Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.910
Filter
1.
Elife ; 132024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093940

ABSTRACT

Aminoglycoside antibiotics target ribosomes and are effective against a wide range of bacteria. Here, we demonstrated that knockout strains related to energy metabolism in Escherichia coli showed increased tolerance to aminoglycosides during the mid-exponential growth phase. Contrary to expectations, these mutations did not reduce the proton motive force or aminoglycoside uptake, as there were no significant changes in metabolic indicators or intracellular gentamicin levels between wild-type and mutant strains. Our comprehensive proteomics analysis unveiled a noteworthy upregulation of proteins linked to the tricarboxylic acid (TCA) cycle in the mutant strains during the mid-exponential growth phase, suggesting that these strains compensate for the perturbation in their energy metabolism by increasing TCA cycle activity to maintain their membrane potential and ATP levels. Furthermore, our pathway enrichment analysis shed light on local network clusters displaying downregulation across all mutant strains, which were associated with both large and small ribosomal binding proteins, ribosome biogenesis, translation factor activity, and the biosynthesis of ribonucleoside monophosphates. These findings offer a plausible explanation for the observed tolerance of aminoglycosides in the mutant strains. Altogether, this research provides valuable insights into the mechanisms of aminoglycoside tolerance, paving the way for novel strategies to combat such cells.


Bacteria that are resistant to antibiotic drugs pose a significant challenge to human health around the globe. They have acquired genetic mutations that allow them to survive and grow in the presence of one or more antibiotics, making it harder for clinicians to eliminate such bacteria from human patients with life-threatening infections. Some bacteria may be able to temporarily develop tolerance to an antibiotic by altering how they grow and behave, without acquiring any new genetic mutations. Such drug-tolerant bacteria are more likely to survive long enough to gain mutations that may promote drug resistance. Recent studies suggest that genes involved in processes collectively known as energy metabolism, which convert food sources into the chemical energy cells need to survive and grow, may play a role in both tolerance and resistance. For example, Escherichia coli bacteria develop mutations in energy metabolism genes when exposed to members of a family of antibiotics known as the aminoglycosides. However, it remains unclear what exact role energy metabolism plays in antibiotic tolerance. To address this question, Shiraliyev and Orman studied how a range of E. coli strains with different genetic mutations affecting energy metabolism could survive in the presence of aminoglycosides. The experiments found that most of the mutant strains had a higher tolerance to the drugs than normal E. coli. Unexpectedly, this increased tolerance did not appear to be due to the drugs entering the mutant bacterium cells less than they enter normal cells (a common strategy of drug resistance and tolerance). Further experiments using a technique, known as proteomics, revealed that many genes involved in energy metabolism were upregulated in the mutant bacteria, suggesting these cells were compensating for the genetic abnormalities they have. Furthermore, the mutant bacteria had lower levels of the molecules the antibiotics target than normal bacteria. The findings of Shiraliyev and Orman offer critical insights into how bacteria become tolerant of aminoglycoside antibiotics. In the future, this may guide the development of new strategies to combat bacterial diseases.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Escherichia coli , Ribosomal Proteins , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Energy Metabolism/drug effects , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Drug Tolerance , Proteomics , Citric Acid Cycle/drug effects
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125999

ABSTRACT

Elastin, a key structural protein essential for the elasticity of the skin and elastogenic tissues, degrades with age. Replenishing elastin holds promise for anti-aging cosmetics and the supplementation of elastic activities of the cardiovascular system. We employed RiboScreenTM, a technology for identifying molecules that enhance the production of specific proteins, to target the production of tropoelastin. We make use of RiboScreenTM in two crucial steps: first, to pinpoint a target ribosomal protein (TRP), which acts as a switch to increase the production of the protein of interest (POI), and second, to identify small molecules that activate this ribosomal protein switch. Using RiboScreenTM, we identified ribosomal protein L40, henceforth eL40, as a TRP switch to boost tropoelastin production. Drug discovery identified a small-molecule hit that binds to eL40. In-cell treatment demonstrated activity of the eL40 ligand and delivered increased tropoelastin production levels in a dose-dependent manner. Thus, we demonstrate that RiboScreenTM can successfully identify a small-molecule hit capable of selectively enhancing tropoelastin production. This compound has the potential to be developed for topical or systemic applications to promote skin rejuvenation and to supplement elastic functionality within the cardiovascular system.


Subject(s)
Elastin , Ribosomal Proteins , Ribosomes , Tropoelastin , Tropoelastin/metabolism , Tropoelastin/genetics , Humans , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Elastin/metabolism , Elastin/genetics , Ribosomes/metabolism , Ribosomes/drug effects , Ligands , Small Molecule Libraries/pharmacology
3.
Nat Commun ; 15(1): 6873, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127721

ABSTRACT

Ribosomes are regulated by evolutionarily conserved ubiquitination/deubiquitination events. We uncover the role of the deubiquitinase OTUD6 in regulating global protein translation through deubiquitination of the RPS7/eS7 subunit on the free 40 S ribosome in vivo in Drosophila. Coimmunoprecipitation and enrichment of monoubiquitinated proteins from catalytically inactive OTUD6 flies reveal RPS7 as the ribosomal substrate. The 40 S protein RACK1 and E3 ligases CNOT4 and RNF10 function upstream of OTUD6 to regulate alkylation stress. OTUD6 interacts with RPS7 specifically on the free 40 S, and not on 43 S/48 S initiation complexes or the translating ribosome. Global protein translation levels are bidirectionally regulated by OTUD6 protein abundance. OTUD6 protein abundance is physiologically regulated in aging and in response to translational and alkylation stress. Thus, OTUD6 may promote translation initiation, the rate limiting step in protein translation, by titering the amount of 40 S ribosome that recycles.


Subject(s)
Drosophila Proteins , Protein Biosynthesis , Ribosomal Proteins , Ubiquitination , Animals , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Ribosomes/metabolism , Stress, Physiological , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
4.
Genome Biol Evol ; 16(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39119893

ABSTRACT

Ribosomes are ribonucleoprotein complexes highly conserved across all domains of life. The size differences of ribosomal RNAs (rRNAs) can be mainly attributed to variable regions termed expansion segments (ESs) protruding out from the ribosomal surface. The ESs were found to be involved in a range of processes including ribosome biogenesis and maturation, translation, and co-translational protein modification. Here, we analyze the rRNAs of the yeasts from the Magnusiomyces/Saprochaete clade belonging to the basal lineages of the subphylum Saccharomycotina. We find that these yeasts are missing more than 400 nt from the 25S rRNA and 150 nt from the 18S rRNAs when compared to their canonical counterparts in Saccharomyces cerevisiae. The missing regions mostly map to ESs, thus representing a shift toward a minimal rRNA structure. Despite the structural changes in rRNAs, we did not identify dramatic alterations in the ribosomal protein inventories. We also show that the size-reduced rRNAs are not limited to the species of the Magnusiomyces/Saprochaete clade, indicating that the shortening of ESs happened independently in several other lineages of the subphylum Saccharomycotina.


Subject(s)
RNA, Ribosomal , Ribosomes , RNA, Ribosomal/genetics , Ribosomes/metabolism , Ribosomes/genetics , Phylogeny , Ribosomal Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/classification , Saccharomycetales/metabolism , RNA, Ribosomal, 18S/genetics , Saccharomyces cerevisiae/genetics , Evolution, Molecular
5.
J Med Virol ; 96(8): e29869, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39165093

ABSTRACT

Epstein-Barr virus (EBV) is a highly successful pathogen that infects ~95% of the adult population and is associated with diverse cancers and autoimmune diseases. The most abundant viral factor in latently infected cells is not a protein but a noncoding RNA called EBV-encoded RNA 1 (EBER1). Even though EBER1 is highly abundant and was discovered over forty years ago, the function of EBER1 has remained elusive. EBER1 interacts with the ribosomal protein L22, which normally suppresses the expression of its paralog L22-like 1 (L22L1). Here we show that when L22 binds EBER1, it cannot suppress L22L1, resulting in L22L1 being expressed and incorporated into ribosomes. We further show that L22L1-containing ribosomes preferentially translate mRNAs involved in the oxidative phosphorylation pathway. Moreover, upregulation of L22L1 is indispensable for growth transformation and immortalization of resting B cells upon EBV infection. Taken together, our results suggest that the function of EBER1 is to modulate host gene expression at the translational level, thus bypassing the need for dysregulating host gene transcription.


Subject(s)
Herpesvirus 4, Human , Oxidative Phosphorylation , RNA, Viral , Ribosomal Proteins , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , RNA, Viral/genetics , RNA, Viral/metabolism , B-Lymphocytes/virology , Host-Pathogen Interactions/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Ribosomes/metabolism , Ribosomes/genetics , RNA-Binding Proteins
6.
Nat Commun ; 15(1): 7188, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169056

ABSTRACT

The transcriptional control of sporulation in Bacillus subtilis is reasonably well understood, but its translational control is underexplored. Here, we use RNA-seq, ribosome profiling and fluorescence microscopy to study the translational dynamics of B. subtilis sporulation. We identify two events of translation silencing and describe spatiotemporal changes in subcellular localization of ribosomes during sporulation. We investigate the potential regulatory role of ribosomes during sporulation using a strain lacking zinc-independent paralogs of three zinc-dependent ribosomal proteins (L31, L33 and S14). The mutant strain exhibits delayed sporulation, reduced germination efficiency, dysregulated translation of metabolic and sporulation-related genes, and disruptions in translation silencing, particularly in late sporulation.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Gene Expression Regulation, Bacterial , Protein Biosynthesis , Ribosomal Proteins , Ribosomes , Spores, Bacterial , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/physiology , Spores, Bacterial/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Ribosomes/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Mutation , Microscopy, Fluorescence
7.
Nat Commun ; 15(1): 5938, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025855

ABSTRACT

Numerous molecular machines are required to drive the central dogma of molecular biology. However, the means by which these numerous proteins emerged in the early evolutionary stage of life remains enigmatic. Many of them possess small ß-barrel folds with different topologies, represented by double-psi ß-barrels (DPBBs) conserved in DNA and RNA polymerases, and similar but topologically distinct six-stranded ß-barrel RIFT or five-stranded ß-barrel folds such as OB and SH3 in ribosomal proteins. Here, we discover that the previously reconstructed ancient DPBB sequence could also adopt a ß-barrel fold named Double-Zeta ß-barrel (DZBB), as a metamorphic protein. The DZBB fold is not found in any modern protein, although its structure shares similarities with RIFT and OB. Indeed, DZBB could be transformed into them through simple engineering experiments. Furthermore, the OB designs could be further converted into SH3 by circular-permutation as previously predicted. These results indicate that these ß-barrels diversified quickly from a common ancestor at the beginning of the central dogma evolution.


Subject(s)
DNA-Directed RNA Polymerases , Evolution, Molecular , Models, Molecular , Ribosomal Proteins , Ribosomal Proteins/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/chemistry , Protein Folding , Amino Acid Sequence
8.
PLoS Genet ; 20(7): e1011331, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968290

ABSTRACT

Nucleolar morphology is a well-established indicator of ribosome biogenesis activity that has served as the foundation of many screens investigating ribosome production. Missing from this field of study is a broad-scale investigation of the regulation of ribosomal DNA morphology, despite the essential role of rRNA gene transcription in modulating ribosome output. We hypothesized that the morphology of rDNA arrays reflects ribosome biogenesis activity. We established GapR-GFP, a prokaryotic DNA-binding protein that recognizes transcriptionally-induced overtwisted DNA, as a live visual fluorescent marker for quantitative analysis of rDNA organization in Schizosaccharomyces pombe. We found that the morphology-which we refer to as spatial organization-of the rDNA arrays is dynamic throughout the cell cycle, under glucose starvation, RNA pol I inhibition, and TOR activation. Screening the haploid S. pombe Bioneer deletion collection for spatial organization phenotypes revealed large ribosomal protein (RPL) gene deletions that alter rDNA organization. Further work revealed RPL gene deletion mutants with altered rDNA organization also demonstrate resistance to the TOR inhibitor Torin1. A genetic analysis of signaling pathways essential for this resistance phenotype implicated many factors including a conserved MAPK, Pmk1, previously linked to extracellular stress responses. We propose RPL gene deletion triggers altered rDNA morphology due to compensatory changes in ribosome biogenesis via multiple signaling pathways, and we further suggest compensatory responses may contribute to human diseases such as ribosomopathies. Altogether, GapR-GFP is a powerful tool for live visual reporting on rDNA morphology under myriad conditions.


Subject(s)
DNA, Ribosomal , Ribosomes , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , DNA, Ribosomal/genetics , Ribosomes/metabolism , Ribosomes/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Gene Expression Regulation, Fungal , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Signal Transduction/genetics , Cell Cycle/genetics , Gene Deletion
9.
Cancer Med ; 13(13): e7424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988047

ABSTRACT

BACKGROUND: Gastric cancer (GC) is the fourth leading cause of cancer-related death worldwide. Minichromsome maintenance proteins family member 8 (MCM8) assists DNA repair and DNA replication. MCM8 exerts tumor promotor function in multiple digestive system tumors. MCM8 is also considered as a potential cancer therapeutic target. METHODS: Bioinformatics methods were used to analyze MCM8 expression and clinicopathological significance. MCM8 expression was detected by immunohistochemistry (IHC) staining and qRT-PCR. MCM8 functions in GC cell were explored by Celigo cell counting, colony formation, wound-healing, transwell, and annexin V-APC staining assays. The target of MCM8 was determined by human gene expression profile microarray. Human phospho-kinase array kit evaluated changes in key proteins after ribosomal protein S15A (RPS15A) knockdown. MCM8 functions were reassessed in xenograft mouse model. IHC detected related proteins expression in mouse tumor sections. RESULTS: MCM8 was significantly upregulated and predicted poor prognosis in GC. High expression of MCM8 was positively correlated with lymph node positive (p < 0.001), grade (p < 0.05), AJCC Stage (p < 0.001), pathologic T (p < 0.01), and pathologic N (p < 0.001). MCM8 knockdown inhibited proliferation, migration, and invasion while promoting apoptosis. RPS15A expression decreased significantly after MCM8 knockdown. It was also the only candidate target, which ranked among the top 10 downregulated differentially expressed genes (DEGs) in sh-MCM8 group. RPS15A was identified as the target of MCM8 in GC. MCM8/RPS15A promoted phosphorylation of P38α, LYN, and p70S6K. Moreover, MCM8 knockdown inhibited tumor growth, RPS15A expression, and phosphorylation of P38α, LYN, and p70S6K in vivo. CONCLUSIONS: MCM8 is an oncogene and predicts poor prognosis in GC. MCM8/RPS15A facilitates GC progression.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Ribosomal Proteins , Stomach Neoplasms , Humans , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Animals , Mice , Prognosis , Female , Male , Cell Line, Tumor , Disease Progression , Middle Aged , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Apoptosis , Mice, Nude , Cell Movement , Xenograft Model Antitumor Assays , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
11.
Function (Oxf) ; 5(4)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38985000

ABSTRACT

Pancreatic ß-cells are essential for survival, being the only cell type capable of insulin secretion. While they are believed to be vulnerable to damage by inflammatory cytokines such as interleukin-1 beta (IL-1ß) and interferon-gamma, we have recently identified physiological roles for cytokine signaling in rodent ß-cells that include the stimulation of antiviral and antimicrobial gene expression and the inhibition of viral replication. In this study, we examine cytokine-stimulated changes in gene expression in human islets using single-cell RNA sequencing. Surprisingly, the global responses of human islets to cytokine exposure were remarkably blunted compared to our previous observations in the mouse. The small population of human islet cells that were cytokine responsive exhibited increased expression of IL-1ß-stimulated antiviral guanylate-binding proteins, just like in the mouse. Most human islet cells were not responsive to cytokines, and this lack of responsiveness was associated with high expression of genes encoding ribosomal proteins. We further correlated the expression levels of RPL5 with stress response genes, and when expressed at high levels, RPL5 is predictive of failure to respond to cytokines in all endocrine cells. We postulate that donor causes of death and isolation methodologies may contribute to stress of the islet preparation. Our findings indicate that activation of stress responses in human islets limits cytokine-stimulated gene expression, and we urge caution in the evaluation of studies that have examined cytokine-stimulated gene expression in human islets without evaluation of stress-related gene expression.


Subject(s)
Cytokines , Islets of Langerhans , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Cytokines/metabolism , Cytokines/genetics , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Sequence Analysis, RNA , Stress, Physiological/drug effects , Interleukin-1beta/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Male , Mice , Animals , RNA-Seq , Female , Middle Aged , Single-Cell Gene Expression Analysis
12.
J Cell Biol ; 223(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39007857

ABSTRACT

Eukaryotic ribosomal proteins contain extended regions essential for translation coordination. Dedicated chaperones stabilize the associated ribosomal proteins. We identified Bcp1 as the chaperone of uL14 in Saccharomyces cerevisiae. Rkm1, the lysine methyltransferase of uL14, forms a ternary complex with Bcp1 and uL14 to protect uL14. Rkm1 is transported with uL14 by importins to the nucleus, and Bcp1 disassembles Rkm1 and importin from uL14 simultaneously in a RanGTP-independent manner. Molecular docking, guided by crosslinking mass spectrometry and validated by a low-resolution cryo-EM map, reveals the correlation between Bcp1, Rkm1, and uL14, demonstrating the protection model. In addition, the ternary complex also serves as a surveillance point, whereas incorrect uL14 is retained on Rkm1 and prevented from loading to the pre-60S ribosomal subunits. This study reveals the molecular mechanism of how uL14 is protected and quality checked by serial steps to ensure its safe delivery from the cytoplasm until its incorporation into the 60S ribosomal subunit.


Subject(s)
Ribosomal Proteins , Ribosome Subunits, Large, Eukaryotic , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Protein Binding , Molecular Docking Simulation , Cryoelectron Microscopy , Cell Nucleus/metabolism , Cell Nucleus/genetics
13.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949021

ABSTRACT

Mechanical stress from cardiomyocyte contraction causes misfolded sarcomeric protein replacement. Sarcomeric maintenance utilizes localized pools of mRNAs and translation machinery, yet the importance of localized translation remains unclear. In this issue of the JCI, Haddad et al. identify the Z-line as a critical site for localized translation of sarcomeric proteins, mediated by ribosomal protein SA (RPSA). RPSA localized ribosomes at Z-lines and was trafficked via microtubules. Cardiomyocyte-specific loss of RPSA in mice resulted in mislocalized protein translation and caused structural dilation from myocyte atrophy. These findings demonstrate the necessity of RPSA-dependent spatially localized translation for sarcomere maintenance and cardiac structure and function.


Subject(s)
Myocytes, Cardiac , Protein Biosynthesis , Ribosomal Proteins , Sarcomeres , Sarcomeres/metabolism , Sarcomeres/pathology , Animals , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ribosomes/metabolism , Ribosomes/genetics , Humans , Microtubules/metabolism
14.
Fish Shellfish Immunol ; 152: 109791, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067494

ABSTRACT

Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.


Subject(s)
Amino Acid Sequence , Lancelets , Ribosomal Proteins , Animals , Lancelets/genetics , Lancelets/immunology , Ribosomal Proteins/genetics , Ribosomal Proteins/immunology , Sequence Alignment/veterinary , Staphylococcus aureus/physiology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Phylogeny , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/immunology
15.
PLoS One ; 19(7): e0306695, 2024.
Article in English | MEDLINE | ID: mdl-39012901

ABSTRACT

INTRODUCTION: Bacterial sexually transmitted infections (STIs) pose a major public health problem. The emergence of antibiotic-resistant strains of Neisseria gonorrhoeae represents a serious threat to successful treatment and epidemiological control. The first extensively drug-resistant (XDR) strains (ceftriaxone-resistant and high-level azithromycin-resistant [HLR AZY]) have been reported. AIMS: To identify molecular mechanisms implicated in azithromycin resistance in strains isolated from patients over a three-year period in a university hospital in Switzerland. MATERIAL AND METHODS: From January 2020 to December 2022, 34 isolates (one per patient) were recovered from samples analyzed at the University Hospital of Lausanne. Eight genes involved in azithromycin resistance were sequenced: mtrR repressor (mtrCDE operon repressor) and his promotor mtrR-pr, rplD gene (L4 ribosomal protein), rplV gene (L22 ribosomal protein) and the four alleles of the rrl gene (23S rRNA). RESULTS: With a cutoff value of 1 mg/L, 15 isolates were considered as being resistant to azithromycin, whereas the remaining 19 were susceptible. The C2597T mutation in 3 or 4 of the rrl allele confer a medium-level resistance to azithromycin (MIC = 16 mg/L, N = 2). The following mutations were significantly associated with MIC values ≥1 mg/L: the three mutations V125A, A147G, R157Q in the rplD gene (N = 10) and a substitution A->C in the mtrR promotor (N = 9). Specific mutations in the mtrR repressor and its promotor were observed in both susceptible and resistant isolates. CONCLUSIONS: Resistance to azithromycin was explained by the presence of mutations in many different copies of 23S RNA ribosomal genes and their regulatory genes. Other mutations, previously reported to be associated with azithromycin resistance, were documented in both susceptible and resistant isolates, suggesting they play little role, if any, in azithromycin resistance.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Bacterial Proteins , Drug Resistance, Bacterial , Mutation , Neisseria gonorrhoeae , Repressor Proteins , Azithromycin/pharmacology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/drug effects , Humans , Repressor Proteins/genetics , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Ribosomal Proteins/genetics , Gonorrhea/microbiology , Gonorrhea/drug therapy , Male , Female
16.
Mol Metab ; 87: 101997, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032642

ABSTRACT

OBJECTIVE: Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS: Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS: We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS: Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.


Subject(s)
Fasting , Lysosomes , Non-alcoholic Fatty Liver Disease , Animals , Mice , Humans , Lysosomes/metabolism , Fasting/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Mice, Inbred C57BL , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Male , Hepatocytes/metabolism , Protein Biosynthesis , Autophagy , Liver/metabolism , Mice, Knockout
17.
Mol Med ; 30(1): 106, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039432

ABSTRACT

BACKGROUND: Investigating immune cell infiltration in the brain post-ischemia-reperfusion (I/R) injury is crucial for understanding and managing the resultant inflammatory responses. This study aims to unravel the role of the RPS27A-mediated PSMD12/NF-κB axis in controlling immune cell infiltration in the context of cerebral I/R injury. METHODS: To identify genes associated with cerebral I/R injury, high-throughput sequencing was employed. The potential downstream genes were further analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses. For experimental models, primary microglia and neurons were extracted from the cortical tissues of mouse brains. An in vitro cerebral I/R injury model was established in microglia using the oxygen-glucose deprivation/reoxygenation (OGD/R) technique. In vivo models involved inducing cerebral I/R injury in mice through the middle cerebral artery occlusion (MCAO) method. These models were used to assess neurological function, immune cell infiltration, and inflammatory factor release. RESULTS: The study identified RPS27A as a key player in cerebral I/R injury, with PSMD12 likely acting as its downstream regulator. Silencing RPS27A in OGD/R-induced microglia decreased the release of inflammatory factors and reduced neuron apoptosis. Additionally, RPS27A silencing in cerebral cortex tissues mediated the PSMD12/NF-κB axis, resulting in decreased inflammatory factor release, reduced neutrophil infiltration, and improved cerebral injury outcomes in I/R-injured mice. CONCLUSION: RPS27A regulates the expression of the PSMD12/NF-κB signaling axis, leading to the induction of inflammatory factors in microglial cells, promoting immune cell infiltration in brain tissue, and exacerbating brain damage in I/R mice. This study introduces novel insights and theoretical foundations for the treatment of nerve damage caused by I/R, suggesting that targeting the RPS27A and downstream PSMD12/NF-κB signaling axis for drug development could represent a new direction in I/R therapy.


Subject(s)
NF-kappa B , Reperfusion Injury , Ribosomal Proteins , Signal Transduction , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/immunology , Reperfusion Injury/genetics , Mice , NF-kappa B/metabolism , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Male , Disease Models, Animal , Microglia/metabolism , Microglia/immunology , Brain Ischemia/metabolism , Brain Ischemia/genetics , Brain Ischemia/immunology , Neurons/metabolism , Mice, Inbred C57BL , Protein Interaction Maps
18.
Mol Cell ; 84(12): 2337-2352.e9, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870935

ABSTRACT

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.


Subject(s)
Polyubiquitin , Ribosomal Proteins , Ribosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Polyubiquitin/metabolism , Polyubiquitin/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Proteostasis , Cell Nucleus/metabolism
19.
Stem Cell Res ; 79: 103479, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908299

ABSTRACT

Diamond-Blackfan anemia syndrome (DBAS) is an inherited bone marrow failure disorder that typically presents in infancy as hypoplastic anemia and developmental abnormalities in approximately 50% of cases. DBAS is caused by haploinsufficiency in one of 24 ribosomal protein genes, with RPS19 mutations accounting for 25% of cases. We generated iPSC lines from two patients with different heterozygous RPS19 mutations (c.191T > C and c.184C > T) and isogenic lines in which the mutations were corrected by Cas9-mediated homology directed repair.


Subject(s)
Anemia, Diamond-Blackfan , Induced Pluripotent Stem Cells , Mutation , Ribosomal Proteins , Anemia, Diamond-Blackfan/genetics , Humans , Ribosomal Proteins/genetics , Induced Pluripotent Stem Cells/metabolism , Male , Cell Line , Female
20.
Sci Rep ; 14(1): 13246, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38853173

ABSTRACT

Although alternative splicing (AS) is a major mechanism that adds diversity to gene expression patterns, its precise role in generating variability in ribosomal proteins, known as ribosomal heterogeneity, remains unclear. The ribosomal protein S24 (RPS24) gene, encoding a ribosomal component, undergoes AS; however, in-depth studies have been challenging because of three microexons between exons 4 and 6. We conducted a detailed analysis of RPS24 AS isoforms using a direct approach to investigate the splicing junctions related to these microexons, focusing on four AS isoforms. Each of these isoforms showed tissue specificity and relative differences in expression among cancer types. Significant differences in the proportions of these RPS24 AS isoforms between cancerous and normal tissues across diverse cancer types were also observed. Our study highlighted a significant correlation between the expression levels of a specific RPS24 AS isoform and the epithelial-mesenchymal transition process in lung and breast cancers. Our research contributes to a better understanding of the intricate regulatory mechanisms governing AS of ribosomal protein genes and highlights the biological implications of RPS24 AS isoforms in tissue development and tumorigenesis.


Subject(s)
Alternative Splicing , Biomarkers, Tumor , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Ribosomal Proteins , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Epithelial-Mesenchymal Transition/genetics , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Disease Progression , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Exons/genetics
SELECTION OF CITATIONS
SEARCH DETAIL