Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.284
Filter
1.
Ulus Travma Acil Cerrahi Derg ; 30(9): 619-625, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39222491

ABSTRACT

BACKGROUND: Ischemia/reperfusion injury is one of the most challenging postoperative situations in vascular surgery, both in elective procedures with prolonged clamping time and in delayed emergency cases with vascular occlusion. The inflammatory response that develops during ischemia and the oxygen-free radicals that proliferate during reperfusion have detrimental effects on the brain, heart, and kidneys. In this study, we aimed to compare the effects of vanillic and rosmarinic acid in preventing ischemia/reperfusion injury in a lower limb ischemia-reperfusion model in rats. METHODS: Thirty-two female Sprague-Dawley rats weighing 185-240 g were randomly divided into four groups of eight animals each. Group 1 was designated as the control, Group 2 as ischemia/reperfusion (I/R), Group 3 as ischemia/reperfusion + vanillic acid (I/R + VA), and Group 4 as ischemia/reperfusion + rosmarinic acid (I/R + RA). In all groups except the control, the infrarenal abdominal aorta was clamped, and 60 minutes of ischemia followed by 120 minutes of reperfusion was performed. Vanillic acid was administered intra-abdominally 15 minutes before the start of reperfusion in Group 3, and rosmarinic acid in Group 4. At the end of the reperfusion phase, blood samples and hearts were collected, and the rats were euthanized. Histopathologically, myofibrillar edema, myocytolysis, focal hemorrhages, and infiltration of polymorphonuclear leukocytes (PMNL) in cardiac tissue were examined. Total antioxidant capacity (TAC), total oxidative status (TOS), oxidative stress index (OSI), 8-OH-deoxyguanosine, lactonase, and arylesterase activity were measured in blood samples. RESULTS: Myofibrillar edema was most pronounced in the I/R group and less pronounced in the I/R + VA and I/R + RA groups (p=0.005 and p=0.066, respectively). There was no difference between the ischemia/reperfusion groups regarding myocytolysis, focal hemorrhage, and PMNL infiltration (p>0.99). Among all groups, TOS and OSI were lowest in the control group, while TAC was highest. TAC was similar in the I/R + VA and I/R + RA groups but was significantly higher in these two groups than in the I/R group. The lactonase activity in the I/R + VA group was similar to that in the control group but was significantly higher compared to the I/R and I/R + RA groups. CONCLUSION: Our study shows that vanillic and rosmarinic acids reduce myofibrillar edema in the heart after lower limb ischemia and increase TAC. However, vanillic acid increases the activity of lactonase, an enzyme known for its antioxidant effect, more than rosmarinic acid.


Subject(s)
Cinnamates , Depsides , Rats, Sprague-Dawley , Reperfusion Injury , Rosmarinic Acid , Vanillic Acid , Animals , Depsides/pharmacology , Cinnamates/pharmacology , Cinnamates/therapeutic use , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Female , Rats , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Disease Models, Animal , Lower Extremity/blood supply , Antioxidants/pharmacology , Antioxidants/therapeutic use , Myocardium/pathology , Myocardium/metabolism , Oxidative Stress/drug effects
2.
Food Res Int ; 194: 114918, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232538

ABSTRACT

Polyphenolic compounds are common constituents of human and animal diets and undergo extensive metabolism by the gut microbiota before entering circulation. In order to compare the transformations of polyphenols from yerba mate, rosemary, and green tea extracts in the gastrointestinal tract, simulated gastrointestinal digestion coupled with colonic fermentation were used. For enhancing the comparative character of the investigation, colonic fermentation was performed with human, pig and rat intestinal microbiota. Chemical analysis was performed using a HPLC system coupled to a diode-array detector and mass spectrometer. Gastrointestinal digestion diminished the total amount of phenolics in the rosemary and green tea extracts by 27.5 and 59.2 %, respectively. These reductions occurred mainly at the expense of the major constituents of these extracts, namely rosmarinic acid (-45.7 %) and epigalocatechin gallate (-60.6 %). The yerba mate extract was practically not affected in terms of total phenolics, but several conversions and isomerizations occurred (e.g., 30 % of trans-3-O-caffeoylquinic acid was converted into the cis form). The polyphenolics of the yerba mate extract were also the least decomposed by the microbiota of all three species, especially in the case of the human one (-10.8 %). In contrast, the human microbiota transformed the polyphenolics of the rosemary and green extracts by 95.9 and 88.2 %, respectively. The yerba mate-extract had its contents in cis 3-O-caffeoylquinic acid diminished by 78 % by the human microbiota relative to the gastrointestinal digestion, but the content of 5-O-caffeoylquinic acid (also a chlorogenic acid), was increased by 22.2 %. The latter phenomenon did not occur with the rat and pig microbiota. The pronounced interspecies differences indicate the need for considerable caution when translating the results of experiments on the effects of polyphenolics performed in rats, or even pigs, to humans.


Subject(s)
Colon , Depsides , Digestion , Fermentation , Ilex paraguariensis , Plant Extracts , Polyphenols , Rosmarinic Acid , Rosmarinus , Animals , Humans , Plant Extracts/metabolism , Rosmarinus/chemistry , Rats , Ilex paraguariensis/chemistry , Swine , Depsides/metabolism , Depsides/analysis , Polyphenols/metabolism , Polyphenols/analysis , Colon/metabolism , Colon/microbiology , Male , Cinnamates/metabolism , Cinnamates/analysis , Gastrointestinal Microbiome , Tea/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/metabolism , Quinic Acid/analysis , Catechin/analogs & derivatives , Catechin/metabolism , Catechin/analysis , Chromatography, High Pressure Liquid , Camellia sinensis/chemistry
3.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273364

ABSTRACT

This research studied the phenolic content compared with the antioxidant properties of various O. vulgare (Lamiaceae) cultivars grown in Poland. The research results in this paper indicate that the dominant ingredient in all oregano cultivars was rosmarinic acid, known for its strong antioxidant properties. The highest amounts of rosmarinic acid (87.16 ± 4.03 mg/g dm) were identified in the O. vulgare spp. hirtum (Link) Ietsw. Other metabolites identified in the studied extracts include luteolin O-di-glucuronide-O-di-pentoside (30.79 ± 0.38 mg/g dm in the 'Aureum' cultivar), 4'-O-glucopyranosyl-3', 4'-dihydroxy benzyl-protocatechuate (19.84 ± 0.60 mg/g dm in the 'Margerita' cultivar), and p-coumaroyl-triacetyl-hexoside (25.44 ± 0.18 mg/g dm in the 'Margerita' cultivar). 'Hot & spicy' and 'Margerita' cultivars were characterized by the highest activity in eliminating OH• and O2•- radicals. Extracts from Greek oregano had the highest ability to scavenge DPPH radicals and chelate iron ions. This research has also provided new evidence that oregano has anti-migratory, cytotoxic properties and influences the viability of gastric cancer cells (the highest cytotoxicity was attributed to the 'Hot & spicy' cultivar, which performed the worst in antioxidant properties tests). Extracts from the tested cultivars at a concentration of 0.625% effectively inhibited the growth of S. aureus and P. aeruginosa bacteria. It seems that the oregano grown in Poland is of good quality and can be successfully grown on a large scale if the appropriate use is found.


Subject(s)
Antioxidants , Origanum , Plant Extracts , Origanum/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Poland , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Phenols/pharmacology , Phenols/analysis , Phenols/chemistry , Cinnamates/chemistry , Cinnamates/pharmacology , Cinnamates/analysis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Depsides/pharmacology , Depsides/chemistry , Rosmarinic Acid , Cell Line, Tumor
4.
Food Res Int ; 192: 114737, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147482

ABSTRACT

Prunella vulgaris L. (P. vulgaris) has great application value and development prospects in improving sleep. In this study, we continued to evaluate the sleep-improvement function and mechanism of P. vulgaris from both chemical characterization and function based on sleep-improvement functional ingredients, rosmarinic acid and salviaflaside, screened out in the previous stage as the index components. The chemical constituents of P. vulgaris and its phenolic acid fraction were characterized by the UPLC-MSn technology. The quality of the sleep-improvement phenolic acid fraction of P. vulgaris was scientifically evaluated by fingerprints combined with quantitative analysis of rosmarinic acid and salviaflaside. The function of phenolic acid parts of P. vulgaris in improving sleep was verified by different insomnia models including the PCPA-induced insomnia model and surface platform sleep deprivation model. HE staining was used to observe the effect of P. vulgaris on the morphology of nerve cells in different brain regions. In vivo experiments and molecular docking explored the sedative-hypnotic effects of functional ingredients of P. vulgaris. All these results investigated the material basis and mechanism of P. vulgaris to improve sleep from multiple perspectives, which contribute to providing a basis for the development of functional food to improve sleep.


Subject(s)
Depsides , Plant Extracts , Prunella , Rosmarinic Acid , Sleep , Prunella/chemistry , Animals , Sleep/drug effects , Depsides/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Cinnamates/analysis , Molecular Docking Simulation , Sleep Initiation and Maintenance Disorders/drug therapy , Hydroxybenzoates/analysis , Mice , Hypnotics and Sedatives/pharmacology
5.
Food Res Int ; 192: 114752, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147533

ABSTRACT

Japanese pickled apricot, called "umeboshi", is a traditional food that has experientially been consumed as a folk medicine. The main variation of umeboshi is called "shiso-zuke umeboshi", meaning pickled with red perilla leaves to add a colorful appearance. This study investigated changes in phenolics and antioxidant potential of shiso-zuke umeboshi during pickling processes and simulated digestion. Results showed that the red perilla pickling (PP; 1338.12) had 13 times higher phenolics than salt pickling (SP; 101.99) in µg/g DW, and the formation of rosmarinic acid was enhanced. The simulated digestion showed a gradual increase in antioxidant content and activity from the stomach to small intestine, with TPC and TFC being rapidly released in the intestinal environment. The study concluded that shiso-zuke umeboshi provides higher health benefits due to the excellent antioxidant compounds produced through the perilla pickling process.


Subject(s)
Antioxidants , Cinnamates , Depsides , Digestion , Food Handling , Perilla , Plant Leaves , Polyphenols , Rosmarinic Acid , Antioxidants/analysis , Plant Leaves/chemistry , Perilla/chemistry , Polyphenols/analysis , Depsides/analysis , Cinnamates/analysis , Food Handling/methods , Prunus armeniaca/chemistry , East Asian People
6.
PLoS One ; 19(8): e0297716, 2024.
Article in English | MEDLINE | ID: mdl-39106290

ABSTRACT

Magnetic drug delivery systems using nanoparticles present a promising opportunity for clinical treatment. This study explored the potential anti-inflammatory properties of RosA- CrFe2O4 nanoparticles. These nanoparticles were developed through rosmarinic acid (RosA) co-precipitation via a photo-mediated extraction technique. XRD, FTIR, and TEM techniques were employed to characterize the nanoparticles, and the results indicated that they had a cubic spinel ferrite (FCC) structure with an average particle size of 25nm. The anti-inflammatory and antioxidant properties of RosA- CrFe2O4 nanoparticles were evaluated by using LPS-induced raw 264.7 macrophages and a hydrogen peroxide scavenging assay, respectively. The results showed that RosA- CrFe2O4 nanoparticles had moderate DPPH scavenging effects with an IC50 value of 59.61±4.52µg/ml. Notably, these nanoparticles effectively suppressed the expression of pro-inflammatory genes (IL-1ß, TNF-α, IL-6, and iNOS) in LPS-stimulated cells. Additionally, the anti-inflammatory activity of RosA- CrFe2O4 nanoparticles was confirmed by reducing the release of secretory pro-inflammatory cytokines (IL-6 and TNF-α) in LPS-stimulated macrophages. This investigation highlights the promising potential of Phyto-mediated CrFe2O4-RosA as an anti-inflammatory and antioxidant agent in biomedical applications.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cinnamates , Depsides , Ferric Compounds , Magnetite Nanoparticles , Rosmarinic Acid , Depsides/pharmacology , Depsides/chemistry , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cinnamates/chemistry , Cinnamates/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Magnetite Nanoparticles/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Particle Size
7.
BMC Plant Biol ; 24(1): 798, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39179969

ABSTRACT

BACKGROUND: In the past two decades, the impacts of Helium-Neon (He-Ne) laser on stress resistance and secondary metabolism in plants have been studied, but the signaling pathway which by laser regulates this process remains unclear. Therefore, the current study sought to explore the role of RBOH-dependent signaling in He-Ne laser-induced salt tolerance and elicitation of secondary metabolism in Salvia officinalis. Seeds were primed with He-Ne laser (6 J cm- 2) and peroxide hydrogen (H2O2, 5 mM) and 15-old-day plants were exposed to two salinity levels (0, 75 mM NaCl). RESULTS: Salt stress reduced growth parameters, chlorophyll content and relative water content (RWC) and increased malodialdehyde (MDA) and H2O2 contents in leaves of 45-old-day plants. After 48 h of salt exposure, higher transcription levels of RBOH (encoding NADPH oxidase), PAL (phenylalanine ammonia-lyase), and RAS (rosmarinic acid synthase) were recorded in leaves of plants grown from seeds primed with He-Ne laser and/or H2O2. Despite laser up-regulated RBOH gene in the early hours of exposing to salinity, H2O2 and MDA contents were lower in leaves of these plants after 30 days. Seed pretreatment with He-Ne laser and/or H2O2 augmented the accumulation of anthocyanins, total phenol, carnasol, and rosmarinic acid and increased total antioxidant capacity under non-saline and more extensively at saline conditions. Indeed, these treatments improved RWC, and K+/Na+ ratio, enhanced the activities of superoxide dismutase and ascorbate peroxidase and proline accumulation, and significantly decreased membrane injury and H2O2 content in leaves of 45-old-day plants under salt stress. However, applying diphenylene iodonium (DPI as an inhibitor of NADPH oxidase) and N, N-dimethyl thiourea (DMTU as a H2O2 scavenger) after laser priming reversed the aforementioned effects which in turn resulted in the loss of laser-induced salt tolerance and secondary metabolism. CONCLUSIONS: These findings for the first time deciphered that laser can induce a transient RBOH-dependent H2O2 burst, which might act as a downstream signal to promote secondary metabolism and salt stress alleviation in S. officinalis plants.


Subject(s)
Cinnamates , Depsides , Rosmarinic Acid , Salt Tolerance , Salvia officinalis , Signal Transduction , Salvia officinalis/metabolism , Salvia officinalis/physiology , Salvia officinalis/drug effects , Salvia officinalis/genetics , Depsides/metabolism , Cinnamates/metabolism , Abietanes/metabolism , Hydrogen Peroxide/metabolism , Lasers , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/drug effects , Gene Expression Regulation, Plant
8.
Physiol Plant ; 176(4): e14453, 2024.
Article in English | MEDLINE | ID: mdl-39091124

ABSTRACT

Although used in in vitro culture to boost secondary metabolite production, UV-B radiation can seriously affect plant growth if not properly dosed. Rosemary callus can be used as an important source of effective ingredients in the food and medicine industry. To balance the positive and negative effects of UV-B on rosmary callus, this study investigated the effects of melatonin on rosemary callus under UV-B radiation. The results showed that melatonin improved rosemary callus growth, with fresh weight and dry weight increased by 15.81% and 8.30%, respectively. The addition of 100 µM melatonin increased antioxidant enzyme activity and NO content in rosemary callus. At the same time, melatonin also significantly reduced membrane lipid damage and H2O2 accumulation in rosemary callus under UV-B stress, with malondialdehyde (MDA) and H2O2 contents reduced by 13.03% and 14.55%, respectively. In addition, melatonin increased the total phenol and rosmarinic acid contents in rosemary callus by 19% and 54%, respectively. Melatonin significantly improved the antioxidant activity of the extracts from rosemary callus. These results suggest that exogenous melatonin can alleviate the adverse effects of UV-B stress on rosemary callus by promoting NO accumulation while further enhancing phenolic accumulation and biological activity.


Subject(s)
Antioxidants , Hydrogen Peroxide , Melatonin , Phenols , Rosmarinus , Ultraviolet Rays , Melatonin/pharmacology , Melatonin/metabolism , Rosmarinus/metabolism , Rosmarinus/drug effects , Rosmarinus/radiation effects , Antioxidants/metabolism , Phenols/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Stress, Physiological/radiation effects , Stress, Physiological/drug effects , Rosmarinic Acid , Cinnamates/metabolism , Cinnamates/pharmacology , Depsides/metabolism
9.
Plant Physiol Biochem ; 215: 109016, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39133982

ABSTRACT

Sarcandra glabra is a widely distributed and valuable plant in food and daily chemical industries, and is also a common-used medicinal plant for treating inflammatory diseases and tumors. Rosmarinic acid (RA) with significant pharmacological activity is an abundant and important constituent in S. glabra, however, little information about key enzymes involving the biosynthesis of RA in S. glabra is available and the underlying biosynthesis mechanisms of RA in S. glabra remain undeciphered. Therefore, in this study, by full-length transcriptome sequencing analyses of S. glabra, we screened the RA biosynthesis candidate genes based on sequence similarity and conducted enzymatic function characterization in vitro and in vivo. As a result, a complete set of 7 kinds of enzymes (SgPALs, SgC4H, Sg4CL, SgTATs, SgHPPRs, SgRAS and SgC3H) involving the biosynthesis route of RA from phenylalanine and tyrosine, were identified and fully characterized. This research systematically revealed the complete biosynthesis route of RA in S. glabra, which helps us better understand the process of RA synthesis and accumulation, especially the substrate promiscuities of SgRAS and SgC3H provide the molecular biological basis for the efficient biosynthesis of specific and abundant RA in S. glabra. The 7 kinds of key enzymes revealed in this study can be utilized as tool enzymes for production of RA by synthetic biology methods.


Subject(s)
Cinnamates , Depsides , Rosmarinic Acid , Transcriptome , Depsides/metabolism , Cinnamates/metabolism , Transcriptome/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Phytomedicine ; 132: 155835, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968791

ABSTRACT

BACKGROUND: Iron deposition and ferroptosis are involved in ischemic stroke injury, but the choice of drugs for treatment is limited. PURPOSE: To investigate the potential neuroprotective effects of Rosmarinic acid (RosA) encapsulated within nanoliposomes (RosA-LIP) on ischemic stroke. METHODS: Wild-type (WT) and TfR1EC cKO (specific knockout of the TfR1 gene in BMECs) mice used to establish a dMCAO model, with simultaneous administration of RosA-LIP (20 mg/kg/d, i.p.) or RosA (20 mg/kg/d, i.p.). RESULTS: The successful synthesis of RosA-LIP resulted in enhanced stability and precise delivery in both the serum and brain. The administration of RosA-LIP effectively mitigated ischemia-induced behavioral abnormalities and pathological damage. RosA-LIP inhibited ferroptosis by ameliorating mitochondrial abnormalities, increasing GPX4 levels, and decreasing ACSL4/LPCAT3/Lox-dependent lipid peroxidation. RosA-LIP effectively improved blood‒brain barrier (BBB) permeability, increased tight junctions (TJs) protein expression and reduced iron levels in ischemic tissue and brain microvascular endothelial cells (BMECs) by modulating FPN1 and TfR1 levels. Furthermore, RosA-LIP suppressed TfR1 to attenuate ACSL4/LPCAT3/Lox-mediated ferroptosis in TfR1EC cKO mice subjected to dMCAO. CONCLUSION: RosA-LIP effectively increased the brain level of RosA and protected against ferroptosis through the regulation of TfR1 in BMECs.


Subject(s)
Blood-Brain Barrier , Cinnamates , Depsides , Endothelial Cells , Ferroptosis , Liposomes , Receptors, Transferrin , Rosmarinic Acid , Animals , Depsides/pharmacology , Cinnamates/pharmacology , Ferroptosis/drug effects , Receptors, Transferrin/metabolism , Mice , Endothelial Cells/drug effects , Blood-Brain Barrier/drug effects , Male , Mice, Knockout , Neuroprotective Agents/pharmacology , Brain/drug effects , Brain/metabolism , Brain Ischemia/drug therapy , Disease Models, Animal , Lipid Peroxidation/drug effects , Mice, Inbred C57BL , Ischemic Stroke/drug therapy
11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000476

ABSTRACT

Hyaluronidase possesses the capacity to degrade high-molecular-weight hyaluronic acid into smaller fragments, subsequently initiating a cascade of inflammatory responses and activating dendritic cells. In cases of bacterial infections, substantial quantities of HAase are generated, potentially leading to severe conditions such as cellulitis. Inhibiting hyaluronidase activity may offer anti-inflammatory benefits. Salvia miltiorrhiza Bunge, a traditional Chinese medicine, has anti-inflammatory properties. However, its effects on skin inflammation are not well understood. This study screened and evaluated the active components of S. miltiorrhiza that inhibit skin inflammation, using ligand fishing, enzyme activity assays, drug combination analysis, and molecular docking. By combining magnetic nanomaterials with hyaluronidase functional groups, we immobilized hyaluronidase on magnetic nanomaterials for the first time in the literature. We then utilized an immobilized enzyme to specifically adsorb the ligand; two ligands were identified as salvianolic acid B and rosmarinic acid by HPLC analysis after desorption of the dangling ligands, to complete the rapid screening of potential anti-inflammatory active ingredients in S. miltiorrhiza roots. The median-effect equation and combination index results indicated that their synergistic inhibition of hyaluronidase at a fixed 3:2 ratio was enhanced with increasing concentrations. Kinetic studies revealed that they acted as mixed-type inhibitors of hyaluronidase. Salvianolic acid B had Ki and Kis values of 0.22 and 0.96 µM, respectively, while rosmarinic acid had values of 0.54 and 4.60 µM. Molecular docking revealed that salvianolic acid B had a higher affinity for hyaluronidase than rosmarinic acid. In addition, we observed that a 3:2 combination of SAB and RA significantly decreased the secretion of TNF-α, IL-1, and IL-6 inflammatory cytokines in UVB-irradiated HaCaT cells. These findings identify salvianolic acid B and rosmarinic acid as key components with the potential to inhibit skin inflammation, as found in S. miltiorrhiza. This research is significant for developing skin inflammation treatments. It demonstrates the effectiveness and broad applicability of the magnetic nanoparticle-based ligand fishing approach for screening enzyme inhibitors derived from herbal extracts.


Subject(s)
Anti-Inflammatory Agents , Benzofurans , Cinnamates , Depsides , Hyaluronoglucosaminidase , Molecular Docking Simulation , Rosmarinic Acid , Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Humans , Benzofurans/pharmacology , Benzofurans/chemistry , Depsides/pharmacology , Depsides/chemistry , Cinnamates/pharmacology , Cinnamates/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Enzymes, Immobilized/chemistry , Inflammation/drug therapy
12.
Biomolecules ; 14(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39062581

ABSTRACT

Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.


Subject(s)
Cinnamates , Depsides , Drug Resistance, Neoplasm , Neoplasms , Rosmarinic Acid , Depsides/pharmacology , Depsides/chemistry , Depsides/therapeutic use , Cinnamates/pharmacology , Cinnamates/therapeutic use , Cinnamates/chemistry , Humans , Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use
13.
PLoS One ; 19(7): e0306340, 2024.
Article in English | MEDLINE | ID: mdl-39052558

ABSTRACT

Salicylic acid (SA) plays a crucial role as a hormone in plants and belongs to the group of phenolic compounds. Our objective was to determine the optimal concentration of SA for enhancing the production of bioactive compounds in Agastache rugosa plants while maintaining optimal plant growth. The plants underwent SA soaking treatments at different concentrations (i.e., 0, 100, 200, 400, 800, and 1600 µmol mol-1) for 10 min at 7 days after they were transplanted. We observed that elevated levels of SA at 800 and 1600 µmol mol-1 induced oxidative stress, leading to a significant reduction across many plant growth variables, including leaf length, width, number, area, shoot fresh weight (FW), stem FW and length, and whole plant dry weights (DW) compared with that in the control plants. Additionally, the treatment with 1600 µmol mol-1 SA resulted in the lowest values of flower branch number, FW and DW of flowers, and DW of leaf, stem, and root. Conversely, applying 400 µmol mol-1 SA resulted in the greatest increase of chlorophyll (Chl) a and b, total Chl, total flavonoid, total carotenoid, and SPAD values. The photosynthetic rate and stomatal conductance decreased with increased SA concentrations (i.e., 800 and 1600 µmol mol-1). Furthermore, the higher SA treatments (i.e., 400, 800, and 1600 µmol mol-1) enhanced the phenolic contents, and almost all SA treatments increased the antioxidant capacity. The rosmarinic acid content peaked under 200 µmol mol-1 SA treatment. However, under 400 µmol mol-1 SA, tilianin and acacetin contents reached their highest levels. These findings demonstrate that immersing the roots in 200 and 400 µmol mol-1 SA enhances the production of bioactive compounds in hydroponically cultivated A. rugosa without compromising plant growth. Overall, these findings provide valuable insights into the impact of SA on A. rugosa and its potential implications for medicinal plant cultivation and phytochemical production.


Subject(s)
Agastache , Antioxidants , Salicylic Acid , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Antioxidants/metabolism , Agastache/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Chlorophyll/metabolism , Carotenoids/metabolism , Oxidative Stress/drug effects , Flavonoids/metabolism , Cinnamates/metabolism , Depsides/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Rosmarinic Acid
14.
Bioorg Chem ; 151: 107669, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067421

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide, and the therapeutic is focused on several approaches including the inhibition of fibril formation by small compounds, avoiding the formation of cytotoxic oligomers. Thus, we decided to explore the capacity of compounds carrying catechol moieties to inhibit the progression of α-synuclein. Overall, the compounds rosmarinic acid (1), carnosic acid (2), carnosol (3), epiisorosmanol (4), and rosmanol (5) avoid the progression of fibril formation assessed by Thiofavine T (ThT), and atomic force microscopy images showed that morphology is influenced for the actions of compounds over fibrillization. Moreover, ITC experiments showed a Kd varying from 28 to 51 µM, the ΔG showed that the reaction between compounds and α-syn is spontaneous, and ΔH is associated with an exothermic reaction, suggesting the interactions of hydrogen bonds among compounds and α-syn. Docking experiments reinforce this idea showing the intermolecular interactions are mostly hydrogen bonding within the sites 2, 9, and 3/13 of α-synuclein, and compounds 1 and 5. Thus, compound 1, rosmarinic acid, interestingly interacts better with site 9 through catechol and Lysines. In cultured Raw 264. 7 cells, the presence of compounds showed that most of them can promote cell differentiation, especially rosmarinic acid, and rosmanol, both preserving tubulin cytoskeleton. However, once we evaluated whether or not the aggregates pre-treated with compounds could prevent the disruption of microtubules of Raw 264.7 cells, only pre-treated aggregates with rosmarinic acid prevented the disruption of the cytoskeleton. Altogether, we showed that especially rosmarinic acid not only inhibits α-syn but stabilizes the remaining aggregates turning them into not-toxic to Raw 264.7 cells suggesting a main role in cell survival and antigen processing in response to external α-syn aggregates.


Subject(s)
Cinnamates , Depsides , Microtubules , Rosmarinic Acid , alpha-Synuclein , Depsides/pharmacology , Depsides/chemistry , Depsides/isolation & purification , Cinnamates/chemistry , Cinnamates/pharmacology , Cinnamates/chemical synthesis , Animals , Mice , RAW 264.7 Cells , Microtubules/drug effects , Microtubules/metabolism , Molecular Structure , alpha-Synuclein/metabolism , alpha-Synuclein/antagonists & inhibitors , Structure-Activity Relationship , Dose-Response Relationship, Drug , Cell Survival/drug effects , Molecular Docking Simulation
15.
J Control Release ; 373: 306-318, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004103

ABSTRACT

Dry eye disease (DED) is a prevalent ocular disorder characterized by unstable tear film condition with loss of aqueous or mucin, excessive oxidative stress, and inflammation, leading to discomfort and potential damage to the ocular surface. Current DED therapies have shown restricted therapeutic effects such as frequent dosing and temporary relief with potential unwanted side effects, urgently necessitating the development of innovative efficient therapeutic approaches. Herein, we developed rosmarinic acid (RosA) conjugated gelatin nanogels loading diquafosol sodium (DQS), DRGNG, for simultaneous ROS-scavenging and mucin-secreting DED treatment. Mechanically, DRGNG suppressed the ROS production, reduced inflammatory factors, and prompted mucin secretion in vitro and in vivo. The whole transcriptome RNA sequencing in vitro further provided a detailed analysis of the upregulation of anti-oxidant, anti-inflammatory, and mucin-promotion pathways. Therapeutically, both in evaporative DED and aqueous deficient DED models, the dual-functional DRGNG could prolong the retention time at the ocular surface, efficiently suppress the oxidative stress response, reverse ocular surface morphology, and recover tear film homeostasis, thus alleviating the DED when the dosage is halved compared to the commercial Diquas®. Our findings contribute to developing innovative therapies for DED and offer insights into the broader applications of nanogels in ocular drug delivery and oxidative stress-related conditions.


Subject(s)
Cinnamates , Depsides , Dry Eye Syndromes , Gelatin , Nanogels , Rosmarinic Acid , Uracil Nucleotides , Depsides/administration & dosage , Depsides/chemistry , Depsides/pharmacology , Dry Eye Syndromes/drug therapy , Animals , Gelatin/chemistry , Cinnamates/administration & dosage , Cinnamates/chemistry , Uracil Nucleotides/administration & dosage , Polyphosphates/chemistry , Humans , Antioxidants/administration & dosage , Antioxidants/chemistry , Antioxidants/pharmacology , Drug Delivery Systems , Oxidative Stress/drug effects , Mucins/metabolism , Female , Mice, Inbred C57BL , Male , Reactive Oxygen Species/metabolism , Tears/metabolism , Mice
16.
J Photochem Photobiol B ; 257: 112950, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851042

ABSTRACT

Hepatic fibrosis (HF) is caused by persistent inflammation, which is closely associated with hepatic oxidative stress. Peroxynitrite (ONOO-) is significantly elevated in HF, which would be regarded as a potential biomarker for the diagnosis of HF. Research has shown that ONOO- in the Golgi apparatus can be overproduced in HF, and it can induce hepatocyte injury by triggering Golgi oxidative stress. Meanwhile, the ONOO- inhibitors could effectively relieve HF by inhibiting Golgi ONOO-, but as yet, no Golgi-targetable fluorescent probe available for diagnosis and assessing treatment response of HF through sensing Golgi ONOO-. To this end, we reported a ratiometric fluorescent probe, Golgi-PER, for diagnosis and assessing treatment response of HF through monitoring the Golgi ONOO-. Golgi-PER displayed satisfactory sensitivity, low detection limit, and exceptional selectivity to ONOO-. Combined with excellent biocompatibility and good Golgi-targeting ability, Golgi-PER was further used for ratiometric monitoring the Golgi ONOO- fluctuations and screening of ONOO- inhibitors from polyphenols in living cells. Meanwhile, using Golgi-PER as a probe, the overexpression of Golgi ONOO- in HF and the treatment response of HF to the screened rosmarinic acid were precisely visualized for the first time. Furthermore, the screened RosA has a remarkable therapeutic effect on HF, which may be a new strategy for HF treatment. These results demonstrated the practicability of Golgi-PER for monitoring the occurrence, development, and personalized treatment response of HF.


Subject(s)
Fluorescent Dyes , Golgi Apparatus , Liver Cirrhosis , Peroxynitrous Acid , Peroxynitrous Acid/metabolism , Fluorescent Dyes/chemistry , Liver Cirrhosis/drug therapy , Liver Cirrhosis/diagnostic imaging , Humans , Golgi Apparatus/metabolism , Hep G2 Cells , Animals , Oxidative Stress/drug effects , Rosmarinic Acid , Limit of Detection
17.
Biochem Biophys Res Commun ; 724: 150230, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865813

ABSTRACT

The SARS-CoV-2 coronavirus is characterized by high mutation rates and significant infectivity, posing ongoing challenges for therapeutic intervention. To address potential challenges in the future, the continued development of effective drugs targeting SARS-CoV-2 remains an important task for the scientific as well as the pharmaceutical community. The main protease (Mpro) of SARS-CoV-2 is an ideal therapeutic target for COVID-19 drug development, leading to the introduction of various inhibitors, both covalent and non-covalent, each characterized by unique mechanisms of action and possessing inherent strengths and limitations. Natural products, being compounds naturally present in the environment, offer advantages such as low toxicity and diverse activities, presenting a viable source for antiviral drug development. Here, we identified a natural compound, rosmarinic acid, which exhibits significant inhibitory effects on the Mpro of the SARS-CoV-2. Through detailed structural biology analysis, we elucidated the precise crystal structure of the complex formed between rosmarinic acid and SARS-CoV-2 Mpro, revealing the molecular basis of its inhibitory mechanism. These findings not only enhance our understanding of the antiviral action of rosmarinic acid, but also provide valuable structural information and mechanistic insights for the further development of therapeutic strategies against SARS-CoV-2.


Subject(s)
Antiviral Agents , Cinnamates , Coronavirus 3C Proteases , Depsides , Rosmarinic Acid , SARS-CoV-2 , Depsides/chemistry , Depsides/pharmacology , Cinnamates/chemistry , Cinnamates/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Models, Molecular , Crystallography, X-Ray , COVID-19 Drug Treatment , COVID-19/virology , Binding Sites , Protein Binding
18.
Molecules ; 29(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38893341

ABSTRACT

Perilla frutescens var. acuta (Lamiaceae) is widely used not only as an oil or a spice, but also as a traditional medicine to treat colds, coughs, fever, and indigestion. As an ongoing effort, luteolin-7-O-diglucuronide (1), apigenin-7-O-diglucuronide (2), and rosmarinic acid (3) isolated from P. frutescens var. acuta were investigated for their anti-adipogenic and thermogenic activities in 3T3-L1 cells. Compound 1 exhibited a strong inhibition against adipocyte differentiation by suppressing the expression of Pparg and Cebpa over 52.0% and 45.0%, respectively. Moreover, 2 inhibited the expression of those genes in a dose-dependent manner [Pparg: 41.7% (5 µM), 62.0% (10 µM), and 81.6% (50 µM); Cebpa: 13.8% (5 µM), 18.4% (10 µM), and 37.2% (50 µM)]. On the other hand, the P. frutescens var. acuta water extract showed moderate thermogenic activities. Compounds 1 and 3 also induced thermogenesis in a dose-dependent manner by stimulating the mRNA expressions of Ucp1, Pgc1a, and Prdm16. Moreover, an LC-MS/MS chromatogram of the extract was acquired using UHPLC-MS2 and it was analyzed by feature-based molecular networking (FBMN) and the Progenesis QI software (version 3.0). The chemical profiling of the extract demonstrated that flavonoids and their glycoside derivatives, including those isolated earlier as well as rosmarinic acid, are present in P. frutescens var. acuta.


Subject(s)
3T3-L1 Cells , Anti-Obesity Agents , Cinnamates , Depsides , Perilla frutescens , Plant Extracts , Rosmarinic Acid , Mice , Perilla frutescens/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Depsides/pharmacology , Depsides/chemistry , Depsides/isolation & purification , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/isolation & purification , Cinnamates/pharmacology , Cinnamates/chemistry , Cinnamates/isolation & purification , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Cell Differentiation/drug effects , Obesity/drug therapy , Obesity/metabolism , Thermogenesis/drug effects
19.
Molecules ; 29(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893502

ABSTRACT

Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line-HL, and root line-RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5-50.2 mg/g dry weight) and blue (51.4-53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products.


Subject(s)
Polyphenols , Salvia , Polyphenols/metabolism , Salvia/metabolism , Salvia/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Cinnamates/metabolism , Cinnamates/chemistry , Rosmarinic Acid , Depsides/metabolism , Cotyledon/metabolism , Cotyledon/chemistry , Naphthaleneacetic Acids/pharmacology , Naphthaleneacetic Acids/chemistry , Naphthaleneacetic Acids/metabolism , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Seedlings/metabolism , Seedlings/growth & development , Seedlings/drug effects
20.
Cell Biochem Funct ; 42(4): e4073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863227

ABSTRACT

Polycystic ovary syndrome (PCOS) is a multidisciplinary endocrinopathy that affects women of reproductive age. It is characterized by menstrual complications, hyperandrogenism, insulin resistance, and cardiovascular issues. The current research investigated the efficacy of rosmarinic acid in letrozole-induced PCOS in adult female rats as well as the potential underlying molecular mechanisms. Forty female rats were divided into the control group, the rosmarinic acid group (50 mg/kg per orally, po) for 21 days, PCOS group; PCOS was induced by administration of letrozole (1 mg/kg po) for 21 days, and rosmarinic acid-PCOS group, received rosmarinic acid after PCOS induction. PCOS resulted in a marked elevation in both serum luteinizing hormone (LH) and testosterone levels and LH/follicle-stimulating hormone ratio with a marked reduction in serum estradiol and progesterone levels. A marked rise in tumor necrosis factor-α (TNF-α), interleukin-1ß, monocyte chemotactic protein-1, and vascular endothelial growth factor (messenger RNA) in the ovarian tissue was reported. The histological analysis displayed multiple cystic follicles in the ovarian cortex with markedly thin granulosa cell layer, vacuolated granulosa and theca cell layers, and desquamated granulosa cells. Upregulation in the immune expression of TNF-α and caspase-3 was demonstrated in the ovarian cortex. Interestingly, rosmarinic acid ameliorated the biochemical and histopathological changes. In conclusion, rosmarinic acid ameliorates letrozole-induced PCOS through its anti-inflammatory and antiangiogenesis effects.


Subject(s)
Chemokine CCL2 , Cinnamates , Depsides , Disease Models, Animal , Letrozole , Polycystic Ovary Syndrome , Rosmarinic Acid , Vascular Endothelial Growth Factor A , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Cinnamates/pharmacology , Depsides/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Rats , Chemokine CCL2/metabolism , Letrozole/pharmacology , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Immunohistochemistry , Testosterone/blood , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL