Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
1.
Poult Sci ; 103(6): 103722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626691

ABSTRACT

The highly contagious, immunosuppressive, and cancer-causing Marek's disease virus (MDV) infects chickens. The financial costs of Marek's disease (MD) are significant for the chicken industry. In this study, a total of 180 samples from chicken farms suspected to be MDV-infected were collected. The chickens were sampled during the period between the months of October 2016 and February 2018 at Dakahlia and Damietta Governorates, Egypt. A total of 36 pooled samples were created. The prepared samples were inoculated into embryonated chicken eggs (ECEs). Indirect fluorescent antibody technique (IFAT) and ICP4 gene-based polymerase chain reaction (PCR) were used for MDV identification. For the genetic characterization of the identified virus, The ICP4 gene sequence was identified and compared with the sequences available from various regions of the world. Furthermore, the genomes of all detected MDVs were screened for the long terminal repeat (LTR) region of reticuloendotheliosis (REV) in their genomes. The results showed that 31 out of 36 pooled samples (86.1%) inoculated into ECEs displayed the characteristic pock lesions. By using IFAT and PCR to identify MDV in ECEs, positive results were found in 27 samples (75%). The Egyptian virus is thought to be genetically closely related to MDVs circulating in Ethiopia, China, and India. REV-LTR was amplified from 6 out of 27 field isolates genomes (22.2 %) while MDV vaccine strains were free from REV-LTR insertion. The integrated REV-LTRs depicted a close genetic relationship with those integrated in fowl poxvirus (FWPV) circulating in Egypt as well as those integrated in FWPVs and MDVs from China, USA, South Africa, and Australia. To the best of our knowledge, this investigation represents the first identification and characterization of REV-LTR insertions in Egyptian MDV field isolates. Given the findings above, additional research in the future seems crucial to determine how the REV-LTR insertions affect MDV pathogenesis, virulence, and insufficient vaccination protection.


Subject(s)
Chickens , Herpesvirus 2, Gallid , Marek Disease , Poultry Diseases , Animals , Marek Disease/virology , Marek Disease/epidemiology , Chickens/virology , Egypt/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Herpesvirus 2, Gallid/genetics , Herpesvirus 2, Gallid/isolation & purification , Terminal Repeat Sequences , Reticuloendotheliosis virus/genetics , Reticuloendotheliosis virus/isolation & purification , Virus Integration , Genome, Viral
2.
Avian Pathol ; 53(4): 303-311, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38411905

ABSTRACT

Monitoring Marek's disease (MD) vaccination is routinely done by evaluating the load of MD vaccine in the feather pulp (FP) between 7 and 10 days of age. However, attempts in our laboratory to detect a novel CVI-LTR vaccine in the FP samples from commercial flocks failed. The objective of this study was to evaluate the most suitable tissue and age to monitor CVI-LTR vaccination. We used two different commercial CVI988 vaccines as controls. One hundred and sixty 1-day-old commercial brown layers were vaccinated with either CVI-LTR, CVI988-A, CVI988-B or remained unvaccinated. Samples of the spleen, thymus, and bursa were collected at 3, 4, 5, and 6 days of age and samples of FP were collected at 7 and 21 days for DNA isolation. Our results showed that CVI-LTR replicated earlier than CVI988 vaccines in the lymphoid organs but was not detected in the FP at either 7 or at 21 days of age. We also confirmed that either the spleen or thymus collected at 4-6 days was a suitable sample to monitor CVI-LTR vaccination in commercial flocks. Finally, we evaluated the load of oncogenic MDV DNA in five commercial flocks that were vaccinated with either CVI-LTR + rHVT or CVI988-A + rHVT. The load of oncogenic MDV DNA was evaluated at 21 days in the FP in 20 chickens per group. Our results demonstrated that CVI-LTR was more successful in reducing oncogenic MDV DNA at 21 days of age than the CVI988-A strain.RESEARCH HIGHLIGHTSCVI-LTR replicates in the thymus and spleen earlier than CVI988.CVI-LTR replicates in lymphoid organs but it cannot be detected in feather pulp.CVI-LTR reduced the load of oncogenic MDV DNA more efficiently than CVI988.


Subject(s)
Chickens , Feathers , Marek Disease Vaccines , Marek Disease , Spleen , Thymus Gland , Animals , Chickens/virology , Marek Disease/prevention & control , Marek Disease/virology , Marek Disease Vaccines/immunology , Spleen/virology , Feathers/virology , Thymus Gland/virology , Poultry Diseases/virology , Poultry Diseases/prevention & control , Terminal Repeat Sequences , Female , Vaccination/veterinary , Bursa of Fabricius/virology , Reticuloendotheliosis virus/genetics , Herpesvirus 2, Gallid/genetics , Virus Replication , DNA, Viral/genetics
3.
J Wildl Dis ; 60(1): 139-150, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37972643

ABSTRACT

Lymphoproliferative disease virus (LPDV) and reticuloendotheliosis virus (REV) are oncogenic retroviruses that can cause disease in wild and domestic fowl. Lymphoproliferative disease virus infections are common and widespread in Wild Turkeys (Meleagris gallopavo) in the US and east-central Canada, while REV has been detected worldwide in numerous avian host species. We tested tissues (spleen, liver, and/or bone marrow, plus neoplastic tissue, if present) from 172 Wild Turkeys that underwent necropsy from December 2018 through October 2021 for both viruses using PCR. We evaluated demographic, geographic, temporal, and seasonal data by chi-square test of independence and logistic regression for turkeys infected with LPDV and/or REV. At least one of these retroviruses was detected in 80.8% (139/172) of Wild Turkeys from 15 US states, with significantly more turkeys being positive for LPDV (72.1%, 124/172) versus REV (43.6%, 75/172; P<0.001). Both viruses (coinfections) were detected in 34.9% (60/172) of turkeys. Among LPDV-infected turkeys (including coinfections), bone marrow had the highest detection rate (38/58, 65.5%), significantly higher than spleen (30/58, 51.7%) and liver (20/58, 34.5%; P<0.001). In REV-infected turkeys, bone marrow had the highest detection rate (24/58, 41.4%). All three tissues (spleen, liver, bone marrow) concurrently tested positive in most (15/25, 60%) REV-infected turkeys. These results suggest LPDV tissue tropism for bone marrow, whereas REV may have broader tissue tropism. Histopathology consistent with lymphoid proliferation and/or neoplasia characteristic of lymphoproliferative disease was evident in 29/172 (16.9%) turkeys assessed, including two REV-only-infected turkeys. Season was significantly associated with LPDV prevalence (highest in winter); year and season were both significantly associated with REV prevalence (highest in 2020 and winter). These data contribute to optimizing diagnostic strategies that may aid in pathogen monitoring and improve detections to increase our understanding of the potential impacts of these viruses on Wild Turkey populations.


Subject(s)
Alpharetrovirus , Bird Diseases , Coinfection , Reticuloendotheliosis virus , Animals , Coinfection/veterinary , Bird Diseases/epidemiology , Retroviridae , Turkeys
4.
J Virol ; 97(11): e0093723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37909729

ABSTRACT

IMPORTANCE: The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , MicroRNAs , Poultry Diseases , Reticuloendotheliosis virus , Animals , Reticuloendotheliosis virus/genetics , Avian Leukosis Virus/genetics , Chickens , MicroRNAs/genetics , Virus Replication
5.
Res Vet Sci ; 156: 36-44, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36774696

ABSTRACT

Birds infected by Reticuloendotheliosis virus (REV) are vulnerable to other microorganisms. This immunosuppression is related to the immune organs (thymus, bursa of Fabricius, and spleen) damaged by REV. The regulation of IFN-ß greatly depends on pattern recognition receptor TLR-3 and nuclear factors IRF-7, NF-κB. To address if and how the TLR-3/IFN-ß pathway is disturbed by REV, 60 one-day-old specific-pathogen-free chickens were intraperitoneally injected with RE virus dilution (n = 30) or stroke-physiological saline solution (n = 30). At 1, 3, 7, 21, and 28 days post-infection, after collecting thymuses, bursas, and spleens, we monitor the kinetics of TLR-3, IFN-ß, NF-κB p65, and IRF-7 at transcriptional and translational levels using qPCR, Western blotting, and ELISA separately. As a result, compared with control chickens, the mRNA levels of TLR-3, IRF-7, and NF-κB p65 showed increasingly differences in the early period of REV infection. Synchronal changes occurred at translation levels. In the latter infection period, a decrease of NF-κB p65 was contemporaneous with a fall in IFN-ß at both transcriptional and translational levels in the thymuses and bursas. These data suggest that the changes of IFN-ß content are closely related to NF-κB p65 when REV invades chicken central immune organs. That reveals new insights into the immunosuppression mechanism of REV in avian.


Subject(s)
Poultry Diseases , Reticuloendotheliosis virus , Animals , Chickens/metabolism , NF-kappa B/metabolism , Reticuloendotheliosis virus/metabolism , Thymus Gland/metabolism , Toll-Like Receptor 3 , Interferon-beta/metabolism
6.
Vet Ital ; 59(4)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38685825

ABSTRACT

Fowl Pox Viruses (FPV) infect chickens and turkeys giving rise to pock lesions on various body parts like combs, wattles, legs, shanks, eyes, mouth etc. The birds, affected with FPV, also show anemia and ruffled appearance which are clinical symptoms of Reticuloendotheliosis. Interestingly, the field strains of FPV are integrated with the provirus of Reticuloendotheliosis Virus (REV). Due to this integration, the infected birds, upon replication of FPV, give rise to free REV virions, causing severe immunosuppression and anemia. Pox scabs, collected from the infected birds, not only show positive PCR results upon performing FPV-specific 4b core protein gene PCR but also show positive results for the PCR of REV-specific env gene and FPV-REV 5'LTR junction. Homogenized suspension of the pock lesions, upon inoculating to the Chorio-allantoic Membrane (CAM) of 10 days old specific pathogen-free embryonated chicken eggs, produces characteristic pock lesions in serial passages. But the lesions also harbor REV mRNA or free virion, which can be identified by performing REV-specific env gene PCR using REV RNA from FPV-infected CAMs. The study suggests successful replication and availability of REV mRNA and free virion alongside the FPV virus, although the CAM is an ill-suited medium for any retroviral (like REV) growth and replication.


Subject(s)
Chickens , Fowlpox virus , Poultry Diseases , Reticuloendotheliosis virus , Animals , Reticuloendotheliosis virus/isolation & purification , Chickens/virology , Poultry Diseases/virology , Fowlpox virus/genetics , Fowlpox virus/isolation & purification , Specific Pathogen-Free Organisms , Chick Embryo , Fowlpox/virology , Chorioallantoic Membrane/virology , Retroviridae Infections/veterinary , Retroviridae Infections/virology
7.
Viruses ; 14(12)2022 11 22.
Article in English | MEDLINE | ID: mdl-36560601

ABSTRACT

The avian immunosuppressive and neoplastic diseases caused by Marek's disease virus (MDV), avian leucosis virus (ALV), and reticuloendotheliosis virus (REV) are seriously harmful to the global poultry industry. In recent years, particularly in 2020-2022, outbreaks of such diseases in chicken flocks frequently occurred in China. Herein, we collected live diseased birds from 30 poultry farms, out of 42 farms with tumour-bearing chicken flocks distributed in central China, to investigate the current epidemiology and co-infections of these viruses. The results showed that in individual diseased birds, the positive infection rates of MDV, ALV, and REV were 69.5% (203/292), 14.4% (42/292), and 4.7% (13/277), respectively, while for the flocks, the positive infection rates were 96.7% (29/30), 36.7% (11/30), and 20% (6/30), respectively. For chicken flocks, monoinfection of MDV, ALV, or REV was 53.3% (16/30), 3.3% (1/30), and 0% (0/30), respectively, but a total of 43.3% (13/30) co-infections was observed, which includes 23.3% (7/30) of MDV+ALV, 10.0% (3/30) of MDV+REV, and 10.0% (3/30) of MDV+ALV+REV co-infections. Interestingly, no ALV+REV co-infection or REV monoinfection was observed in the selected poultry farms. Our data indicate that the prevalence of virulent MDV strains, partially accompanied with ALV and/or REV co-infections, is the main reason for current outbreaks of avian neoplastic diseases in central China, providing an important reference for the future control of disease.


Subject(s)
Avian Leukosis Virus , Avian Leukosis , Coinfection , Herpesvirus 2, Gallid , Marek Disease , Neoplasms , Poultry Diseases , Reticuloendotheliosis virus , Animals , Chickens , Coinfection/epidemiology , Coinfection/veterinary , Coinfection/complications , Avian Leukosis/epidemiology , Neoplasms/epidemiology , Neoplasms/veterinary , China/epidemiology , Poultry Diseases/epidemiology , Avian Leukosis Virus/genetics , Marek Disease/epidemiology
8.
J Wildl Dis ; 58(4): 909-913, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36305745

ABSTRACT

Reticuloendotheliosis virus (REV) and lymphoproliferative disease virus (LPDV) are avian retroviruses that can cause neoplastic disease and present with similar pathologies. Lymphoproliferative disease virus has been reported in the Eastern US and states bordering Texas, USA, but has not been previously detected within the state. In a prior study, we detected REV in native Rio Grande Wild Turkeys (Meleagris gallopavo intermedia) and an Eastern Wild Turkey (Meleagris gallopavo silvestris) originating from West Virginia. Given LPDV detection in states bordering Texas and our finding of an REV-positive Eastern Wild Turkey imported from a LPDV endemic region, we sought to determine LPDV prevalence in Texas and continue surveillance for REV. During 2018-20, dried blood spots from 373 individual Rio Grande Wild Turkeys from 20 different counties were tested for the presence of proviral REV or LPDV DNA. In affected counties, approximately 4% of individuals were infected with REV (7/197) or LPDV (10/273) and one bird was coinfected with both viruses. Phylogenetic analysis indicated a close relationship of the LPDV isolates to variants from other Southern and Central states. This study provides molecular evidence of LPDV in Texas, and continued surveillance is necessary to determine the potential effects of the virus on reproductive success, coinfections, and overall health of Wild Turkey populations.


Subject(s)
Reticuloendotheliosis virus , Animals , Phylogeny , Texas/epidemiology , West Virginia
9.
J Wildl Dis ; 58(4): 756-768, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35917401

ABSTRACT

Only one virus, Avipox, has been documented previously in wild birds in Hawaii. Using immunohistochemistry and PCR, we found that two native threatened Hawaiian Geese (Branta sandvicensis), one with multicentric histiocytoma and the other with toxoplasmosis, and one Laysan Albatross (Phoebastria immutabilis) with avian pox were infected with reticuloendotheliosis virus (REV). The virus was isolated from one of the geese by cell culture. Surveys of other Hawaiian geese with various pathologies, avian pox cases, and pox viral isolates using PCR failed to reveal REV, suggesting that the virus is uncommon, at least in samples examined. The full genome of the Gag, Pol, and Env genes were sequenced for all three infected birds and revealed geographic divergence of the Pol gene, suggesting it to be under strong selective pressure. Our finding of REV in Hawaii makes this only the second virus documented in native Hawaiian birds associated with pathology. Moreover, the presence of REV in a pelagic seabird is unusual. Future surveys should seek the reservoir of the virus in efforts to trace its origins.


Subject(s)
Reticuloendotheliosis virus , Animals , Hawaii/epidemiology
10.
Virulence ; 13(1): 1184-1198, 2022 12.
Article in English | MEDLINE | ID: mdl-35795905

ABSTRACT

Co-infection of Marek's disease virus (MDV) and reticuloendotheliosis virus (REV) synergistically drives disease progression, yet little is known about the mechanism of the synergism. Here, we found that co-infection of REV and MDV increased their replication via the RIOK3-Akt pathway. Initially, we noticed that the viral titres of MDV and REV significantly increased in REV and MDV co-infected cells compared with single-infected cells. Furthermore, tandem mass tag peptide labelling coupled with LC/MS analysis showed that Akt was upregulated in REV and MDV co-infected cells. Overexpression of Akt promoted synergistic replication of MDV and REV. Conversely, inhibition of Akt suppressed synergistic replication of MDV and REV. However, PI3K inhibition did not affect synergistic replication of MDV and REV, suggesting that the PI3K/Akt pathway is not involved in the synergism of MDV and REV. In addition, we revealed that RIOK3 was recruited to regulate Akt in REV and MDV co-infected cells. Moreover, wild-type RIOK3, but not kinase-dead RIOK3, mediated Akt phosphorylation and promoted synergistic replication of MDV and REV. Our results illustrate that MDV and REV activated a novel RIOK3-Akt signalling pathway to facilitate their synergistic replication.


Subject(s)
Coinfection , Herpesvirus 2, Gallid , Marek Disease , Protein Serine-Threonine Kinases/metabolism , Reticuloendotheliosis virus , Animals , Chickens , Genetic Diseases, X-Linked , Herpesvirus 2, Gallid/metabolism , Humans , Marek Disease/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reticuloendotheliosis virus/genetics , Reticuloendotheliosis virus/metabolism , Severe Combined Immunodeficiency , Virus Replication/physiology
11.
J Wildl Dis ; 58(3): 537-549, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35704504

ABSTRACT

Growing populations of Wild Turkeys (Meleagris gallopavo) may result in increased disease transmission among wildlife and spillover to poultry. Lymphoproliferative disease virus (LPDV) is an avian retrovirus that is widespread in Wild Turkeys of eastern North America, and infections may influence mortality and parasite co-infections. We aimed to identify individual and spatial risk factors of LPDV in Maine's Wild Turkeys. We also surveyed for co-infections between LPDV and reticuloendotheliosis virus (REV), Mycoplasma gallisepticum, and Salmonella pullorum to estimate trends in prevalence and examine covariance with LPDV. From 2017 to 2020, we sampled tissues from hunter-harvested (n=72) and live-captured (n=627) Wild Turkeys, in spring and winter, respectively, for molecular detection of LPDV and REV. In a subset of captured individuals (n=235), we estimated seroprevalence of the bacteria M. gallisepticum and S. pullorum using a plate agglutination test. Infection rates for LPDV and REV were 59% and 16% respectively, with a co-infection rate of 10%. Seroprevalence for M. gallisepticum and S. pullorum were 74% and 3.4%, with LPDV co-infection rates of 51% and 2.6%, respectively. Infection with LPDV and seroprevalence of M. gallisepticum and S. pullorum decreased, whereas REV infection increased, between 2018 and 2020. Females (64%), adults (72%), and individuals sampled in spring (76%) had higher risks of LPDV infection than males (47%), juveniles (39%), and individuals sampled in winter (57%). Furthermore, LPDV infection increased with percent forested cover (ß=0.014±0.007) and decreased with percent agriculture cover for juveniles (ß=-0.061±0.018) sampled in winter. These data enhance our understanding of individual and spatial predictors of LPDV infection in Wild Turkeys and aid in assessing the associated risk to Wild Turkey populations and poultry operations.


Subject(s)
Alpharetrovirus , Bird Diseases , Coinfection , Reticuloendotheliosis virus , Virus Diseases , Animals , Animals, Wild , Bird Diseases/epidemiology , Coinfection/epidemiology , Coinfection/veterinary , Female , Male , Poultry , Seroepidemiologic Studies , Turkeys , Virus Diseases/veterinary
12.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: mdl-35458529

ABSTRACT

Reticuloendotheliosis virus (REV) is a retroviral pathogen capable of infecting several avian hosts and is associated with immunosuppression, anemia, proventriculitis, neoplasia, and runting-stunting syndrome. Its genome contains the three major genes, gag, pol, and env, and two flanking long terminal repeat (LTR) regions. Complete genome sequences of REV are limited in terms of geographical origin. The aim of this study was to characterize the complete genome of REV detected in Brazilian chickens with multiple viral coinfections and analyze the polymorphisms in the deduced amino acids sequences corresponding to its encoded proteins. We tested the presence and completeness of REV as well as other viral pathogens in samples from Brazilian poultry farms by qPCR. The complete genomes of two REV strains were sequenced by overlapping fragments through the dideoxy method. Phylogenetic analysis, pairwise identity matrix, polymorphism identification and protein modeling were performed along the entire genome. We detected REV in 65% (26/40) of the tested samples. Concomitant viral infections were detected in 82.5% (33/40) of the samples and in 90% (9/10) of the farms. Multiple infections included up to seven viruses. Phylogenetic analysis classified both Brazilian strains into REV subtype 3, and the pairwise comparison indicated that strains from the USA and fowlpox virus (FWPV)-related strains were the most identical. The subdomain p18 in gag, the reverse transcriptase/ribonuclease H in pol, and the surface (SU) in the env protein were the most polymorphic in genomic comparisons. The relevant motifs for each protein were highly conserved, with fewer polymorphisms in the fusion peptide, immunosuppression domain, and disulfide bonds on the surface (SU) and transmembrane (TM) of env. This is the first study to include complete genomes of REV in Brazil and South America detected in farms with multiple viral coinfections. Our findings suggest an involvement of REV as an immunosuppressor and active agent in the emergence and progression of multiple infectious diseases. We also found a possible etiological relationship between Brazilian strains and the USA and FWPV recombinant strains. This information highlights the need for epidemiological vigilance regarding REV in association with another pathogens.


Subject(s)
Coinfection , Fowlpox virus , Poultry Diseases , Reticuloendotheliosis virus , Animals , Brazil/epidemiology , Chickens/genetics , Coinfection/genetics , Coinfection/veterinary , Fowlpox virus/genetics , Genome, Viral , Phylogeny , Reticuloendotheliosis virus/genetics
13.
BMC Vet Res ; 18(1): 131, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379256

ABSTRACT

BACKGROUND: Co-infection with the avian leukosis virus subgroup J (ALV-J) and the reticuloendotheliosis virus (REV) increases mutual viral replication, causing a more serious pathogenic effect by accelerating the progression of neoplasia and extending the tumor spectrum. However, the molecular mechanism underlying the synergistic replication of ALV-J and REV remains unclear. RESULTS: Here, we performed this study to compare the differentially expressed proteins among CEF cells infected with ALV-J, REV or both at the optimal synergistic infection time using TMT-based quantitative proteomics. We identified a total of 719 (292 upregulated and 427 downregulated) and 64 (35 upregulated and 29 downregulated) proteins by comparing co-infecting both viruses with monoinfecting ALV-J and REV, respectively. GO annotation and KEGG pathway analysis showed the differentially expressed proteins participated in virus-vector interaction, biological adhesion and immune response pathways in the synergistic actions of ALV-J and REV at the protein levels. Among the differentially expressed proteins, a large number of integrins were inhibited or increased in the co-infection group. Further, eight integrins, including ITGα1, ITGα3, ITGα5, ITGα6, ITGα8, ITGα9, ITGα11 and ITGß3, were validated in CEF cells by qRT-PCR or western blot. CONCLUSIONS: These findings proved that integrins may be key regulators in the mechanism of synergistic infection of REV and ALV-J, which will provide more insight into the pathogenesis of synergism of REV and ALV-J at protein level.


Subject(s)
Avian Leukosis Virus , Reticuloendotheliosis virus , Animals , Avian Leukosis Virus/physiology , Chickens , Integrins/genetics , Proteomics , Reticuloendotheliosis virus/genetics
14.
Transbound Emerg Dis ; 69(5): 2913-2923, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34974640

ABSTRACT

Cutaneous fowlpox is a disease of chickens and turkeys caused by the fowlpox virus (FWPV), characterized by the development of proliferative lesions and scabs on unfeathered areas. FWPVs regularly carry an integrated, active copy of the reticuloendotheliosis virus (REV), and it has been hypothesized that such FWPVs are more problematic in the field. Extensive outbreaks are usually observed in tropical and sub-tropical climates, where biting insects are more difficult to control. Here, we report an epidemic of 65 cutaneous fowlpox cases in Austria in layer chickens (91% of the cases) and broiler breeders and turkeys, all of them unvaccinated against the disease, from October 2018 to February 2020. The field data revealed appearance in flocks of different sizes ranging from less than 5000 birds up to more than 20,000 animals, with the majority raised indoors in a barn system. The clinical presentation was characterized by typical epithelial lesions on the head of the affected birds, with an average decrease of 6% in egg production and an average weekly mortality of 1.2% being observed in the flocks. A real-time multiplex polymerase chain reaction (PCR) confirmed the presence of FWPV-REV DNA, not only in the lesions but also in the environmental dust from the poultry houses. The integration of the REV provirus into the FWPV genome was confirmed by PCR, and revealed different FWPV genome populations carrying either the REV long terminal repeats (LTRs) or the full-length REV genome, reiterating the instability of the inserted REV. Two selected samples were fully sequenced by next generation sequencing (NGS), and the whole genome phylogenetic analysis revealed a regional clustering of the FWPV genomes. The extensive nature of these outbreaks in host populations naïve for the virus is a remarkable feature of the present report, highlighting new challenges associated with FWPV infections that need to be considered.


Subject(s)
Fowlpox virus , Fowlpox , Poultry Diseases , Reticuloendotheliosis virus , Animals , Austria/epidemiology , Chickens , Dust , Fowlpox/epidemiology , Fowlpox virus/genetics , Phylogeny , Poultry Diseases/epidemiology , Reticuloendotheliosis virus/genetics , Turkeys
15.
J Virol Methods ; 302: 114476, 2022 04.
Article in English | MEDLINE | ID: mdl-35090953

ABSTRACT

In this study, an antigen-capturing enzyme-linked immunosorbent assay (AC-ELISA) was established for the detection of avian reticuloendotheliosis virus (REV) using monoclonal and polyclonal antibodies against gp90. New Zealand white rabbits were immunized with recombinant REV-gp90 protein, and polyclonal antibodies were obtained after purification and used as the capture antibody. Mice monoclonal antibody 1A12D against REV-gp90 protein previously prepared in our laboratory was used as the detection antibody. The specificity of the AC-ELISA was confirmed with REV, avian leukosis virus subgroup J, Marek's disease virus serotype Ⅰ, avian hepatitis E virus and Fowl adenovirus serotype 4. The results showed that the AC-ELISA had specific binding reaction with REV, and did not react with other viruses. The detection limit of this assay was 195 TCID50 units of REV. Furthermore, commercial vaccine artificially contaminated with REV was detected by three methods: AC-ELISA, the TaqMan probe fluorescence real-time quantitative RT-PCR (RT-qPCR) and indirect immunofluorescence assay (IFA). The results showed that the positive coincidence rate of RT-qPCR and AC-ELISA was 90.63 %, and the positive coincidence rate of RT-qPCR and IFA was 96.88%, indicating that the AC-ELISA established in this study was effective and feasible. This method simplified the detection process for REV contamination in poultry attenuated vaccines, and provide necessary technical tools for high-throughput detection of REV.


Subject(s)
Poultry Diseases , Reticuloendotheliosis Viruses, Avian , Reticuloendotheliosis virus , Animals , Antibodies, Viral , Chickens , Enzyme-Linked Immunosorbent Assay/methods , Mice , Rabbits
16.
Front Immunol ; 12: 735280, 2021.
Article in English | MEDLINE | ID: mdl-34659223

ABSTRACT

Reticuloendotheliosis virus (REV) causes immune-suppression disease in poultry, leading to a significant economic burden worldwide. Recent evidence demonstrated that the REV can enter the semen and then induce artificial insemination, but how the virus gets into semen was little known. Accumulating studies indicated that exosomes serve as vehicles for virus transmission, but the role of exosomes in viral shedding through the semen remains unclear. In this study, exosomes purified from the REV-positive semen were shown with reverse transcription-PCR and mass spectrometry to contain viral genomic RNA and viral proteins, which could also establish productive infections both in vivo and in vitro and escape from the REV-specific neutralizing antibodies. More importantly, compared with the infection caused by free virions, the exosome is more efficient for the virus to ensure effective infection and replication, which can also help the REV compromise the efficacy of the host immune response. In summary, this study demonstrated that semen-derived exosomes can medicate the transmission and immune escape of REV, implicating a novel mechanism for REV entering the semen and leading to vertical transmission.


Subject(s)
Exosomes/virology , Immune Evasion , Infectious Disease Transmission, Vertical , Reticuloendotheliosis virus/pathogenicity , Reticuloendotheliosis, Avian/virology , Semen/virology , Virus Shedding , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Cells, Cultured , Chickens , Exosomes/immunology , Exosomes/metabolism , Host-Pathogen Interactions , Immunity, Innate , Male , Reticuloendotheliosis virus/immunology , Reticuloendotheliosis, Avian/immunology , Reticuloendotheliosis, Avian/metabolism , Reticuloendotheliosis, Avian/transmission , Semen/immunology , Semen/metabolism , Viral Load , Virus Replication
17.
Avian Dis ; 65(3): 340-345, 2021 09.
Article in English | MEDLINE | ID: mdl-34427405

ABSTRACT

The present case is an unusual report of cutaneous fowlpox with an atypical appearance and incidence in broilers. Gross skin lesions were noticed in 41-day-old commercial broilers during the veterinary inspection at a processing plant in the north of Iran. The skin lesions were only observed on feathered skin areas of the broilers and remained unnoticed until slaughter. Round, nodular or coalescent, elongated, reddish-brown proliferative lesions were mainly located on the back, thighs, and proximal areas of the neck of broilers. Nonfeathered skin, including the wattle, comb, eyelids, and legs, were not affected. This condition incurred high losses due to a 5.3% condemnation and trimming of carcasses. Cutaneous lesions were sampled for histopathology and molecular virology for further investigations. Histopathology revealed multifocal necrotic dermatitis with epidermal eosinophilic cytoplasmic inclusion bodies in the skin lesions. Molecular investigations confirmed the presence of fowlpox virus (FWPV) in the proliferative lesions, with further investigations identifying two FWPV genome populations, one carrying a portion of the reticuloendotheliosis virus (REV) and the other a nearly complete REV provirus. Furthermore, the 4b core protein gene-based molecular analysis clustered the field virus into clade A of the genus Avipoxvirus.


Reporte de caso- Manifestación atípica de viruela aviar cutánea en pollos de engorde asociada con altas de decomisos en una planta de procesamiento. El presente caso es un informe inusual de viruela aviar cutánea con apariencia e incidencia atípicas en pollos de engorde. Se observaron lesiones severas cutáneas en pollos de engorde comerciales de 41 días durante la inspección veterinaria en una planta de procesamiento en el norte de Irán. Las lesiones cutáneas solo se observaron en las áreas de piel emplumada de los pollos de engorde y pasaron desapercibidas hasta el procesamiento. Las lesiones proliferativas redondas, nodulares o coalescentes, alargadas, de color marrón rojizo se localizaron principalmente en el dorso, los muslos y en las áreas proximales del cuello de los pollos de engorde. La piel sin plumas, incluidos las barbillas, la cresta, los párpados y las piernas, no se vio afectada. Esta condición generó grandes pérdidas debido a un 5.3% de decomisos y recorte de canales. Se tomaron muestras de las lesiones cutáneas para histopatología y virología molecular para investigaciones diagnósticas. La histopatología reveló dermatitis necrótica multifocal con cuerpos de inclusión citoplasmáticos eosinófilos epidérmicos en las lesiones cutáneas. Las investigaciones moleculares confirmaron la presencia del virus de la viruela aviar (FWPV) en las lesiones proliferativas, con investigaciones adicionales que identificaron dos poblaciones del genoma del virus de la viruela aviar, una que portaba una porción del virus de la reticuloendoteliosis (REV) y la otra con un provirus del virus de la reticuloendoteliosis casi completo. Además, el análisis molecular basado en el gene de la proteína del núcleo 4b agrupó el virus de campo en el clado A del género Avipoxvirus.


Subject(s)
Fowlpox virus , Fowlpox , Reticuloendotheliosis virus , Animals , Chickens , Skin
18.
Avian Dis ; 65(3): 414-418, 2021 09.
Article in English | MEDLINE | ID: mdl-34427416

ABSTRACT

Efforts to breed Attwater's prairie chickens (APC; Tympanuchus cupido attwateri) in captivity to supplement wild populations of this endangered bird have been negatively affected by infections with Avipoxvirus and reticuloendotheliosis virus (REV). Because REV can be integrated into the genome of fowlpox virus (FPV) and may be transmitted in that manner, identifying the source of avipox disease in APC is important to mitigate the impact of this virus. Tissue samples from APC were collected from breeding programs in Texas from 2016 to 2020. These samples consisted of 11 skin lesions and three internal organs from a total of 14 different birds that died of unknown causes or were euthanized. Avipoxvirus was detected by PCR and isolation in embryonating chicken eggs in all skin lesion samples but was not detected in internal organs. Using sequence analysis of FPV polymerase and 4b genes, we determined that 10 out of 11 Avipoxvirus detections resided within the fowlpox clade and a single sample resided within the canarypox clade. REV sequences were detected in all FPV positive samples and in all internal organ tissues but were not detected in the sample matching the canarypox clade. Analysis of REV sequences and PCR detection showed the REV infecting APC was consistent with REV-A and had little variability on analysis of the U3 region of the long terminal repeat. The results of this study indicate control of REV in APC breeding colonies may benefit by a vaccination program targeting FPV and REV. However, a commercially available vaccine for REV is not available at this time.


Secuenciación genética de un virus de la viruela aviar de un gallo grande de las praderas Attwater y evaluación de su papel potencial en los brotes del virus de la reticuloendoteliosis. Los esfuerzos para criar gallos de las praderas grandes de Attwater (APC; Tympanuchus cupido attwateri) en cautiverio para complementar las poblaciones silvestres de esta ave en peligro de extinción se han visto afectados negativamente por infecciones con Avipoxvirus y con el virus de la reticuloendoteliosis (REV). Debido a que el virus de la reticuloendoteliosis puede integrarse en el genoma del virus de la viruela del pollo (FPV) y puede transmitirse de esa manera, identificar la fuente del virus pox en gallos de las praderas grandes es importante para mitigar el impacto de este virus. Se recolectaron muestras de tejido de gallos de las praderas grandes de programas de reproducción en Texas entre los años 2016 a 2020. Estas muestras consistieron en 11 lesiones cutáneas y tres órganos internos de un total de 14 aves diferentes que murieron por causas desconocidas o fueron sacrificadas. El Avipoxvirus se detectó mediante PCR y por aislamiento en huevos embrionados de pollo en todas las muestras de lesiones cutáneas, pero no se detectó en los órganos internos. Utilizando el análisis de secuencia de la polimerasa del virus de la viruela del pollo y de los genes 4b, se determinó que diez de las once detecciones de Avipoxvirus residían dentro del clado de la viruela aviar del pollo y una sola muestra residía dentro del clado de la viruela del canario. Se detectaron secuencias del virus de la reticuloendoteliosis en todas las muestras positivas para virus de la viruela de pollo y en todos los tejidos de órganos internos, pero no se detectaron en la muestra que coincidía con el clado de la viruela del canario. El análisis de las secuencias del virus de la reticuloendoteliosis y la detección por PCR mostró que los virus de reticuloendoteliosis que infectan a gallos de las praderas grandes eran compatible con virus de la reticuloendoteliosis A y tenía poca variabilidad en el análisis de la región U3 de la región repetida terminal larga. Los resultados de este estudio indican que el control del virus de la reticuloendoteliosis en colonias reproductoras de gallos de las praderas grandes puede beneficiarse de un programa de vacunación dirigido los virus de la viruela del pollo y de la reticuloendoteliosis. Sin embargo, una vacuna disponible comercialmente contra el virus de la reticuloendoteliosis no está disponible en este momento.


Subject(s)
Galliformes , Reticuloendotheliosis Viruses, Avian , Reticuloendotheliosis virus , Animals , Chickens , Disease Outbreaks/veterinary , Grassland , Reticuloendotheliosis Viruses, Avian/genetics
19.
Avian Pathol ; 50(6): 490-499, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34463588

ABSTRACT

Md5-BAC-REV-LTR is a recombinant Marek's disease virus (MDV), with an insertion of the long terminal repeat (LTR) of reticuloendotheliosis virus (REV) into the genome of the highly virulent MDV strain rMd5. It has been shown that Md5-BAC-REV-LTR does not induce tumours and confers high protection against challenge with MDV in 15 × 7 chickens. The objective of the present study was to evaluate the protection and safety (in terms of oncogenicity and immunosuppression) of Md5-BAC-REV-LTR in commercial meat-type chickens bearing maternal antibodies against MDV. Our results show that sub-cutaneous administration of Md5-BAC-REV-LTR at 1 day of age conferred high protection (protection index PI = 84.2) against an early challenge (1 day) by contact exposure to shedder birds infected with the vv+ MDV 648A strain. In such stringent challenge conditions, Md5-BAC-REV-LTR was more protective than a commercial CVI988 (PI = 12.4) and similar to the experimental vaccine Md5-BACΔmeq (PI = 92.4). Furthermore, Md5-BAC-REV-LTR did not induce either tumours or immunosuppression in this study. Immunosuppression was evaluated by the relative lymphoid organ weights and also by the ability of the vaccine to induce late-MDV-induced immunosuppression associated with reactivation of the virus. This study shows that Md5-BAC-REV-LTR has the potential to be used as a MD vaccine and is highly protective against early challenge with vv+ MDV.RESEARCH HIGHLIGHTSMd5-BAC-REV-LTR is highly protective against early challenge with vv+ MDV in commercial meat-type chickens.Md5-BAC-REV-LTR does not cause early immunosuppression.Md5-BAC-REV-LTR does not cause late immunosuppression.Unlike other serotype 1 vaccines, Md5-BAC-REV-LTR is not detected in feather pulp at 7 days post vaccination.


Subject(s)
Herpesvirus 2, Gallid , Marek Disease Vaccines , Reticuloendotheliosis virus , Animals , Chickens , Immunosuppression Therapy/veterinary , Marek Disease Vaccines/genetics , Meat , Terminal Repeat Sequences/genetics
20.
Poult Sci ; 100(8): 101099, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34174570

ABSTRACT

The reticuloendotheliosis virus (REV) and the Marek's disease virus (MDV) cause reticuloendotheliosis (RE) and Marek's disease (MD) in poultry, respectively. According to epidemiological results obtained in our laboratory from 2010 to 2017, the positive rates of REV and MDV co-infection remained at low levels. In the present study, during the period of October 2018 to July 2020, 4 clinical cases with high morbidity (5%-20%) and mortality (2%-10%), caused by the co-infection of REV and vv+ MDV-like strains, were diagnosed and analyzed by histopathological observation, cell cultures and detection with ELISA and IFA, and the PCR and by sequencing of the isolates' genes. Sequencing and the sequence analysis on the complete genomes of the REV strains and the meq genes of the MDV strains were performed. The results, based on the complete genome, LTR, gag, pol, and env genes' nucleotide sequences of the REV strains, showed that the REV isolates and 68.0 % (17/25) of the reference strains were in a same branch, and all had a high sequence similarity (>99.0%). The similarities between the four isolates and a vv+MDV strain GX18NNM4 were very high, up to 99.3-99.8%. Also, the amino acid residuals at locations 71, 77, 80, 115, 139, 176, and 217 were all the same as A, E, Y, A, A, R, and A, respectively, in the meq gene of the four MDV isolates. In addition, the substitutes at P176R and P217A interrupted the stretches of the proline-rich repeat PPPP, indicating that these strains belonged to the vv+ MDV-like category. Our findings indicated that the more recent and frequent reemergence of REV and the subsequent co-infection with vv+ MDV-like strain has become one of the causes of the clinical outbreaks of tumors and is undoubtedly a threat to the poultry industry in southern China.


Subject(s)
Coinfection , Herpesvirus 2, Gallid , Marek Disease , Poultry Diseases , Reticuloendotheliosis virus , Animals , Chickens , China/epidemiology , Coinfection/epidemiology , Coinfection/veterinary , Herpesvirus 2, Gallid/genetics , Marek Disease/epidemiology , Poultry Diseases/epidemiology , Reticuloendotheliosis virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL