1, Human/metabolism , Parainfluenza Virus 3, Human/immunology , Parainfluenza Virus 3, Human/metabolism , Respirovirus Infections/immunology
6.
Nat Commun ; 12(1): 3993, 2021 06 28.
Article En | MEDLINE | ID: mdl-34183650

Type II alveolar cells (AT2s) are critical for basic respiratory homeostasis and tissue repair after lung injury. Prior studies indicate that AT2s also express major histocompatibility complex class II (MHCII) molecules, but how MHCII expression by AT2s is regulated and how it contributes to host defense remain unclear. Here we show that AT2s express high levels of MHCII independent of conventional inflammatory stimuli, and that selective loss of MHCII from AT2s in mice results in modest worsening of respiratory virus disease following influenza and Sendai virus infections. We also find that AT2s exhibit MHCII presentation capacity that is substantially limited compared to professional antigen presenting cells. The combination of constitutive MHCII expression and restrained antigen presentation may position AT2s to contribute to lung adaptive immune responses in a measured fashion, without over-amplifying damaging inflammation.


Alveolar Epithelial Cells/immunology , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Orthomyxoviridae Infections/immunology , Respirovirus Infections/immunology , Animals , Cell Line , Dogs , Histocompatibility Antigens Class II/immunology , Inflammation/immunology , Influenza A Virus, H1N1 Subtype/immunology , Lung/cytology , Lung/immunology , Macaca mulatta , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/pathology , Respirovirus Infections/pathology , Sendai virus/immunology
7.
Mol Cell ; 81(15): 3171-3186.e8, 2021 08 05.
Article En | MEDLINE | ID: mdl-34171297

Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.


Adaptor Proteins, Signal Transducing/metabolism , Arginine/metabolism , Host-Pathogen Interactions/physiology , Immunity, Innate/physiology , Protein-Arginine N-Methyltransferases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , DEAD Box Protein 58/metabolism , Fibroblasts/virology , HEK293 Cells , Herpes Simplex/immunology , Herpes Simplex/metabolism , Herpes Simplex/virology , Humans , Methylation , Mice , Mice, Knockout , Polyunsaturated Alkamides , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/immunology , Receptors, Immunologic/metabolism , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Respirovirus Infections/virology , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Nat Commun ; 12(1): 2970, 2021 05 20.
Article En | MEDLINE | ID: mdl-34016972

Activation of MAVS, an adaptor molecule in Rig-I-like receptor (RLR) signaling, is indispensable for antiviral immunity, yet the molecular mechanisms modulating MAVS activation are not completely understood. Ubiquitination has a central function in regulating the activity of MAVS. Here, we demonstrate that a mitochondria-localized deubiquitinase USP18 specifically interacts with MAVS, promotes K63-linked polyubiquitination and subsequent aggregation of MAVS. USP18 upregulates the expression and production of type I interferon following infection with Sendai virus (SeV) or Encephalomyocarditis virus (EMCV). Mice with a deficiency of USP18 are more susceptible to RNA virus infection. USP18 functions as a scaffold protein to facilitate the re-localization of TRIM31 and enhances the interaction between TRIM31 and MAVS in mitochondria. Our results indicate that USP18 functions as a post-translational modulator of MAVS-mediated antiviral signaling.


Adaptor Proteins, Signal Transducing/metabolism , Cardiovirus Infections/immunology , Respirovirus Infections/immunology , Ubiquitin Thiolesterase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/isolation & purification , Animals , Cardiovirus Infections/virology , Cell Line, Tumor , Disease Models, Animal , Encephalomyocarditis virus/immunology , Gene Knockdown Techniques , HEK293 Cells , Humans , Immunity, Innate , Interferon Type I/metabolism , Lysine/metabolism , Male , Mice , Mice, Knockout , Protein Processing, Post-Translational/immunology , RAW 264.7 Cells , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Respirovirus Infections/virology , Sendai virus/immunology , Signal Transduction/immunology , Tripartite Motif Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/isolation & purification , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/immunology
9.
MAbs ; 13(1): 1912884, 2021.
Article En | MEDLINE | ID: mdl-33876699

Human parainfluenza virus type III (HPIV3) is a common respiratory pathogen that afflicts children and can be fatal in vulnerable populations, including the immunocompromised. There are currently no effective vaccines or therapeutics available, resulting in tens of thousands of hospitalizations per year. In an effort to discover a protective antibody against HPIV3, we screened the B cell repertoires from peripheral blood, tonsils, and spleen from healthy children and adults. These analyses yielded five monoclonal antibodies that potently neutralized HPIV3 in vitro. These HPIV3-neutralizing antibodies targeted two non-overlapping epitopes of the HPIV3 F protein, with most targeting the apex. Prophylactic administration of one of these antibodies, PI3-E12, resulted in potent protection against HPIV3 infection in cotton rats. Additionally, PI3-E12 could also be used therapeutically to suppress HPIV3 in immunocompromised animals. These results demonstrate the potential clinical utility of PI3-E12 for the prevention or treatment of HPIV3 in both immunocompetent and immunocompromised individuals.


Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Lung/virology , Parainfluenza Virus 3, Human/drug effects , Respirovirus Infections/prevention & control , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody Specificity , Antiviral Agents/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , Cell Line , Disease Models, Animal , Epitopes , Host-Pathogen Interactions , Humans , Immunocompromised Host , Lung/immunology , Parainfluenza Virus 3, Human/immunology , Parainfluenza Virus 3, Human/pathogenicity , Respirovirus Infections/immunology , Respirovirus Infections/virology , Sigmodontinae , Viral Fusion Proteins/immunology
10.
Mol Immunol ; 134: 62-71, 2021 06.
Article En | MEDLINE | ID: mdl-33713958

Retinoic acid-inducible gene I (RIG-I) plays a critical role in the recognition of intracytoplasmic viral RNA. Upon binding to the RNA of invading viruses, the activated RIG-I translocates to mitochondria, where it recruits adapter protein MAVS, causing a series of signaling cascades. In this study, we demonstrated that Hsp70 binding protein 1 (HSPBP1) promotes RIG-I-mediated signal transduction. The overexpression of HSPBP1 can increase the stability of RIG-I protein by inhibiting its K48-linked ubiquitination, and promote the activation of IRF3 and the production of IFN-ß induced by Sendai virus. Knockdown and knockout of HSPBP1 leads to down-regulation of virus-induced RIG-I expression, inhibits IRF3 activation, and reduces the production of IFNB1. These results indicate that HSPBP1 positively regulates the antiviral signal pathway induced by inhibiting the K48-linked ubiquitination of RIG-I.


Adaptor Proteins, Signal Transducing/metabolism , DEAD Box Protein 58/metabolism , Immunity, Innate/immunology , Receptors, Immunologic/metabolism , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/immunology , DEAD Box Protein 58/immunology , HEK293 Cells , Humans , Receptors, Immunologic/immunology , Respirovirus Infections/immunology , Sendai virus/immunology , Ubiquitination
11.
Cancer Res ; 81(6): 1540-1551, 2021 03 15.
Article En | MEDLINE | ID: mdl-33472891

Innate immune defense mechanisms play a pivotal role in antitumor responses. Recent evidence suggests that antiviral innate immunity is regulated not only by exogenous non-self-RNA but also by host-derived pseudogene RNAs. A growing body of evidence also indicates a biological role for pseudogenes as gene expression regulators or immune modulators. Here, we report an important role for BRCA1P1, the pseudogene of the BRCA1 tumor-suppressor gene, in regulating innate immune defense mechanisms in breast cancer cells. BRCA1P1 expresses a long-noncoding RNA (lncRNA) in breast cancer cells through divergent transcription. Expression of lncRNA-BRCA1P1 is increased in breast tumors compared with normal breast tissues. Depletion of BRCA1P1 induces an antiviral defense-like program, including the expression of antiviral genes in breast cancer cells. Furthermore, BRCA1P1-deficient cancer cells mimic virus-infected cells by stimulating cytokines and inducing cell apoptosis. Accordingly, depletion of BRCA1P1 increases host innate immune responses and restricts virus replication. In converse, overexpression of BRCA1P1 reduces cytokine expression in breast cancer cells. Mechanistically, lncRNA-BRCA1P1 is localized in the nucleus, binds to the NF-κB subunit RelA, and negatively regulates antiviral gene expression. Finally, in a xenograft mouse model of breast cancer, depletion of BRCA1P1 stimulates cytokine expression and local immunity, and suppresses tumor growth. Our results suggest an important role for BRCA1P1 in innate immune defense mechanisms and antitumor responses. This mechanism of antiviral immunity regulated by a host-derived pseudogene RNA may guide the development of novel therapies targeting immune responses in breast cancer. SIGNIFICANCE: This study identifies a novel mechanism of innate immunity driven by a host pseudogene RNA that inhibits innate immune defense mechanisms and antitumor responses through regulation of antiviral gene expression.


Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Pseudogenes/physiology , RNA, Long Noncoding/metabolism , Tumor Escape/genetics , Animals , Breast/pathology , Breast/surgery , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Carcinoma, Ductal, Breast/immunology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/surgery , Cell Line, Tumor , Cell Nucleus/genetics , Cytokines/genetics , Female , Gene Expression Regulation, Neoplastic/immunology , Gene Knockout Techniques , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Innate/genetics , Mastectomy , Mice , Primary Cell Culture , RNA, Long Noncoding/genetics , Respirovirus Infections/immunology , Respirovirus Infections/virology , Sendai virus/immunology , Transcription Factor RelA/genetics , Xenograft Model Antitumor Assays
12.
Am J Respir Cell Mol Biol ; 64(5): 536-546, 2021 05.
Article En | MEDLINE | ID: mdl-33233920

TOLLIP (Toll-interacting protein) is an intracellular adaptor protein with diverse actions throughout the body. In a context- and cell type-specific manner, TOLLIP can function as an inhibitor of inflammation and endoplasmic-reticulum stress, an activator of autophagy, or a critical regulator of intracellular vacuole trafficking. The distinct functions of this protein have been linked to innate immune responses and lung epithelial-cell apoptosis. TOLLIP genetic variants have been associated with a variety of chronic lung diseases, including idiopathic pulmonary fibrosis, asthma, and primary graft dysfunction after lung transplantation, and with infections, such as tuberculosis, Legionella pneumonia, and respiratory viruses. TOLLIP exists in a delicate homeostatic balance, with both positive and negative effects on the trajectory of pulmonary diseases. This translational review summarizes the genetic and molecular associations that link TOLLIP to the development and progression of noninfectious and infectious pulmonary diseases. We highlight current limitations of in vitro and in vivo models in assessing the role of TOLLIP in these conditions, and we describe future approaches that will enable a more nuanced exploration of the role of TOLLIP in pulmonary conditions. There has been a surge in recent research evaluating the role of this protein in human diseases, but critical mechanistic pathways require further exploration. By understanding its biologic functions in disease-specific contexts, we will be able to determine whether TOLLIP can be therapeutically modulated to treat pulmonary diseases.


Asthma/genetics , Graft Rejection/genetics , Idiopathic Pulmonary Fibrosis/genetics , Intracellular Signaling Peptides and Proteins/genetics , Animals , Asthma/immunology , Asthma/pathology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Gene Expression Regulation , Graft Rejection/immunology , Graft Rejection/pathology , Humans , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Immunity, Innate , Intracellular Signaling Peptides and Proteins/immunology , Legionnaires' Disease/genetics , Legionnaires' Disease/immunology , Legionnaires' Disease/microbiology , Legionnaires' Disease/pathology , Lung Transplantation , Mice , MicroRNAs/genetics , MicroRNAs/immunology , Respirovirus Infections/genetics , Respirovirus Infections/immunology , Respirovirus Infections/pathology , Respirovirus Infections/virology , Signal Transduction , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
13.
Nat Commun ; 11(1): 5711, 2020 11 11.
Article En | MEDLINE | ID: mdl-33177519

Mitochondria are multifunctional organelles that produce energy and are critical for various signaling pathways. Mitochondrial antiviral signaling (MAVS) is a mitochondrial outer membrane protein essential for the anti-RNA viral immune response, which is regulated by mitochondrial dynamics and energetics; however, the molecular link between mitochondrial metabolism and immunity is unclear. Here we show in cultured mammalian cells that MAVS is activated by mitochondrial fission factor (Mff), which senses mitochondrial energy status. Mff mediates the formation of active MAVS clusters on mitochondria, independent of mitochondrial fission and dynamin-related protein 1. Under mitochondrial dysfunction, Mff is phosphorylated by the cellular energy sensor AMP-activated protein kinase (AMPK), leading to the disorganization of MAVS clusters and repression of the acute antiviral response. Mff also contributes to immune tolerance during chronic infection by disrupting the mitochondrial MAVS clusters. Taken together, Mff has a critical function in MAVS-mediated innate immunity, by sensing mitochondrial energy metabolism via AMPK signaling.


AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Host-Pathogen Interactions/physiology , Immunity, Innate/physiology , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cytokines/metabolism , Fibroblasts/immunology , HeLa Cells/virology , Humans , Membrane Proteins/metabolism , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Phosphorylation , Respirovirus Infections/immunology
14.
Front Immunol ; 11: 575977, 2020.
Article En | MEDLINE | ID: mdl-33123159

Human Parainfluenza Virus-3 (HPIV3) causes severe respiratory illness in immunocompromised patients and lacks approved anti-viral therapies. A phase I study of adoptively transferred virus-specific T-cells (VSTs) targeting HPIV3 following bone marrow transplantation is underway (NCT03180216). We sought to identify immunodominant epitopes within HPIV3 Matrix protein and their cross-reactivity against related viral proteins. VSTs were generated from peripheral blood of healthy donors by ex-vivo expansion after stimulation with a 15-mer peptide library encompassing HPIV3 matrix protein. Epitope mapping was performed using IFN-γ ELIspot with combinatorial peptide pools. Flow cytometry was used to characterize products with intracellular cytokine staining. In 10 VST products tested, we discovered 12 novel immunodominant epitopes. All products recognized an epitope at the C-terminus. On IFN-γ ELISpot, individual peptides eliciting activity demonstrated mean IFN-γ spot forming units per well (SFU)/1x105 cells of 115.5 (range 24.5-247.5). VST products were polyfunctional, releasing IFN-γ and TNF-α in response to identified epitopes, which were primarily HLA Class II restricted. Peptides from Human Parainfluenza Virus-1 corresponding to the HPIV3 epitopes showed cross-reactivity for HPIV1 in 11 of 12 tested epitopes (mean cross reactivity index: 1.19). Characterization of HPIV3 epitopes may enable development of third-party VSTs to treat immune suppressed patients with HPIV infection.


Adoptive Transfer , Immunodominant Epitopes , Parainfluenza Virus 1, Human/immunology , Parainfluenza Virus 3, Human/immunology , Respirovirus Infections/therapy , T-Lymphocytes/transplantation , Viral Matrix Proteins/immunology , Cells, Cultured , Clinical Trials, Phase I as Topic , Cross Reactions , Enzyme-Linked Immunospot Assay , Epitope Mapping , Host-Pathogen Interactions , Humans , Interferon-gamma/metabolism , Interferon-gamma Release Tests , Parainfluenza Virus 1, Human/pathogenicity , Parainfluenza Virus 3, Human/pathogenicity , Respirovirus Infections/immunology , Respirovirus Infections/metabolism , Respirovirus Infections/virology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
15.
Am J Respir Cell Mol Biol ; 63(6): 758-766, 2020 12.
Article En | MEDLINE | ID: mdl-32853024

Viral pneumonias remain global health threats, as exemplified in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, requiring novel treatment strategies both early and late in the disease process. We have reported that mice treated before or soon after infection with a combination of inhaled Toll-like receptor (TLR) 2/6 and 9 agonists (Pam2-ODN) are broadly protected against microbial pathogens including respiratory viruses, but the mechanisms remain incompletely understood. The objective of this study was to validate strategies for immune modulation in a preclinical model of viral pneumonia and determine their mechanisms. Mice were challenged with the Sendai paramyxovirus in the presence or absence of Pam2-ODN treatment. Virus burden and host immune responses were assessed to elucidate Pam2-ODN mechanisms of action and to identify additional opportunities for therapeutic intervention. Enhanced survival of Sendai virus pneumonia with Pam2-ODN treatment was associated with reductions in lung virus burden and with virus inactivation before internalization. We noted that mortality in sham-treated mice corresponded with CD8+ T-cell lung inflammation on days 11-12 after virus challenge, after the viral burden had declined. Pam2-ODN blocked this injurious inflammation by minimizing virus burden. As an alternative intervention, depleting CD8+ T cells 8 days after viral challenge also decreased mortality. Stimulation of local innate immunity within the lungs by TLR agonists early in disease or suppression of adaptive immunity by systemic CD8+ T-cell depletion late in disease improves outcomes of viral pneumonia in mice. These data reveal opportunities for targeted immunomodulation to protect susceptible human subjects.


Immunity, Innate/immunology , Lipopeptides/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia/prevention & control , Respirovirus Infections/drug therapy , Sendai virus/drug effects , Viral Load/drug effects , Animals , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Immunity, Innate/drug effects , Lung/drug effects , Lung/immunology , Lung/virology , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respirovirus Infections/immunology , Respirovirus Infections/virology , Sendai virus/immunology
16.
BMC Vet Res ; 16(1): 72, 2020 Mar 03.
Article En | MEDLINE | ID: mdl-32127006

BACKGROUND: Bovine parainfluenza virus type 3 (BPIV3) is one of the important viral respiratory agents associated with the bovine respiratory disease complex (BRDC) in cattle. Previous study has demonstrated that infection of BPIV3 causes innate immune response within the host cell. ß-catenin is a key component of the Wnt/ß-catenin signal pathway which is involved in the regulation of interferon-beta (IFN-ß) transcription. Some viruses can activate while others can inhibit the Wnt/ß-catenin signaling pathway. However, the role of ß-catenin in BPIV3 infection remains unclear. RESULTS: Here we found that the expression of ß-catenin mRNA was up-regulated and ß-catenin protein was down-regulated after BPIV3 infection in MDBK cells. Moreover, it was confirmed that overexpression of ß-catenin suppressed BPIV3 replication and knockdown of ß-catenin promoted viral replication, suggesting that ß-catenin inhibits BPIV3 replication. Furthermore, IFN-ß signal pathway and virus titer analysis using the GSK3ß inhibitor (LiCl) revealed that Wnt/ß-catenin can serve as a mechanism to suppress virus replication in infected cells. The results indicated that LiCl promoted the expression and accumulation in the nucleus of ß-catenin, which further promoted the expression of IFN-ß and OSA1 and suppressed BPIV3 replication. Most importantly, BPIV3 down-regulating ß-catenin protein expression was due to degradation of GSK3ß mediated proteasome pathway. CONCLUSIONS: In summary, we discovered the relationship between ß-catenin and BPIV3 replication. These results provided further insight into the study of BPIV3 pathogenesis.


Immunity, Innate , Parainfluenza Virus 3, Bovine/drug effects , Virus Replication/drug effects , beta Catenin/metabolism , Animals , Cattle , Cell Line , Glycogen Synthase Kinase 3 beta/drug effects , Lithium Chloride/pharmacology , RNA, Messenger , Respirovirus Infections/immunology , Respirovirus Infections/veterinary , Signal Transduction , beta Catenin/genetics
17.
J Virol ; 94(7)2020 03 17.
Article En | MEDLINE | ID: mdl-31915282

The virus-induced signaling adaptor (VISA) complex plays a critical role in the innate immune response to RNA viruses. However, the mechanism of VISA complex formation remains unclear. Here, we demonstrate that thioredoxin 2 (TRX2) interacts with VISA at mitochondria both in vivo and in vitro Knockdown and knockout of TRX2 enhanced the formation of the VISA-associated complex, as well as virus-triggered activation of interferon regulatory factor 3 (IRF3) and transcription of the interferon beta 1 (IFNB1) gene. TRX2 inhibits the formation of VISA aggregates by repressing reactive oxygen species (ROS) production, thereby disrupting the assembly of the VISA complex. Furthermore, our data suggest that the C93 residue of TRX2 is essential for inhibition of VISA aggregation, whereas the C283 residue of VISA is required for VISA aggregation. Collectively, these findings uncover a novel mechanism of TRX2 that negatively regulates VISA complex formation.IMPORTANCE The VISA-associated complex plays pivotal roles in inducing type I interferons (IFNs) and eliciting the innate antiviral response. Many host proteins are identified as VISA-associated-complex proteins, but how VISA complex formation is regulated by host proteins remains enigmatic. We identified the TRX2 protein as an important regulator of VISA complex formation. Knockout of TRX2 increases virus- or poly(I·C)-triggered induction of type I IFNs at the VISA level. Mechanistically, TRX2 inhibits the production of ROS at its C93 site, which impairs VISA aggregates at its C283 site, and subsequently impedes the assembly of the VISA complex. Our findings suggest that TRX2 plays an important role in the regulation of VISA complex assembly.


Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation, Viral , Immunity, Innate , Mitochondrial Proteins/metabolism , Respirovirus Infections/immunology , Sendai virus/immunology , Thioredoxins/metabolism , HEK293 Cells , HeLa Cells , Humans , Interferon Regulatory Factor-3/metabolism , Interferon beta-1a/metabolism , Poly I-C/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , THP-1 Cells
18.
J Biol Chem ; 295(6): 1575-1586, 2020 02 07.
Article En | MEDLINE | ID: mdl-31914403

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-ß, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-ß mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.


Immunity, Innate , Monocytes/immunology , SAM Domain and HD Domain-Containing Protein 1/immunology , Cell Nucleus/immunology , Humans , Respirovirus Infections/immunology , SAM Domain and HD Domain-Containing Protein 1/analysis , Sendai virus/immunology , THP-1 Cells , U937 Cells
19.
Front Immunol ; 11: 589259, 2020.
Article En | MEDLINE | ID: mdl-33603735

Post-translational modifications, including O-GlcNAcylation, play fundamental roles in modulating cellular events, including transcription, signal transduction, and immune signaling. Several molecular targets of O-GlcNAcylation associated with pathogen-induced innate immune responses have been identified; however, the direct regulatory mechanisms linking O-GlcNAcylation with antiviral RIG-I-like receptor signaling are not fully understood. In this study, we found that cellular levels of O-GlcNAcylation decline in response to infection with Sendai virus. We identified a heavily O-GlcNAcylated serine-rich region between amino acids 249-257 of the mitochondrial antiviral signaling protein (MAVS); modification at this site disrupts MAVS aggregation and prevents MAVS-mediated activation and signaling. O-GlcNAcylation of the serine-rich region of MAVS also suppresses its interaction with TRAF3; this prevents IRF3 activation and production of interferon-ß. Taken together, these results suggest that O-GlcNAcylation of MAVS may be a master regulatory event that promotes host defense against RNA viruses.


Acetylglucosamine/immunology , Adaptor Proteins, Signal Transducing/immunology , Respirovirus Infections/immunology , Sendai virus , Acylation , Cell Line , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Mitochondria/immunology , Signal Transduction
20.
J Biol Chem ; 295(2): 444-457, 2020 01 10.
Article En | MEDLINE | ID: mdl-31767682

MicroRNAs (miRNAs) are small noncoding RNAs that suppress the expression of multiple genes and are involved in numerous biologic functions and disorders, including human diseases. Here, we report that two miRNAs, miR-302b and miR-372, target mitochondrial-mediated antiviral innate immunity by regulating mitochondrial dynamics and metabolic demand. Using human cell lines transfected with the synthetic analog of viral dsRNA, poly(I-C), or challenged with Sendai virus, we found that both miRNAs are up-regulated in the cells late after viral infection and ultimately terminate the production of type I interferons and inflammatory cytokines. We found that miR-302b and miR-372 are involved in dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and disrupt mitochondrial metabolism by attenuating solute carrier family 25 member 12 (SLC25A12), a member of the SLC25 family. Neutralizing the effects of the two miRNAs through specific inhibitors re-established the mitochondrial dynamics and the antiviral responses. We found that SLC25A12 contributes to regulating the antiviral response by inducing mitochondrial-related metabolite changes in the organelle. Structure-function analysis indicated that SLC25A12, as part of a prohibitin complex, associates with the mitochondrial antiviral-signaling protein in mitochondria, providing structural insight into the regulation of the mitochondrial-mediated antiviral response. Our results contribute to the understanding of how miRNAs modulate the innate immune response by altering mitochondrial dynamics and metabolic demand. Manipulating the activities of miR-302b and miR-372 may be a potential therapeutic approach to target RNA viruses.


MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Respirovirus Infections/metabolism , Sendai virus/physiology , Cell Line , Host-Pathogen Interactions , Humans , Immunity, Innate , MicroRNAs/immunology , Mitochondria/immunology , Mitochondria/virology , Mitochondrial Membrane Transport Proteins/immunology , Mitochondrial Membranes/immunology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/virology , Respirovirus Infections/immunology , Respirovirus Infections/virology , Sendai virus/immunology
...