Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.305
Filter
1.
Transl Vis Sci Technol ; 13(9): 28, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39330984

ABSTRACT

Purpose: Manual, individual adjustment of the laser power in retinal laser therapies is time-consuming, is inaccurate with respect to uniform effects, and can only prevent over- or undertreatment to a limited extent. Automatic closed-loop temperature control allows for similar temperatures at each irradiated spot despite varying absorption. This is of crucial importance for subdamaging hyperthermal treatments with no visible effects and the safety of photocoagulation with short irradiation times. The aim of this work is to perform extensive experiments on porcine eye explants to demonstrate the benefits of automatic control in retinal laser treatments. Methods: To ensure a safe and reliable temperature rise, we utilize a model predictive controller. For model predictive control, the current state and the spot-dependent absorption coefficients are estimated by an extended Kalman filter (EKF). Therein, optoacoustic measurements are used to determine the temperature rise at the irradiated areas in real time. We use fluorescence vitality stains to measure the lesion size and validate the proposed control strategy. Results: By comparing the lesion size with temperature values for cell death, we found that the EKF accurately estimates the peak temperature. Furthermore, the proposed closed-loop control scheme works reliably with regard to similar lesion sizes despite varying absorption with a smaller spread in lesion size compared to open-loop control. Conclusions: Our closed-loop control approach enables a safe subdamaging treatment and lowers the risk for over- and undertreatment for mild coagulations in retinal laser therapies. Translational Relevance: We demonstrate that modern control strategies have the potential to improve retinal laser treatments for several diseases.


Subject(s)
Retina , Animals , Swine , Retina/surgery , Retina/radiation effects , Laser Coagulation/methods , Temperature , Photoacoustic Techniques/methods , Laser Therapy/methods
2.
Surv Ophthalmol ; 69(6): 905-915, 2024.
Article in English | MEDLINE | ID: mdl-39053594

ABSTRACT

Visible light serves as a crucial medium for vision formation.;however, prolonged or excessive exposure to light is recognized as a significant etiological factor contributing to retinal degenerative diseases. The retina, with its unique structure and adaptability, relies on the homeostasis of cellular functions to maintain visual health. Under normal conditions, the retina can mount adaptive responses to various insults, including light-induced damage. Unfortunately, exposure to intense and excessive light triggers a cascade of pathological alterations in retinal photoreceptor cells, pigment epithelial cells, ganglion cells, and glial cells. These alterations encompass disruption of intracellular REDOX and Ca²âº homeostasis, pyroptosis, endoplasmic reticulum stress, autophagy, and the release of inflammatory cytokines, culminating in irreversible retinal damage. We first delineate the mechanisms of retinal light damage through 4 main avenues: mitochondria function, endoplasmic reticulum stress, cell autophagy, and inflammation. Subsequently, we discuss protective strategies against retinal light damage, aiming to guide research toward the prevention and treatment of light-induced retinal conditions.


Subject(s)
Autophagy , Light , Humans , Light/adverse effects , Autophagy/physiology , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/radiation effects , Animals , Retina/radiation effects , Retinal Degeneration/etiology , Retinal Degeneration/prevention & control , Retinal Degeneration/metabolism , Radiation Injuries/prevention & control , Mitochondria/radiation effects , Mitochondria/metabolism , Retinal Diseases/etiology , Retinal Diseases/prevention & control
3.
Mol Cells ; 47(8): 100091, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38997088

ABSTRACT

Exposure to blue light can lead to retinal degeneration, causing adverse effects on eye health. Although the loss of retinal cells due to blue light exposure has been observed, the precise molecular mechanisms underlying this process remain poorly understood. In this study, we investigate the role of alpha-crystallin A (CRYAA) in neuro-retinal degeneration and their regulation by blue light. We observed significant apoptotic cell death in both the retina of rats and the cultured neuro-retinal cells. The expressions of Cryaa mRNA and protein were significantly downregulated in the retina exposed to blue light. We identified that miR-325-3p reduces Cryaa mRNA and protein by binding to its 3'-untranslated region. Upregulation of miR-325-3p destabilized Cryaa mRNA and suppresses CRYAA, whereas downregulation of miR-325-3p increased both expressions. Blue light-induced neuro-retinal cell death was alleviated by CRYAA overexpression. These results highlight the critical role of Cryaa mRNA and miR-325-3p molecular axis in blue light-induced retinal degeneration. Consequently, targeting CRYAA and miR-325-3p presents a potential strategy for protecting against blue light-induced retinal degeneration.


Subject(s)
Blue Light , MicroRNAs , Retina , Animals , Male , Rats , 3' Untranslated Regions , alpha-Crystallin A Chain/metabolism , alpha-Crystallin A Chain/genetics , Apoptosis/radiation effects , Blue Light/adverse effects , Down-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Retina/metabolism , Retina/radiation effects , Retinal Degeneration/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Degeneration/etiology
4.
J Food Sci ; 89(8): 5113-5129, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992868

ABSTRACT

Lycium ruthenicum Murray (LR) is a medicine and edible plant in Northwest China, and L. ruthenicum Murray anthocyanins (LRA) are green antioxidants with various pharmacological activities, such as antioxidant and anti-inflammatory activities. However, the protective effect and mechanism of LRA against retinal damage induced by blue light exposure are poorly understood. This study explored the protective effects and potential mechanisms of LRA on retinal damage induced by blue light exposure in vitro and in vivo. The results showed that LRA could ameliorate oxidative stress injury by activating the antioxidant stress nuclear factor-related factor 2 pathway, promoting the expression of phase II detoxification enzymes (HO-1, NQO1) and endogenous antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), and reducing reactive oxygen species and malondialdehyde levels. Additionally, LRA could inhibit inflammatory response by decreasing the expression of blue light exposure-induced nuclear factor-κB (NF-κB) pathway-related proteins (NF-κB and p-IκBα), as well as interleukin (IL)-6, tumor necrosis factor-α, IL-1ß pro-inflammatory factors and pro-inflammatory chemokine VEGF, and increasing the expression of anti-inflammatory factor IL-10. Furthermore, LRA could ameliorate oxidative stress-induced apoptosis by upregulating Bcl-2 and downregulating Bax and Caspase-3 protein expression. All these results indicate that LRA can be used as an antioxidant dietary supplement for the treatment or prevention of retinal diseases.


Subject(s)
Anthocyanins , Antioxidants , Apoptosis , Light , Lycium , Oxidative Stress , Retina , Lycium/chemistry , Animals , Anthocyanins/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Retina/radiation effects , Retina/drug effects , Retina/metabolism , Light/adverse effects , Antioxidants/pharmacology , Mice , Apoptosis/drug effects , Apoptosis/radiation effects , Male , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Protective Agents/pharmacology , Malondialdehyde/metabolism , Anti-Inflammatory Agents/pharmacology , Superoxide Dismutase/metabolism , Retinal Diseases/prevention & control , Retinal Diseases/etiology , Blue Light
5.
J Neuroinflammation ; 21(1): 162, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915029

ABSTRACT

Radiation retinopathy (RR) is a major side effect of ocular tumor treatment by plaque brachytherapy or proton beam therapy. RR manifests as delayed and progressive microvasculopathy, ischemia and macular edema, ultimately leading to vision loss, neovascular glaucoma, and, in extreme cases, secondary enucleation. Intravitreal anti-VEGF agents, steroids and laser photocoagulation have limited effects on RR. The role of retinal inflammation and its contribution to the microvascular damage occurring in RR remain incompletely understood. To explore cellular and vascular events after irradiation, we analyzed their time course at 1 week, 1 month and 6 months after rat eyes received 45 Gy X-beam photons. Müller glial cells, astrocytes and microglia were rapidly activated, and these markers of retinal inflammation persisted for 6 months after irradiation. This was accompanied by early cell death in the outer retina, which persisted at later time points, leading to retinal thinning. A delayed loss of small retinal capillaries and retinal hypoxia were observed after 6 months, indicating inner blood‒retinal barrier (BRB) alteration but without cell death in the inner retina. Moreover, activated microglial cells invaded the entire retina and surrounded retinal vessels, suggesting the role of inflammation in vascular alteration and in retinal cell death. Radiation also triggered early and persistent invasion of the retinal pigment epithelium by microglia and macrophages, contributing to outer BRB disruption. This study highlights the role of progressive and long-lasting inflammatory mechanisms in RR development and demonstrates the relevance of this rat model to investigate human pathology.


Subject(s)
Disease Models, Animal , Retina , Animals , Rats , Retina/pathology , Retina/radiation effects , Retinal Diseases/etiology , Retinal Diseases/pathology , Inflammation/pathology , Inflammation/etiology , Radiation Injuries, Experimental/pathology , Radiation Injuries/pathology , Radiation Injuries/etiology , Male , Microglia/radiation effects , Microglia/pathology
6.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928220

ABSTRACT

We hypothesize that the injection of JP4-039, a mitochondria-targeted nitroxide, prior to irradiation of the mouse retina may decrease apoptosis and reduce neutrophil and macrophage migration into the retina. In our study, we aimed to examine the effects of JP4-039 in the mouse retina using fluorescent microscopy, a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and flow cytometry. Forty-five mice and one eye per mouse were used. In Group 1, fluorescent microscopy was used to determine retinal uptake of 10 µL (0.004 mg/µL) of intravitreally injected BODIPY-labeled JP4-039 at 0, 15, and 60 min after injection. In Group 2, the TUNEL assay was performed to investigate the rate of apoptosis after irradiation in addition to JP4-039 injection, compared to controls. In Group 3, flow cytometry was used to determine the extent of inflammatory cell migration into the retina after irradiation in addition to JP4-039 injection, compared to controls. Maximal retinal uptake of JP4-039 was 15 min after intravitreal injection (p < 0.0001). JP4-039-treated eyes had lower levels of retinal apoptosis (35.8 ± 2.5%) than irradiated controls (49.0 ± 2.7%; p = 0.0066) and demonstrated reduced migration of N1 cells (30.7 ± 11.7% vs. 77.7 ± 5.3% controls; p = 0.004) and M1 cells (76.6 ± 4.2 vs. 88.1 ± 3.7% controls, p = 0.04). Pretreatment with intravitreally injected JP4-039 reduced apoptosis and inflammatory cell migration in the irradiated mouse retina, marking the first confirmed effect of this molecule in retinal tissue. Further studies may allow for safety profiling and potential use for patients with radiation retinopathy.


Subject(s)
Apoptosis , Cell Movement , Mitochondria , Retina , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Mice , Retina/drug effects , Retina/metabolism , Retina/radiation effects , Retina/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/radiation effects , Cell Movement/drug effects , Cell Movement/radiation effects , Mice, Inbred C57BL , Male , Nitrogen Oxides/pharmacology , Inflammation/pathology
7.
Exp Eye Res ; 244: 109946, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815794

ABSTRACT

Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm2, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.


Subject(s)
Light , Poly (ADP-Ribose) Polymerase-1 , Retina , Retinal Degeneration , Animals , Poly (ADP-Ribose) Polymerase-1/metabolism , Mice , Light/adverse effects , Retina/radiation effects , Retina/pathology , Retinal Degeneration/etiology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinal Degeneration/prevention & control , Mice, Inbred C57BL , Radiation Injuries, Experimental/pathology , Radiation Injuries, Experimental/metabolism , Disease Models, Animal , Blotting, Western , Male , Low-Level Light Therapy , Blue Light
8.
J Hazard Mater ; 473: 134586, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776811

ABSTRACT

The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.


Subject(s)
Light , Mice, Inbred C57BL , Nanoparticles , Oxidative Stress , Polystyrenes , Retina , Retinal Degeneration , Retinal Pigment Epithelium , Animals , Polystyrenes/toxicity , Polystyrenes/chemistry , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Nanoparticles/toxicity , Oxidative Stress/drug effects , Retina/drug effects , Retina/radiation effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Reactive Oxygen Species/metabolism , Mice , Electroretinography , Male
9.
Adv Sci (Weinh) ; 11(29): e2400230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38816934

ABSTRACT

Exposure of the eyes to blue light can induce the overproduction of reactive oxygen species (ROS) in the retina and retinal pigment epithelium (RPE) cells, potentially leading to pathological damage of age-related macular degeneration (AMD). While the melanin in RPE cells absorbs blue light and prevents ROS accumulation, the loss and dysfunction of RPE melanin due to age-related changes may contribute to photooxidation toxicity. Herein, a novel approach utilizing a polydopamine-replenishing strategy via a single-dose intravitreal (IVT) injection is presented to protect retinal cells against blue light-induced phototoxicity. To investigate the effects of overexposure to blue light on retinal cells, a blue light exposure Nrf2-deficient mouse model is created, which is susceptible to light-induced retinal lesions. After blue light irradiation, retina degeneration and an overproduction of ROS are observed. The polydopamine-replenishing strategy demonstrated effectiveness in maintaining retinal structural integrity and preventing retina degeneration by reducing ROS production in retinal cells and limiting the phototoxicity of blue light exposure. These findings highlight the potential of polydopamine as a simple and effective replenishment for providing photoprotection against high-energy blue light exposure.


Subject(s)
Blue Light , Indoles , Melanins , Polymers , Reactive Oxygen Species , Retinal Pigment Epithelium , Animals , Mice , Blue Light/adverse effects , Disease Models, Animal , Indoles/pharmacology , Macular Degeneration/metabolism , Macular Degeneration/prevention & control , Melanins/metabolism , Nanoparticles , Polymers/pharmacology , Polymers/chemistry , Reactive Oxygen Species/metabolism , Retina/drug effects , Retina/radiation effects , Retina/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/radiation effects
10.
Radiother Oncol ; 197: 110342, 2024 08.
Article in English | MEDLINE | ID: mdl-38782302

ABSTRACT

In a prospective cohort of 240 paraoptic tumors patients treated with protons, there was 10° inter-individual gaze angle variability (up to 30°). In a random 21-patient subset with initial CTs versus and adaptive CTs, 6 (28.57 %) patients had at least twice a 10°-difference in their gaze angle, with > 5 Gy difference on the retina/macula or papilla in 2/21 (9.52 %) and 1/21 (4.76 %) based on cumulative dose from rescans, respectively.


Subject(s)
Radiotherapy Dosage , Retina , Humans , Prospective Studies , Retina/radiation effects , Female , Macula Lutea/radiation effects , Macula Lutea/diagnostic imaging , Male , Head and Neck Neoplasms/radiotherapy , Middle Aged , Proton Therapy , Aged , Adult
11.
Chem Biol Interact ; 394: 110996, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38593908

ABSTRACT

Diabetic retinopathy is not cured efficiently and changes of lifestyle measures may delay early retinal injury in diabetes. The aim of our study was to investigate the effects of reduced daily light exposure on retinal vascular changes in streptozotocin (STZ)-induced model of DM with emphasis on inflammation, Aqp4 expression, visual cycle and cholesterol metabolism-related gene expression in rat retina and RPE. Male Wistar rats were divided into the following groups: 1. control; 2. diabetic group (DM) treated with streptozotocin (100 mg/kg); 3. group exposed to light/dark cycle 6/18 h (6/18); 4. diabetic group exposed to light/dark cycle 6/18 h (DM+6/18). Retinal vascular abnormalities were estimated based on lectin staining, while the expression of genes involved in the visual cycle, cholesterol metabolism, and inflammation was determined by qRT-PCR. Reduced light exposure alleviated vasculopathy, gliosis and the expression of IL-1 and TNF-α in the retina with increased perivascular Aqp4 expression. The expression of genes involved in visual cycle and cholesterol metabolism was significantly up-regulated in RPE in DM+6/18 vs. DM group. In the retina only the expression of APOE was significantly higher in DM+6/18 vs. DM group. Reduced light exposure mitigates vascular changes and gliosis in DM via its anti-inflammatory effect, increased retinal cholesterol turnover and perivascular Aqp4 expression.


Subject(s)
Cholesterol , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Gliosis , Light , Rats, Wistar , Retina , Streptozocin , Animals , Male , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Retina/metabolism , Retina/pathology , Retina/radiation effects , Cholesterol/metabolism , Rats , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Gliosis/pathology , Gliosis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Anti-Inflammatory Agents/pharmacology , Aquaporin 4/metabolism , Aquaporin 4/genetics , Retinal Vessels/metabolism , Retinal Vessels/pathology
12.
IEEE Trans Biomed Eng ; 71(8): 2473-2482, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38478443

ABSTRACT

OBJECTIVE: Photo-mediated ultrasound therapy (PUT) is a novel antivascular therapeutic modality based on cavitation-induced bioeffects. During PUT, synergistic combinations of laser pulses and ultrasound bursts are used to remove the targeted microvessels selectively and precisely without harming nearby tissue. In the current study, an integrated system combining PUT and spectral domain optical coherence tomography (SD-OCT) was developed, where the SD-OCT system was used to guide PUT by detecting cavitation in real time in the retina of the eye. METHOD: We first examined the capability of SD-OCT in detecting cavitation on a vascular-mimicking phantom and compared the results with those from a passive cavitation detector. The performance of the integrated system in treatment of choroidal microvessels was then evaluated in rabbit eyes in vivo. RESULTS: During the in vivo PUT experiments, several biomarkers at the subretinal layer in the rabbit eye were identified on OCT images. The findings indicate that, by evaluating biomarkers of treatment effect, real-time SD-OCT monitoring could help to avoid micro-hemorrhage, which is a potential major side effect. CONCLUSION: Real-time OCT monitoring can thus improve the safety and efficiency of PUT in removing the retinal and choroidal microvasculature.


Subject(s)
Retina , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Animals , Rabbits , Retina/diagnostic imaging , Retina/radiation effects , Phantoms, Imaging , Ultrasonic Therapy/methods , Surgery, Computer-Assisted/methods , Equipment Design
13.
Ophthalmic Surg Lasers Imaging Retina ; 55(5): 255-262, 2024 May.
Article in English | MEDLINE | ID: mdl-38408221

ABSTRACT

BACKGROUND AND OBJECTIVE: Our objective was to monitor variables via spectral-domain optical coherence tomography (SD-OCT) and identify the most relevant biomarkers related to best-corrected visual acuity (BCVA) in radiation retinopathy (RR). PATIENTS AND METHODS: A post-hoc analysis of the two-year Ranibizumab for Radiation Retinopathy (RRR) trial analyzed vision and OCT parameters including intraretinal fluid, ellipsoid zone (EZ) disruption, retinal pigment epithelium atrophy, hard exudates, retinal hemorrhage, retinal neovascularization, and subfoveal fluid. BCVA and SD-OCT parameters were evaluated by univariate analysis and a mixed-effects model. RESULTS: Forty eyes from the RRR trial were included. Intraretinal cyst vertical size (week 24: P = 0.032; week 48: P = 0.021), neovascularization (week 48: P = 0.028; week 72: P = 0.025), and EZ disruption (week 72: P = 0.029; week 104: P = 0.019) were the clinical parameters most relevant to BCVA by univariate analysis in at least two time points. The mixed-effects model confirmed the relevance of intraretinal cyst vertical size (P = 0.001) and neovascularization (P = 0.001) but not EZ disruption (P = 0.119) over the course of the study. CONCLUSIONS: This study characterizes the course of visual loss in RR by identifying intraretinal cyst vertical size, neovascularization, and EZ disruption as biomarkers of poor BCVA over a span of two years. Larger multicenter studies are needed to confirm these findings. [Ophthalmic Surg Lasers Imaging Retina 2024;55:255-262.].


Subject(s)
Angiogenesis Inhibitors , Biomarkers , Intravitreal Injections , Radiation Injuries , Ranibizumab , Retinal Diseases , Tomography, Optical Coherence , Visual Acuity , Aged , Female , Humans , Male , Middle Aged , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Radiation Injuries/diagnosis , Radiation Injuries/drug therapy , Radiation Injuries/etiology , Ranibizumab/administration & dosage , Retina/radiation effects , Retina/pathology , Retina/diagnostic imaging , Retinal Diseases/diagnosis , Retinal Diseases/physiopathology , Retinal Diseases/drug therapy , Retinal Diseases/etiology , Tomography, Optical Coherence/methods , Vascular Endothelial Growth Factor A/antagonists & inhibitors
15.
Vis Neurosci ; 39: E005, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36164752

ABSTRACT

To study the macroglia and microglia and the immune role in long-time light exposure in rat eyes, we performed glial cell characterization along the time-course of retinal degeneration induced by chronic exposure to low-intensity light. Animals were exposed to light for periods of 2, 4, 6, or 8 days, and the retinal glial response was evaluated by immunohistochemistry, western blot and real-time reverse transcription polymerase chain reaction. Retinal cells presented an increased expression of the macroglia marker GFAP, as well as increased mRNA levels of microglia markers Iba1 and CD68 after 6 days. Also, at this time-point, we found a higher number of Iba1-positive cells in the outer nuclear layer area; moreover, these cells showed the characteristic activated-microglia morphology. The expression levels of immune mediators TNF, IL-6, and chemokines CX3CR1 and CCL2 were also significantly increased after 6 days. All the events of glial activation occurred after 5-6 days of constant light exposure, when the number of photoreceptor cells has already decreased significantly. Herein, we demonstrated that glial and immune activation are secondary to neurodegeneration; in this scenario, our results suggest that photoreceptor death is an early event that occurs independently of glial-derived immune responses.


Subject(s)
Interleukin-6 , Neuroglia , Radiation Injuries , Retina , Retinal Degeneration , Animals , Chemokines/genetics , Chemokines/metabolism , Interleukin-6/metabolism , Light , Neuroglia/immunology , RNA, Messenger/genetics , Radiation Injuries/etiology , Radiation Injuries/immunology , Rats , Retina/immunology , Retina/radiation effects , Retinal Degeneration/etiology , Retinal Degeneration/immunology
16.
BMC Complement Med Ther ; 22(1): 224, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36028853

ABSTRACT

BACKGROUND: Oxidative stress can induce age-related diseases. Age-related retinal diseases, such as age-related macular degeneration (AMD), are difficult to cure owing to their complicated mechanisms. Although anti-neovascular therapeutics are used to treat wet AMD, vision cannot always be completely restored, and disease progression cannot always be inhibited. Therefore, determining a method to prevent or slow retinal damage is important. This study aimed to investigate the protective effect of a chrysanthemum water extract rich in flavone on the oxidatively stressed retina of mice. METHODS: Light damage was induced to establish oxidative stress mouse models. For in vitro experiments, ARPE-19 cells were cultured and divided into four groups: control, light-damaged, and low- and high-dose chrysanthemum extract. No treatment was administered in the control group. The light-damaged and low- and high-dose chrysanthemum extract groups were exposed to a similar white light level. The chrysanthemum extract was added at a low dose of 0.4 mg/mL or a high dose of 1.0 mg/mL before cell exposure to 2500-lx white light. Reactive oxygen species (ROS) level and cellular viability were measured using MTT and immunofluorescence staining. For in vivo experiments, C57BL/6 J mice were divided into the same four groups. Low- (0.23 g/kg/day) and high-dose (0.38 g/kg/day) chrysanthemum extracts were continuously intragastrically administered for 8 weeks before mouse exposure to 10,000-lx white light. Retinal function was evaluated using electroretinography. In vivo optical coherence tomography and in vitro haematoxylin and eosin staining were performed to observe the pathological retinal changes in each group after light damage. Fluorescein fundus angiography of the arteriovenous vessel was performed, and the findings were analysed using the AngioTool software. TUNEL immunofluorescence staining was used to assess isolated retinal apoptosis. RESULTS: In vitro, increased ROS production and decreased ARPE-19 cell viability were found in the light-damaged group. Improved ARPE-19 cell viability and reduced ROS levels were observed in the chrysanthemum extract treatment groups. In vivo, dysfunctional retinas and abnormal retinal structures were found in the light-damaged group, as well as increased apoptosis in the retinal ganglion cells (RGCs) and inner and outer nuclear layers. The apoptosis rate in the same layers was lower in the chrysanthemum extract treatment groups than in the light-damaged group. The production of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), increased in the treatment groups. NF-κB in the nucleus and TNF-α were more highly expressed in the light-damaged group than in the low- and high-dose chrysanthemum extract groups. CONCLUSIONS: Light damage-induced retinal oxidative stress can lead to ROS accumulation in the retinal tissues. Herein, RGC and photoreceptor layer apoptosis was triggered, and NF-κB in the nucleus and TNF-α were highly expressed in the light-damaged group. Preventive chrysanthemum extract administration decreased ROS production by increasing SOD, CAT, and GSH-Px activities and reversing the negative changes, demonstrating a potential protective effect on the retina.


Subject(s)
Chrysanthemum , Light , Plant Extracts , Retina , Animals , Antioxidants , Chrysanthemum/chemistry , Light/adverse effects , Mice , Mice, Inbred C57BL , NF-kappa B , Plant Extracts/pharmacology , Reactive Oxygen Species , Retina/drug effects , Retina/radiation effects , Superoxide Dismutase , Tumor Necrosis Factor-alpha
17.
Nature ; 606(7913): 351-357, 2022 06.
Article in English | MEDLINE | ID: mdl-35545677

ABSTRACT

Death is defined as the irreversible cessation of circulatory, respiratory or brain activity. Many peripheral human organs can be transplanted from deceased donors using protocols to optimize viability. However, tissues from the central nervous system rapidly lose viability after circulation ceases1,2, impeding their potential for transplantation. The time course and mechanisms causing neuronal death and the potential for revival remain poorly defined. Here, using the retina as a model of the central nervous system, we systemically examine the kinetics of death and neuronal revival. We demonstrate the swift decline of neuronal signalling and identify conditions for reviving synchronous in vivo-like trans-synaptic transmission in postmortem mouse and human retina. We measure light-evoked responses in human macular photoreceptors in eyes removed up to 5 h after death and identify modifiable factors that drive reversible and irreversible loss of light signalling after death. Finally, we quantify the rate-limiting deactivation reaction of phototransduction, a model G protein signalling cascade, in peripheral and macular human and macaque retina. Our approach will have broad applications and impact by enabling transformative studies in the human central nervous system, raising questions about the irreversibility of neuronal cell death, and providing new avenues for visual rehabilitation.


Subject(s)
Light Signal Transduction , Neurological Rehabilitation , Postmortem Changes , Retina , Animals , Autopsy , Cell Death/radiation effects , Central Nervous System/radiation effects , Humans , Light Signal Transduction/radiation effects , Macaca , Mice , Retina/metabolism , Retina/radiation effects , Time Factors
19.
Cell Mol Life Sci ; 79(3): 152, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35212809

ABSTRACT

ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5'-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local "purinergic junctions" with CD39low/CD73- neuronal cell bodies and CD39high/CD73- retinal blood vessels. The relevance of the CD73-adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine/metabolism , Light , Retina/radiation effects , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/genetics , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Apyrase/genetics , Apyrase/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retina/physiology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism
20.
Nat Prod Res ; 36(12): 3022-3030, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34176391

ABSTRACT

A new phenylethanoid, hebitol IV (1), along with fifteen known glycosides (2-16), were isolated from water extract of the flower buds of Buddleja officinalis. Their structures were elucidated on the basis of 1 D-NMR, 2 D-NMR and MS data. Molecular docking showed the potential activities of the natural products against VEGFR-2. Bioassay results revealed that the compounds 10 and 14 exhibited strong inhibitory activity against VEGFR-2 with IC50 values of 0.51 and 0.32 µM, respectively. Moreover, the potential retinal protective effects of 10 and 14 were then investigated in the mouse model featuring bright light-induced retinal degeneration. The results demonstrated remarkable photoreceptor protective activities of 10 and 14 in vivo.


Subject(s)
Buddleja , Glycosides , Photoreceptor Cells , Retina , Animals , Buddleja/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Mice , Molecular Docking Simulation , Photoreceptor Cells/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Retina/cytology , Retina/drug effects , Retina/radiation effects , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL