Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.321
1.
J Gen Virol ; 105(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38836747

Historically, the Wa-like strains of human group A rotavirus (RVA) have been major causes of gastroenteritis. However, since the 2010s, the circulation of non-Wa-like strains has been increasingly reported, indicating a shift in the molecular epidemiology of RVA. Although understanding RVA evolution requires the analysis of both current and historical strains, comprehensive pre-1980's sequencing data are scarce globally. We determined the whole-genome sequences of representative strains from six RVA gastroenteritis outbreaks observed at an infant home in Sapporo, Japan, between 1981 and 1989. These outbreaks were mainly caused by G1 or G3 Wa-like strains, resembling strains from the United States in the 1970s-1980s and from Malawi in the 1990s. Phylogenetic analysis of these infant home strains, together with Wa-like strains collected worldwide from the 1970s to 2020, revealed a notable trend: pre-2010 strains diverged into multiple lineages in many genomic segments, whereas post-2010 strains tended to converge into a single lineage. However, Bayesian skyline plot indicated near-constant effective population sizes from the 1970s to 2020, and selection pressure analysis identified positive selection only at amino acid 75 of NSP2. These results suggest that evidence supporting the influence of rotavirus vaccines, introduced globally since 2006, on Wa-like RVA molecular evolution is lacking at present, and phylogenetic analysis may simply reflect natural fluctuations in RVA molecular evolution. Evaluating the long-term impact of RV vaccines on the molecular evolution of RVA requires sustained surveillance.


Evolution, Molecular , Gastroenteritis , Genome, Viral , Phylogeny , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Rotavirus/isolation & purification , Humans , Rotavirus Infections/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/history , Japan/epidemiology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/history , Whole Genome Sequencing , Disease Outbreaks , Infant , Genotype , Molecular Epidemiology , History, 20th Century
2.
J Med Virol ; 96(5): e29681, 2024 May.
Article En | MEDLINE | ID: mdl-38773815

Rotavirus gastroenteritis is accountable for an estimated 128 500 deaths among children younger than 5 years worldwide, and the majority occur in low-income countries. Although the clinical trials of rotavirus vaccines in Bangladesh revealed a significant reduction of severe rotavirus disease by around 50%, the vaccines are not yet included in the routine immunization program. The present study was designed to provide data on rotavirus diarrhea with clinical profiles and genotypes before (2017-2019) and during the COVID-19 pandemic period (2020-2021). Fecal samples were collected from 2% of the diarrheal patients at icddr,b Dhaka hospital of all ages between January 2017 and December 2021 and were tested for VP6 rotavirus antigen using ELISA. The clinical manifestations such as fever, duration of diarrhea and hospitalization, number of stools, and dehydration and so on were collected from the surveillance database (n = 3127). Of the positive samples, 10% were randomly selected for genotyping using Sanger sequencing method. A total of 12 705 fecal samples were screened for rotavirus A antigen by enzyme immunoassay. Overall, 3369 (27%) were rotavirus antigen-positive, of whom children <2 years had the highest prevalence (88.6%). The risk of rotavirus A infection was 4.2 times higher in winter than in summer. Overall, G3P[8] was the most prominent genotype (45.3%), followed by G1P[8] (32.1%), G9P[8] (6.8%), and G2P[4] (6.1%). The other unusual combinations, such as G1P[4], G1P[6], G2P[6], G3P[4], G3P[6], and G9P[6], were also present. Genetic analysis on Bangladeshi strains revealed that the selection pressure (dN/dS) was estimated as <1. The number of hospital visits showed a 37% drop during the COVID-19 pandemic relative to the years before the pandemic. Conversely, there was a notable increase in the rate of rotavirus positivity during the pandemic (34%, p < 0.00) compared to the period before COVID-19 (23%). Among the various clinical symptoms, only the occurrence of watery stool significantly increased during the pandemic. The G2P[4] strain showed a sudden rise (19%) in 2020, which then declined in 2021. In the same year, G1P[8] was more prevalent than G3P[8] (40% vs. 38%, respectively). The remaining genotypes were negligible and did not exhibit much fluctuation. This study reveals that the rotavirus burden remained high during the COVID-19 prepandemic and pandemic in Bangladesh. Considering the lack of antigenic variations between the circulating and vaccine-targeted strains, integrating the vaccine into the national immunization program could reduce the prevalence of the disease, the number of hospitalizations, and the severity of cases.


COVID-19 , Feces , Genotype , Rotavirus Infections , Rotavirus , Humans , Bangladesh/epidemiology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Child, Preschool , Infant , COVID-19/epidemiology , COVID-19/virology , COVID-19/prevention & control , Feces/virology , Female , Male , Child , Diarrhea/virology , Diarrhea/epidemiology , Adolescent , Adult , Antigens, Viral/genetics , Infant, Newborn , Gastroenteritis/epidemiology , Gastroenteritis/virology , Young Adult , Prevalence , SARS-CoV-2/genetics , SARS-CoV-2/classification , Middle Aged , Seasons
3.
Vet Ital ; 60(1)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38722261

Obtaining the complete or near-complete genome sequence of pathogens is becoming increasingly crucial for epidemiology, virology, clinical science and practice. This study aimed to detect viruses and conduct genetic characterization of genomes using metagenomics in order to identify the viral agents responsible for a calf's diarrhoea. The findings showed that bovine coronavirus (BCoV) and bovine rotavirus (BRV) are the primary viral agents responsible for the calf's diarrhoea. The current study successfully obtained the first-ever near-complete genome sequence of a bovine coronavirus (BCoV) from Türkiye. The G+C content was 36.31% and the genetic analysis revealed that the Turkish BCoV strain is closely related to respiratory BCoV strains from France and Ireland, with high nucleotide sequence and amino acid identity and similarity. In the present study, analysis of the S protein of the Turkish BCoV strain revealed the presence of 13 amino acid insertions, one of which was found to be shared with the French respiratory BCoV. The study also identified a BRV strain through metagenomic analysis and detected multiple mutations within the structural and non-structural proteins of the BRV strain, suggesting that the BRV Kirikkale strain may serve as an ancestor for reassortants with interspecies transmission, especially involving rotaviruses that infect rabbits and giraffes.


Coronavirus, Bovine , Genome, Viral , Metagenomics , Rotavirus , Animals , Metagenomics/methods , Coronavirus, Bovine/genetics , Coronavirus, Bovine/isolation & purification , Cattle , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Turkey , Cattle Diseases/virology , Rotavirus Infections/veterinary , Rotavirus Infections/virology
4.
Funct Integr Genomics ; 24(3): 92, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733534

In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.


Evolution, Molecular , Genetic Variation , Phylogeny , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Brazil , Humans , Rotavirus Infections/virology , Genotype , Animals
5.
J Med Virol ; 96(5): e29650, 2024 May.
Article En | MEDLINE | ID: mdl-38727133

To analyze the epidemiological characteristics of group A rotavirus (RVA) diarrhea in Beijing between 2019 and 2022 and evaluate the effectiveness of the RV5 vaccine. Stool specimens were collected from patients with acute diarrhea, and RVA was detected and genotyped. The whole genome of RVA was sequenced by fragment amplification and Sanger sequencing. Phylogenetic trees were constructed using Bayesian and maximum likelihood methods. Descriptive epidemiological methods were used to analyze the characteristics of RVA diarrhea. Test-negative design was used to evaluate the vaccine effectiveness (VE) of the RV5. Compared with 2011-2018, RVA-positive rates in patients with acute diarrhea under 5 years of age and adults decreased significantly between 2019 and 2022, to 9.45% (249/634) and 3.66% (220/6016), respectively. The predominant genotype of RVA had changed from G9-VIP[8]-III between 2019 and 2021 to G8-VP[8]-III in 2022, and P[8] sequences from G8-VP[8]-III strains formed a new branch called P[8]-IIIb. The complete genotype of G8-VP[8]-III was G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. The VE of 3 doses of RV5 was 90.4% (95% CI: 28.8%-98.7%) against RVA diarrhea. The prevalence of RVA decreased in Beijing between 2019 and 2022, and the predominant genotype changed to G8P[8], which may be related to RV5 vaccination. Continuous surveillance is necessary to evaluate vaccine effectiveness and improve vaccine design.


Diarrhea , Feces , Genotype , Phylogeny , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Humans , Rotavirus/genetics , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Infections/prevention & control , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/immunology , Child, Preschool , Prevalence , Beijing/epidemiology , Male , Infant , Female , Adult , Feces/virology , Middle Aged , Child , Young Adult , Adolescent , Vaccine Efficacy , Aged , Genome, Viral , Infant, Newborn
6.
J Infect ; 88(6): 106169, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697269

Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0 % (95 % CI 24.0-39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0 % (95 % CI 12.0-20.0), 10 % (95 % CI 6-15), 4.0 % (95 % CI 2.0-6.0), 4 % (95 % CI 3-6), and 2.3 % (95 % CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (39 %), followed by G3P[8] (11.7 %), G9P[8] (8.7 %), and G2P[4] (7.1 %); although, unusual genotypes were also observed, including G3P[6] (2.7 %), G8P[6] (1.7 %), G1P[6] (1.5 %), G10P[8] (0.9 %), G8P[4] (0.5 %), and G4P[8] (0.4 %). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6 %, 613/725 vs 14.9 %, 108/725), with the GII.4 (79.3 %) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.


Gastroenteritis , Humans , Gastroenteritis/virology , Gastroenteritis/epidemiology , Child, Preschool , Infant , Africa/epidemiology , Prevalence , Diarrhea/virology , Diarrhea/epidemiology , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Infant, Newborn , Genotype , Virus Diseases/epidemiology , Virus Diseases/virology , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification
7.
BMC Infect Dis ; 24(1): 547, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822241

Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.


Caliciviridae Infections , Gastroenteritis , Genetic Variation , Norovirus , Rotavirus Infections , Rotavirus Vaccines , Humans , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage , Infant , Africa/epidemiology , Child, Preschool , Caliciviridae Infections/epidemiology , Caliciviridae Infections/prevention & control , Caliciviridae Infections/virology , Norovirus/genetics , Norovirus/classification , Norovirus/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Infant, Newborn , Prevalence , Rotavirus/genetics , Rotavirus/immunology , Rotavirus/classification , Vaccination/statistics & numerical data
8.
Microb Pathog ; 191: 106646, 2024 Jun.
Article En | MEDLINE | ID: mdl-38631414

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Porcine epidemic diarrhea virus , Real-Time Polymerase Chain Reaction , Rotavirus , Sensitivity and Specificity , Swine Diseases , Transmissible gastroenteritis virus , Animals , Swine , Real-Time Polymerase Chain Reaction/methods , Transmissible gastroenteritis virus/genetics , Transmissible gastroenteritis virus/isolation & purification , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/isolation & purification , Porcine epidemic diarrhea virus/classification , Swine Diseases/virology , Swine Diseases/diagnosis , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Gastroenteritis, Transmissible, of Swine/diagnosis , Gastroenteritis, Transmissible, of Swine/virology , Deltacoronavirus/genetics , Deltacoronavirus/isolation & purification , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/diagnosis , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus/classification , Feces/virology , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology
9.
Microb Pathog ; 190: 106612, 2024 May.
Article En | MEDLINE | ID: mdl-38467166

Rotavirus group A (RVA) is a main pathogen causing diarrheal diseases in humans and animals. Various genotypes are prevalent in the Chinese pig herd. The genetic diversity of RVA lead to distinctly characteristics. In the present study, a porcine RVA strain, named AHFY2022, was successfully isolated from the small intestine tissue of piglets with severe diarrhea. The AHFY2022 strain was identified by cytopathic effects (CPE) observation, indirect immunofluorescence assay (IFA), electron microscopy (EM), high-throughput sequencing, and pathogenesis to piglets. The genomic investigation using NGS data revealed that AHFY2022 exhibited the genotypes G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1, using the online platform the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv-brc.org/). Moreover, experimental inoculation in 5-day-old and 27-day-old piglets demonstrated that AHFY2022 caused severe diarrhea, fecal shedding, small intestinal villi damage, and colonization in all challenged piglets. Taken together, our results detailed the virological features of the porcine rotavirus G9P[23] from China, including the whole-genome sequences, genotypes, growth kinetics in MA104 cells and the pathogenicity in suckling piglets.


Diarrhea , Genome, Viral , Genotype , Phylogeny , Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus/classification , Rotavirus/pathogenicity , Swine , Rotavirus Infections/virology , Rotavirus Infections/veterinary , China , Swine Diseases/virology , Diarrhea/virology , Diarrhea/veterinary , Intestine, Small/virology , Intestine, Small/pathology , Feces/virology , High-Throughput Nucleotide Sequencing
10.
J Med Virol ; 95(8): e29028, 2023 08.
Article En | MEDLINE | ID: mdl-37573569

Rotavirus molecular surveillance remains important in the postvaccine era to monitor the changes in transmission patterns, identify vaccine-induced antigenic changes and discover potentially pathogenic vaccine-related strains. The Canadian province of Alberta introduced rotavirus vaccination into its provincial vaccination schedule in June 2015. To evaluate the impact of this program on stool rotavirus positivity rate, strain diversity, and seasonal trends, we analyzed a prospective cohort of children with acute gastroenteritis recruited between December 2014 and August 2018. We identified dynamic changes in rotavirus positivity and genotype trends during pre- and post-rotavirus vaccine introduction periods. Genotypes G9P[8], G1P[8], G2P[4], and G12P[8] predominated consecutively each season with overall lower rotavirus incidence rates in 2016 and 2017. The demographic and clinical features of rotavirus gastroenteritis were comparable among wild-type rotaviruses; however, children with G12P[8] infections were older (p < 0.001). Continued efforts to monitor changes in the molecular epidemiology of rotavirus using whole genome sequence characterization are needed to further understand the impact of the selection pressure of vaccination on rotavirus evolution.


Gastroenteritis , Rotavirus Infections , Rotavirus , Child , Child, Preschool , Female , Male , Alberta , Epidemiological Monitoring , Gastroenteritis/epidemiology , Gastroenteritis/virology , Incidence , Patient Acuity , Rotavirus/classification , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus Vaccines/administration & dosage , Humans
11.
Arch Virol ; 168(8): 215, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37524885

Reassortant DS-1-like rotavirus A strains have been shown to circulate widely in many countries around the world. In Russia, the prevalence of such strains remains unclear due to the preferred use of the traditional binary classification system. In this work, we obtained partial sequence data from all 11 genome segments and determined the full-genotype constellations of rare and reassortant rotaviruses circulating in Nizhny Novgorod in 2016-2019. DS-1-like G3P[8] and G8P[8] strains were found, reflecting the global trend. Most likely, these strains were introduced into the territory of Russia from other countries but subsequently underwent further evolutionary changes locally. G3P[8], G9P[8], and G12P[8] Wa-like strains of subgenotypic lineages that are unusual for the territory of Russia were also identified. Reassortant G2P[8], G4P[4], and G9P[4] strains with one Wa-like gene (VP4 or VP7) on a DS-1-like backbone were found, and these apparently had a local origin. Feline-like G3P[9] and G6P[9] strains were found to be phylogenetically close to BA222 isolated from a cat in Italy but carried some traces of reassortment with human strains from Russia and other countries. Thus, full-genotype determination of rotavirus A strains in Nizhny Novgorod has clarified some questions related to their origin and evolution.


Genotype , Reassortant Viruses , Rotavirus , Animals , Cats , Humans , Genome, Viral/genetics , Phylogeny , Rotavirus/classification , Rotavirus/genetics , Rotavirus Infections/virology , Russia , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification
12.
J Virol ; 96(16): e0062722, 2022 08 24.
Article En | MEDLINE | ID: mdl-35924923

Rotavirus live-attenuated vaccines, both mono- and pentavalent, generate broadly heterotypic protection. B-cells isolated from adults encode neutralizing antibodies, some with affinity for VP5*, that afford broad protection in mice. We have mapped the epitope of one such antibody by determining the high-resolution cryo-EM structure of its antigen-binding fragment (Fab) bound to the virion of a candidate vaccine strain, CDC-9. The Fab contacts both the distal end of a VP5* ß-barrel domain and the two VP8* lectin-like domains at the tip of a projecting spike. Its interactions with VP8* do not impinge on the likely receptor-binding site, suggesting that the mechanism of neutralization is at a step subsequent to initial attachment. We also examined structures of CDC-9 virions from two different stages of serial passaging. Nearly all the VP4 (cleaved to VP8*/VP5*) spikes on particles from the earlier passage (wild-type isolate) had transitioned from the "upright" conformation present on fully infectious virions to the "reversed" conformation that is probably the end state of membrane insertion, unable to mediate penetration, consistent with the very low in vitro infectivity of the wild-type isolate. About half the VP4 spikes were upright on particles from the later passage, which had recovered substantial in vitro infectivity but had acquired an attenuated phenotype in neonatal rats. A mutation in VP4 that occurred during passaging appears to stabilize the interface at the apex of the spike and could account for the greater stability of the upright spikes on the late-passage, attenuated isolate. IMPORTANCE Rotavirus live-attenuated vaccines generate broadly heterotypic protection, and B-cells isolated from adults encode antibodies that are broadly protective in mice. Determining the structural and mechanistic basis of broad protection can contribute to understanding the current limitations of vaccine efficacy in developing countries. The structure of an attenuated human rotavirus isolate (CDC-9) bound with the Fab fragment of a broadly heterotypic protective antibody shows that protection is probably due to inhibition of the conformational transition in the viral spike protein (VP4) critical for viral penetration, rather than to inhibition of receptor binding. A comparison of structures of CDC-9 virus particles at two stages of serial passaging supports a proposed mechanism for initial steps in rotavirus membrane penetration.


Broadly Neutralizing Antibodies , Capsid Proteins , Epitopes, B-Lymphocyte , Rotavirus , Vaccines, Attenuated , Virion , Animals , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/ultrastructure , Capsid Proteins/chemistry , Capsid Proteins/immunology , Capsid Proteins/ultrastructure , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/ultrastructure , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Mice , Protein Conformation , Rats , Rotavirus/chemistry , Rotavirus/classification , Rotavirus/immunology , Rotavirus/physiology , Serial Passage , Vaccines, Attenuated/chemistry , Vaccines, Attenuated/immunology , Vaccines, Attenuated/metabolism , Virion/immunology , Virion/metabolism , Virion/ultrastructure
13.
J Virol ; 96(15): e0055022, 2022 08 10.
Article En | MEDLINE | ID: mdl-35862708

The basis for rotavirus (RV) host range restriction (HRR) is not fully understood but is likely multigenic. RV genes encoding VP3, VP4, NSP1, NSP2, NSP3, and NSP4 have been associated with HRR in various studies. With the exception of NSP1, little is known about the relative contribution of the other RV genes to HRR. VP4 has been linked to HRR because it functions as the RV cell attachment protein, but its actual role in HRR has not been fully assessed. We generated a collection of recombinant RVs (rRVs) in an isogenic murine-like RV genetic background, harboring either heterologous or homologous VP4 genes from simian, bovine, porcine, human, and murine RV strains, and characterized these rRVs in vitro and in vivo. We found that a murine-like rRV encoding a simian VP4 was shed, spread to uninoculated littermates, and induced diarrhea comparably to rRV harboring a murine VP4. However, rRVs carrying VP4s from both bovine and porcine RVs had reduced diarrhea, but no change in fecal shedding was observed. Both diarrhea and shedding were reduced when VP4 originated from a human RV strain. rRVs harboring VP4s from human or bovine RVs did not transmit to uninoculated littermates. We also generated two rRVs harboring reciprocal chimeric murine or bovine VP4. Both chimeras replicated and caused disease as efficiently as the parental strain with a fully murine VP4. These data suggest that the genetic origin of VP4 partially modulates HRR in the suckling mouse and that both the VP8* and VP5* domains independently contribute to pathogenesis and transmission. IMPORTANCE Human group A rotaviruses (RVs) remain the most important cause of severe acute gastroenteritis among infants and young children worldwide despite the introduction of several safe and effective live attenuated vaccines. The lack of knowledge regarding fundamental aspects of RV biology, such as the genetic basis of host range restriction (HRR), has made it difficult to predictively and efficiently design improved, next-generation live attenuated rotavirus vaccines. Here, we engineered a collection of VP4 monoreassortant RVs to systematically explore the role of VP4 in replication, pathogenicity, and spread, as measures of HRR, in a suckling mouse model. The genetic and mechanistic bases of HRR have substantial clinical relevance given that this restriction forms the basis of attenuation for several replication-competent human RV vaccines. In addition, a better understanding of RV pathogenesis and the determinants of RV spread is likely to enhance our ability to improve antiviral drug and therapy development.


Capsid Proteins , Disease Models, Animal , Host Specificity , Rotavirus Infections , Rotavirus , Animals , Animals, Suckling , Capsid Proteins/metabolism , Cattle/virology , Diarrhea/veterinary , Diarrhea/virology , Haplorhini/virology , Humans , Hybridization, Genetic , Mice/virology , Rotavirus/classification , Rotavirus/pathogenicity , Rotavirus/physiology , Rotavirus Infections/transmission , Rotavirus Infections/veterinary , Rotavirus Infections/virology , Swine/virology , Vaccines, Attenuated , Virulence , Virus Replication/genetics
14.
PLoS One ; 17(2): e0264577, 2022.
Article En | MEDLINE | ID: mdl-35213667

Bovine rotavirus (BRV) is considered the leading cause of calf diarrhea worldwide, including Bangladesh. In this study we aimed to identify risk factors for BRV infection and determine the G and P genotypes of BRV strains in diarrheic calves. Fecal samples were collected from 200 diarrheic calves in three districts between January 2014 and October 2015. These samples were screened to detect the presence of BRV using rapid test-strips BIO K 152 (RTSBK). The RTSBK positive samples were further tested by polyacrylamide gel electrophoresis and the silver staining technique to detect rotavirus dsRNA. Risk factors were identified by multivariable logistic regression analysis. The G and P genotypes of BRV were determined by RT-PCR and sequencing. A phylogenetic tree was constructed based on the neighbor-joining method using CLC sequence viewer 8.0. About 23% of the diarrheic calves were BRV positive. The odds of BRV infection were 3.8- (95% confidence interval [95% CI]: 1.0-14.7) and 3.9-times (95% CI:1.1-14.2) higher in Barisal and Madaripur districts, respectively, than Sirrajganj. The risk of BRV infection was 3.1-times (95% CI: 1.5-6.5) higher in calves aged ≤ 5 weeks than those aged >5 weeks. Moreover, the risk of BRV infection was 2.6-times (95% CI:1.1-5.8) higher in crossbred (Holstein Friesian, Shahiwal) than indigenous calves. G6P[11] was the predominant genotype (94.4%), followed by G10P[11] (5.6%). The BRV G6 strains were found to be closest (98.9-99.9%) to Indian strains, and BRV G10 strains showed 99.9% identities with Indian strain. The VP4 gene of all P[11] strains showed >90% identities to each other and also with Indian strains. The most frequently identified BRV genotype was G6P[11]. About 23% of calf diarrhea cases were associated with BRV. To control disease, high-risk areas and younger crossbred calves should be targeted for surveillance and management. The predominant genotype could be utilized as the future vaccine candidate or vaccines with the dominant genotype should be used to control BRV diarrhea in Bangladesh.


Cattle Diseases/pathology , Diarrhea/pathology , Rotavirus Infections/diagnosis , Rotavirus/genetics , Animals , Bangladesh/epidemiology , Capsid Proteins/classification , Capsid Proteins/genetics , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/virology , Diarrhea/epidemiology , Diarrhea/virology , Feces/virology , Female , Genotype , Male , Phylogeny , Prevalence , RNA, Viral/analysis , RNA, Viral/isolation & purification , RNA, Viral/metabolism , Risk Factors , Rotavirus/classification , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/virology
15.
J Gen Virol ; 103(2)2022 02.
Article En | MEDLINE | ID: mdl-35175915

Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.


Bird Diseases/virology , Genome, Viral , RNA, Viral , Rotavirus Infections/virology , Rotavirus/classification , Animals , Birds
16.
Elife ; 112022 01 31.
Article En | MEDLINE | ID: mdl-35098923

N6-methyladenosine (m6A) is an abundant mRNA modification and affects many biological processes. However, how m6A levels are regulated during physiological or pathological processes such as virus infections, and the in vivo function of m6A in the intestinal immune defense against virus infections are largely unknown. Here, we uncover a novel antiviral function of m6A modification during rotavirus (RV) infection in small bowel intestinal epithelial cells (IECs). We found that rotavirus infection induced global m6A modifications on mRNA transcripts by down-regulating the m6a eraser ALKBH5. Mice lacking the m6A writer enzymes METTL3 in IECs (Mettl3ΔIEC) were resistant to RV infection and showed increased expression of interferons (IFNs) and IFN-stimulated genes (ISGs). Using RNA-sequencing and m6A RNA immuno-precipitation (RIP)-sequencing, we identified IRF7, a master regulator of IFN responses, as one of the primary m6A targets during virus infection. In the absence of METTL3, IECs showed increased Irf7 mRNA stability and enhanced type I and III IFN expression. Deficiency in IRF7 attenuated the elevated expression of IFNs and ISGs and restored susceptibility to RV infection in Mettl3ΔIEC mice. Moreover, the global m6A modification on mRNA transcripts declined with age in mice, with a significant drop from 2 weeks to 3 weeks post birth, which likely has broad implications for the development of intestinal immune system against enteric viruses early in life. Collectively, we demonstrated a novel host m6A-IRF7-IFN antiviral signaling cascade that restricts rotavirus infection in vivo.


Intestines/immunology , Rotavirus Infections/immunology , Rotavirus/classification , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Animals , Cell Line , Genetic Testing , Humans , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Inbred Strains , Mice, Knockout , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Viral Load
17.
J Med Virol ; 94(2): 610-615, 2022 02.
Article En | MEDLINE | ID: mdl-34427937

Rotaviruses belonging to species A (RVA) remain among the most common causes of severe gastroenteritis in children aged <5 years, leading to substantial morbidity and mortality worldwide. Genome reassortment events between two human strains or human and animal strains represent one of the mechanisms which appear to generate the broad genetic variability of circulating. According to a nucleotide, sequence-based classification system, RVA strains are currently classified into three genotype constellations including Wa-like (genogroup I), DS-1-like (genogroup II), and AU-like (genogroup III). The present study reports the detection of an unusual RVA G4P[6] strain (coded as strain HSE005), which might have originated from a natural reassortment event between human and animal RVA strains. Molecular characterization of this isolate showed that it belonged to genogroup II, genotype G4P[6]. In addition, two genes (VP3 and NSP4) of this strain denoted evidence of reassortment events involving strains of distinct zoonotic evolutionary origins. Therefore, we propose that a new G4P[6] strain was identified, highlighting a possible first zoonotic transmission including a reassortment event that involved the VP3 gene.


Gastroenteritis/virology , Genotype , Rotavirus/genetics , Brazil , High-Throughput Nucleotide Sequencing , Humans , Infant , RNA, Viral , Rotavirus/classification , Rotavirus/isolation & purification
18.
Viruses ; 13(12)2021 12 13.
Article En | MEDLINE | ID: mdl-34960760

Rotavirus is the major cause of severe gastroenteritis in children aged <5 years. Introduction of the G1P[8] Rotarix® rotavirus vaccine in Malawi in 2012 has reduced rotavirus-associated hospitalisations and diarrhoeal mortality. However, the impact of rotavirus vaccine on the severity of gastroenteritis presented in children requiring hospitalisation remains unknown. We conducted a hospital-based surveillance study to assess the impact of Rotarix® vaccination on the severity of gastroenteritis presented by Malawian children. Stool samples were collected from children aged <5 years who required hospitalisation with acute gastroenteritis from December 2011 to October 2019. Gastroenteritis severity was determined using Ruuska and Vesikari scores. Rotavirus was detected using enzyme immunoassay. Rotavirus genotypes were determined using nested RT-PCR. Associations between Rotarix® vaccination and gastroenteritis severity were investigated using adjusted linear regression. In total, 3159 children were enrolled. After adjusting for mid-upper arm circumference (MUAC), age, gender and receipt of other vaccines, all-cause gastroenteritis severity scores were 2.21 units lower (p < 0.001) among Rotarix®-vaccinated (n = 2224) compared to Rotarix®-unvaccinated children (n = 935). The reduction in severity score was observed against every rotavirus genotype, although the magnitude was smaller among those infected with G12P[6] compared to the remaining genotypes (p = 0.011). Each one-year increment in age was associated with a decrease of 0.43 severity score (p < 0.001). Our findings provide additional evidence on the impact of Rotarix® in Malawi, lending further support to Malawi's Rotarix® programme.


Gastroenteritis/prevention & control , Rotavirus Infections/prevention & control , Rotavirus Vaccines/administration & dosage , Rotavirus/immunology , Child, Preschool , Feces/virology , Female , Gastroenteritis/epidemiology , Gastroenteritis/pathology , Gastroenteritis/virology , Genotype , Hospitalization , Humans , Infant , Malawi/epidemiology , Male , Rotavirus/classification , Rotavirus/genetics , Rotavirus/isolation & purification , Rotavirus Infections/epidemiology , Rotavirus Infections/pathology , Rotavirus Infections/virology , Severity of Illness Index , Vaccination , Vaccines, Attenuated/administration & dosage
19.
Pediatr Infect Dis J ; 40(12): 1135-1143, 2021 12 01.
Article En | MEDLINE | ID: mdl-34870393

BACKGROUND: Rotavirus causes 215,000 deaths from severe childhood diarrhea annually. Concerns exist that a monovalent vaccine (RV1) and a pentavalent vaccine (RV5) may be less effective against rotavirus strains not contained in the vaccines. We estimated the vaccine effectiveness (VE) of RV1 and RV5 against severe rotavirus gastroenteritis caused by vaccine (homotypic) and nonvaccine (partially and fully heterotypic) strains. METHODS: After conducting a systematic review, we meta-analyzed 31 case-control studies (N = 27,293) conducted between 2006 and 2020 using a random-effects regression model. RESULTS: In high-income countries, RV1 VE was 10% lower against partially heterotypic (P = 0.04) and fully heterotypic (P = 0.10) compared with homotypic strains (homotypic VE: 90% [95% confidence intervals (CI): 82-94]; partially heterotypic VE: 79% [95% CI: 71-85]; fully heterotypic VE: 80% [95% CI: 65-88]). In middle-income countries, RV1 VE was 14-16% lower against partially heterotypic (P = 0.06) and fully heterotypic (P = 0.04) compared with homotypic strains (homotypic VE: 81% [95% CI: 69-88]; partially heterotypic VE: 67% [95% CI: 54-76]; fully heterotypic VE: 65% [95% CI: 51-75]). Strain-specific RV5 VE differences were less pronounced, and primarily derived from high-income countries. Limited data were available from low-income countries. CONCLUSIONS: Vaccine effectiveness of RV1 and RV5 was somewhat lower against nonvaccine than vaccine strains. Ongoing surveillance is important to continue long-term monitoring for strain replacement, particularly in low-income settings where data are limited.


Rotavirus Infections/prevention & control , Rotavirus Vaccines/immunology , Rotavirus/classification , Rotavirus/immunology , Vaccine Efficacy , Case-Control Studies , Child , Diarrhea/virology , Hospitalization , Humans , Infant , Rotavirus/genetics , Rotavirus Infections/virology , Rotavirus Vaccines/administration & dosage , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
20.
Infect Genet Evol ; 96: 105133, 2021 12.
Article En | MEDLINE | ID: mdl-34767977

Human rotavirus strains having the unconventional G4P[6] genotype have been sporadically identified in diarrheic patients in different parts of the world. However, the whole genome of only one human G4P[6] strain from Africa (central Africa) has been sequenced and analyzed, and thus the exact origin and evolutionary pattern of African G4P[6] strains remain to be elucidated. In this study, we characterized the full genome of an African G4P[6] strain (RVA/Human-wt/KEN/KCH148/2019/G4P[6]) identified in a stool specimen from a diarrheic child in Kenya. Full genome analysis of strain KCH148 revealed a unique Wa-like genogroup constellation: G4-P[6]-I1-R1-C1-M1-A1-N1-T7-E1-H1. NSP3 genotype T7 is commonly found in porcine rotavirus strains. Furthermore, phylogenetic analysis showed that 10 of the 11 genes of strain KCH148 (VP7, VP4, VP6, VP1-VP3, NSP1, and NSP3-NSP5) appeared to be of porcine origin, the remaining NSP2 gene appearing to be of human origin. Therefore, strain KCH148 was found to have a porcine rotavirus backbone and thus is likely to be of porcine origin. Furthermore, strain KCH148 is assumed to have been derived through interspecies transmission and reassortment events involving porcine and human rotavirus strains. To our knowledge, this is the first report on full genome-based characterization of a human G4P[6] strain from east Africa. Our observations demonstrated the diversity of human G4P[6] strains in Africa, and provide important insights into the origin and evolutionary pattern of zoonotic G4P[6] strains on the African continent.


Diarrhea/virology , Genotype , Rotavirus Infections/virology , Rotavirus/isolation & purification , Swine Diseases/virology , Viral Zoonoses/virology , Animals , Child, Preschool , Female , Genome, Viral , Humans , Infant , Male , Rotavirus/classification , Rotavirus Infections/veterinary , Swine
...