Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cell Death Dis ; 15(8): 568, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107297

ABSTRACT

The primary impediment to the success of immunotherapy lies in the immune evasion orchestrated by tumors, contributing to the suboptimal overall response rates observed. Despite this recognition, the intricacies of the underlying mechanisms remain incompletely understood. Through preliminary detection of clinical patient tissues, we have found that ALDH1A1 was a key gene for the prognosis of cancer patients and tumor glycolysis. In vitro experiments and tumor formation in nude mice suggested that targeting ALDH1A1 could inhibit tumor growth. Through further analysis of xenograft tumor models in immune-normal mice and flow cytometry, we found that deficiency in ALDH1A1 could promote immune system suppression of tumors in vivo. Specifically, RNA-seq analysis, combined with qPCR and western blot, identified the transcription factor ZBTB7B as downstream of ALDH1A1. The binding sites of the transcription factor ZBTB7B on the LDHA promoter region, which is responsible for regulating the rate-limiting enzyme gene LDHA in glycolysis, were determined using luciferase reporter gene detection and Chip-qPCR, respectively. In addition, the increased SUMOylation of ZBTB7B stabilized its transcriptional activity. Further in vivo and in vitro experiments confirmed that the combination of targeting ALDH1A1 and ZBTB7B with immune checkpoint inhibitors could synergistically inhibit tumors in vivo. Finally, after conducting additional verification of patient tissue and clinical data, we have confirmed the potential translational value of targeting ALDH1A1 and ZBTB7B for tumor immunotherapy. These results emphasize the potential translational significance of targeting ALDH1A1 and ZBTB7B in the realm of tumor immunotherapy. The convergence of ALDH1A1 inhibition and immune checkpoint blockade, particularly with PD-L1/PD-1 mAb, presents a compelling avenue for curtailing tumor immune escape.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Glycolysis , Mice, Nude , Retinal Dehydrogenase , Tumor Escape , Humans , Animals , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , Mice , Cell Line, Tumor , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Promoter Regions, Genetic/genetics , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/genetics , Female , Xenograft Model Antitumor Assays
2.
Exp Cell Res ; 441(1): 114167, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39004202

ABSTRACT

This research aims to explore the mechanism by which microRNAs may regulate the biological behavior of tumor cells in ALDH1+ fibrosarcoma. We identified differentially expressed miRNAs in ALDH + NMFH-1 cells, screened genes related to sarcoma metastasis in the TCGA database, and finally obtained key genes regulated by miRNAs that are involved in metastasis. The function and mechanism of these key genes were then validated at the cellular level. Using the ULCAN database, a significant correlation was found between hsa-mir-206 and mortality in sarcoma patients. WGCNA analysis identified 352 genes related to tumor metastasis. Through Venn diagrams, we obtained 15 metastasis-related genes regulated by hsa-mir-206. Survival analysis showed that SYNPO2 expression is significantly correlated with survival rate and is significantly underexpressed in multiple tumors. SYNPO2 showed a negative correlation with macrophages and a positive correlation with CD8+ T cells. After inhibiting the expression of hsa-mir-206 with siRNA plasmids, the mRNA expression of SYNPO2 was significantly upregulated. The results of CCK8 assay, scratch assay, and transwell assay showed that the proliferation and migration ability of NFMH-1 cells were promoted after SYNPO2 was inhibited. ALDH1+ tumor stem cells promote the proliferation and invasion of malignant fibrous histiocytoma cells by inhibiting SYNPO2 through hsa-mir-206.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplastic Stem Cells , Retinal Dehydrogenase , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Cell Proliferation/genetics , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Cell Movement/genetics , Cell Line, Tumor , Fibrosarcoma/pathology , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Disease Progression , Mice , Animals
3.
Funct Integr Genomics ; 24(3): 103, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38913281

ABSTRACT

Breast cancer severely affects women health. 70% of breast cancer are estrogen receptor positive. Breast cancer stem cells are a group of tumor with plasticity, causing tumor relapse and metastasis. RUNX3 is a tumor suppressor frequently inactivated in estrogen receptor positive breast cancer. However, the mechanism of how RUNX3 is involved in the regualation of cancer stem cell traits in estrogen receptor positive breast cancer remains elusive. In this study, we utilized cut-tag assay to investigate the binding profile RUNX3 in BT474 and T47D cell, and confirmed EXOSC4 as the bona-fide target of RUNX3; RUNX3 could bind to the promoter are of EXOSC4 to suppress its expression. Furthermore, EXOSC4 could increase the colony formation, cell invasion and mammosphere formation ability of breast cancer cells and upregulate the the expression of SOX2 and ALDH1. Consistent with these findings, EXOSC4 was associated with poorer survival for Luminal B/Her2 breast cancer patiens. At last, we confirmed that EXOSC4 mediated the tumor suppressive role of RUNX3 in breast cancer cells. In conclusion, we demonstrate that RUNX3 directly binds to the promoter region of EXOSC4, leading to the suppression of EXOSC4 expression and exerting a tumor-suppressive effect in estrogen receptor postivive breast cancer cells.


Subject(s)
Breast Neoplasms , Core Binding Factor Alpha 3 Subunit , Promoter Regions, Genetic , Female , Humans , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics
4.
Cell Death Dis ; 15(5): 306, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693105

ABSTRACT

Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .


Subject(s)
Camptothecin/analogs & derivatives , Colonic Neoplasms , Fluorouracil , Neoplastic Stem Cells , Spheroids, Cellular , Thyroid Hormone Receptors alpha , Triiodothyronine , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors alpha/genetics , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/genetics , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Triiodothyronine/pharmacology , Leucovorin/pharmacology , Leucovorin/therapeutic use , Camptothecin/pharmacology , Camptothecin/therapeutic use , Phenotype , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics
5.
Theriogenology ; 223: 98-107, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38697014

ABSTRACT

The ALDH1A1 gene encodes a cytoplasmic member of the aldehyde dehydrogenase 1 family, which plays an important role in regulating animal reproductive performance, including estrus cycle and embryonic development. The aim of this study was to characterize ALDH1A1 activity in ovaries of 3-5 year-old yaks and to determine its effects on cell proliferation, apoptosis, and progesterone secretion in luteal cells (LCs). The coding sequence (CDS) of the ALDH1A1 gene was cloned by reverse transcription-PCR and immunohistochemical analysis was used to confirm localization of the ALDH1A1 protein in the ovary. To assess the activity of ALDH1A1 in regulating progesterone secretion, si-ALDH1A1 was transfected into LCs in vitro and progesterone levels in LC supernatants were measured by ELISA. The interference efficiency was assessed by real-time quantitative PCR (RT-qPCR) and immunofluorescence staining, and cell proliferation and apoptosis were evaluated by EdU and TUNEL staining, respectively. The cloned ALDH1A1 sequence contained 1462 bp, encoding 487 amino acids. Immunohistochemical analysis showed that ALDH1A1 protein expression, which was significantly higher in LCs, was mainly found in antral follicles and the corpus luteum (CL). The expression of ALDH1A1 mRNA in LCs was effectively inhibited by si-ALDH1A1transfection, and progesterone secretion was markedly decreased along with the significant down-regulation of progesterone pathway-related genes, STAR, CYP11A1, CYP19A1, CYP17A1, 3ß-HSD, and HSD17B1. Knockdown of ALDH1A1 mRNA expression decreased cell proliferation and increased apoptosis in LCs. The mRNA expression of the proliferation-related genes, PCNA, CCND1, CCNB1 and CDC25A, was significantly down-regulated, while expression of the apoptosis-promoting CASP3 gene was significantly increased. In summary, we characterized the yak ALDH1A1 gene and revealed that ALDH1A1 knockdown promoted apoptosis, repressed cell proliferation, and decreased progesterone secretion by yak LCs, potentially by regulating the mRNA expression of genes related to proliferation, apoptosis, and progesterone synthesis and secretion.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Luteal Cells , Retinal Dehydrogenase , Animals , Cattle/genetics , Female , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Apoptosis , Cell Proliferation , Gene Expression Regulation/physiology , Luteal Cells/metabolism , Progesterone/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
6.
Oncol Res ; 32(5): 955-963, 2024.
Article in English | MEDLINE | ID: mdl-38686049

ABSTRACT

Background: Bortezomib results in peripheral neuropathy (PN) in approximately 50% of patients, during multiple myeloma (MM) treatment, a complication known as Bortezomib-induced peripheral neuropathy (BIPN). The drug response varies among individuals. Genetic factor may play an important role in BIPN. Methods: A next-generation sequencing (NGS) panel containing 1659 targets from 233 genes was used to identify risk variants for developing BIPN in 204 MM patients who received bortezomib therapy. mRNA expression of MTHFR and ALDH1A1 in 62 peripheral blood samples was detected by real-time quantitative PCR (RT-qPCR). Serum homocysteine (Hcy) levels were detected in 40 samples by chemiluminescent microparticle immunoassay (CMIA). Results: Compared with the non-BIPN group (n = 89), a total of 8 significantly associated single nucleotide polymorphisms (SNPs) were identified in the BIPN group (n = 115): MTHFR (rs1801131, rs1801133, rs17421511), EPHX1 (rs1051740), MME (rs2016848), ALDH1A1 (rs6151031), HTR7 (rs1935349) and CYP2A6 (rs8192720). The mRNA expression level of MTHFR in newly diagnosed patients with peripheral neuritis after treatment (NP group) was lower than that of newly diagnosed patients without peripheral neuritis after treatment (NnP group) (1.70 ± 0.77 vs. 2.81 ± 0.97, p= 0.009). Serum Hcy levels were significantly higher in BIPN group than in non-BIPN group (11.66 ± 1.79 µmol/L vs. 8.52 ± 3.29 µmol/L, p= 0.016) and healthy controls (11.66 ± 1.79 µmol/L vs. 8.55 ± 2.13 µmol/L, p≤ 0.001). Conclusion: CYP2A6, EPHX1, MTHFR, ALDH1A1, HTR7, MME and BIPN are linked in Chinese MM patients. BIPN is more likely to occur in patients with lower MTHFR mRNA expression, which might result in higher serum Hcy levels.


Subject(s)
Bortezomib , Methylenetetrahydrofolate Reductase (NADPH2) , Multiple Myeloma , Peripheral Nervous System Diseases , Polymorphism, Single Nucleotide , Humans , Bortezomib/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/genetics , Male , Female , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Aged , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Asian People/genetics , Aldehyde Dehydrogenase 1 Family/genetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Retinal Dehydrogenase/genetics , Genetic Predisposition to Disease , Adult , China , High-Throughput Nucleotide Sequencing , East Asian People
7.
Cancer Med ; 13(3): e7004, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38400679

ABSTRACT

BACKGROUND: Embryonic pluripotency markers are recognized for their role in ER- BC aggressiveness, but their significance in ER+ BC remains unclear. This study aims to investigate the prevalence of expression of pluripotency markers in ER+ BC and their effect on survival and prognostic indicators. METHODS: We analyzed data of ER+ BC patients from three large cancer datasets to assess the expression of three pluripotency markers (NANOG, SOX-2, and OCT4), and the stem cell marker ALDH1A1. Additionally, we investigated associations between gene expression, through mRNA-Seq analysis, and overall survival (OS). The prevalence of mutational variants within these genes was explored. Using immunohistochemistry (IHC), we examined the expression and associations with clinicopathologic prognostic indicators of the four markers in 81 ER+ BC patients. RESULTS: Through computational analysis, NANOG and ALDH1A1 genes were significantly upregulated in ER+ BC compared to ER- BC patients (p < 0.001), while POU5F1 (OCT4) was downregulated (p < 0.001). NANOG showed an adverse impact on OS whereas ALDH1A1 was associated with a highly significant improved survival in ER+ BC (p = 4.7e-6), except for the PR- and HER2+ subgroups. Copy number alterations (CNAs) ranged from 0.4% to 1.6% in these genes, with the highest rate detected in SOX2. In the IHC study, approximately one-third of tumors showed moderate to strong expression of each of the four markers, with 2-4 markers strongly co-expressed in 56.8% of cases. OCT-4 and ALDH1A1 showed a significant association with a high KI-67 index (p = 0.009 and 0.008, respectively), while SOX2 showed a significant association with perinodal fat invasion (p = 0.017). CONCLUSION: Pluripotency markers and ALDH1A1 are substantially expressed in ER+ BC tumors with different, yet significant, associations with prognostic and survival outcomes. This study suggests these markers as targets for prospective clinical validation studies of their prognostic value and their possible therapeutic roles.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Prospective Studies , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Estrogens , Embryonic Stem Cells/metabolism , Aldehyde Dehydrogenase 1 Family , Retinal Dehydrogenase/genetics
8.
Rev. méd. Chile ; 143(3): 320-328, mar. 2015. tab
Article in Spanish | LILACS | ID: lil-745629

ABSTRACT

Background: Suicide mortality rates are increasing among teenagers. Aim: To study the prevalence and predictive factors of suicide attempts among Chilean adolescents. Material and Methods: A random sample of 195 teenagers aged 16 ± 1 years (53% males) answered an anonymous survey about their demographic features, substance abuse, the Osaka suicidal ideation questionnaire, Smilksten familial Apgar. Beck hopelessness scale, Beck depression scale and Coppersmith self-esteem inventory. Results: Twenty five percent of respondents had attempted suicide at least in one occasion during their lives. These attempts were significantly associated with female gender, absent parents, family dysfunction, drug abuse, smoking, low self-esteem, hopelessness, depression and recent suicidal ideation. A logistic regression analysis accepted female gender, smoking and recent suicidal ideation as significant independent predictors of suicide attempt. Conclusions: Suicide attempted is common among teenagers and its predictors are female sex, smoking and previous suicidal ideation.


Subject(s)
Animals , Female , Humans , Mice , Pregnancy , Acetaldehyde/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Embryo, Mammalian/metabolism , Ethanol/toxicity , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia/pathology , Acetaldehyde/toxicity , Animals, Newborn , DNA Damage , Disease Models, Animal , Embryo, Mammalian/embryology , Genome , Hematopoietic Stem Cells/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL