Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.413
Filter
1.
Sci Rep ; 14(1): 15007, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951654

ABSTRACT

Salivary gland squamous cell carcinomas (SG-SCCs) constitute a rare type of head and neck cancer which is linked to poor prognosis. Due to their low frequency, the molecular mechanisms responsible for their aggressiveness are poorly understood. In this work we studied the role of the phosphatase DUSP1, a negative regulator of MAPK activity, in controlling SG-SCC progression. We generated DUSP1 KO clones in A253 human cells. These clones showed a reduced ability to grow in 2D, self-renew in ECM matrices and to form tumors in immunodeficient mice. This was caused by an overactivation of the stress and apoptosis kinase JNK1/2 in DUSP1-/+ clones. Interestingly, RNAseq analysis revealed that the expression of SOX2, a well-known self-renewal gene was decreased at the mRNA and protein levels in DUSP1-/+ cells. Unexpectedly, CRISPR-KO of SOX2 did not recapitulate DUSP1-/+ phenotype, and SOX2-null cells had an enhanced ability to self-renew and to form tumors in mice. Gene expression analysis demonstrated that SOX2-null cells have a decreased squamous differentiation profile -losing TP63 expression- and an increased migratory phenotype, with an enhanced epithelial to mesenchymal transition signature. In summary, our data indicates that DUSP1 and SOX2 have opposite functions in SG-SCC, being DUSP1 necessary for tumor growth and SOX2 dispensable showing a tumor suppressor function. Our data suggest that the combined expression of SOX2 and DUSP1 could be a useful biomarker to predict progression in patients with SG-SCCs.


Subject(s)
Carcinoma, Squamous Cell , Disease Progression , Dual Specificity Phosphatase 1 , SOXB1 Transcription Factors , Salivary Gland Neoplasms , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Humans , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Mice , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/metabolism , Cell Line, Tumor , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics
2.
Cancer Biol Ther ; 25(1): 2373447, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38975736

ABSTRACT

Lung squamous cell carcinoma (LSCC) is a deadly cancer in the world. Histone demethylase Jmjd2c is a key epigenetic regulator in various tumors, while the molecular mechanism underlying Jmjd2c regulatory in LSCC is still unclear. We used the aldehyde dehydrogenasebright (ALDHbri+) subtype as a research model for cancer stem cells (CSCs) in LSCC and detected the sphere formation ability and the proportion of ALDHbri+ CSCs with Jmjd2c interference and caffeic acid (CA) treatment. Additionally, we carried out bioinformatic analysis on the expression file of Jmjd2c RNAi mice and performed western blotting, qRT-PCR, Co-IP and GST pull-down assays to confirm the bioinformatic findings. Moreover, we generated Jmjd2c-silenced and Jmjd2c-SOX2-silenced ALDHbri+ tumor-bearing BALB/c nude mice to detect the effects on tumor progression. The results showed that Jmjd2c downregulation inhibited the sphere formation and the proportion of ALDHbri+ CSCs. The SOX2 decreased expression significantly in Jmjd2c RNAi mice, and they were positively co-expressed according to the bioinformatic analysis. In addition, SOX2 expression decreased in Jmjd2c shRNA ALDHbri+ CSCs, Jmjd2c and SOX2 proteins interacted with each other. Furthermore, Jmjd2c interference revealed significant blocking effect, and Jmjd2c-SOX2 interference contributed even stronger inhibition on ALDHbri+ tumor progression. The Jmjd2c and SOX2 levels were closely related to the development and prognosis of LSCC patients. This study indicated that Jmjd2c played key roles on maintaining ALDHbri+ CSC activity in LSCC by interacting with transcription factor SOX2. Jmjd2c might be a novel molecule for therapeutic targets and biomarkers in the diagnosis and clinical treatment of lung cancer.


Subject(s)
Carcinoma, Squamous Cell , Jumonji Domain-Containing Histone Demethylases , Lung Neoplasms , Neoplastic Stem Cells , SOXB1 Transcription Factors , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Animals , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Humans , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Mice, Nude , Mice, Inbred BALB C , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Female , Male
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 329-333, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953256

ABSTRACT

Objective To evaluate the value of SOX1 and PAX1 gene methylation detection in the secondary triage of high-grade cervical lesions.Methods Exfoliated cervical cells were collected from 122 patients tested positive for human papilloma virus (HPV) and subjected to thin-prep cytologic test (TCT) and SOX1/PAX1 gene methylation tests.Results The HPV test combined with TCT showed the sensitivity of 95.24% and the specificity of 23.75% for detecting cervical intraepithelial neoplasia (CIN) grade 2 and above (CIN2+).After the addition of the SOX1/PAX1 gene methylation detection in secondary triage,the sensitivity for detecting CIN2+ was 83.33%,which had no statistically significant difference from the sensitivity of TCT combined with HPV test (P=0.078).However,the specificity reached 77.50%,which was significantly higher than that of HPV test combined with TCT (P<0.001).The SOX1/PAX1 gene methylation level in the CIN2+ group was higher than those in the normal cervical tissue and the CIN1 group(P<0.001).The cut-off values of SOX1 and PAX1 gene methylation for CIN2+ detection were -11.81 and -11.98,respectively.Conclusion Adding the detection of SOX1/PAX1 gene methylation in secondary triage significantly improves the efficiency and accuracy of CIN2+ detection.


Subject(s)
DNA Methylation , Paired Box Transcription Factors , SOXB1 Transcription Factors , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Female , Paired Box Transcription Factors/genetics , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/virology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/virology , SOXB1 Transcription Factors/genetics , Adult , Middle Aged , Sensitivity and Specificity , Young Adult
4.
Sci Rep ; 14(1): 14900, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942903

ABSTRACT

Eukaryotic cells can synthesize formyl-methionine (fMet)-containing proteins not only in mitochondria but also in the cytosol to some extent. Our previous study revealed substantial upregulation of N-terminal (Nt)-fMet-containing proteins in the cytosol of SW480 colorectal cancer cells. However, the functional and pathophysiological implications remain unclear. Here, we demonstrated that removal of the Nt-formyl moiety of Nt-fMet-containing proteins (via expressing Escherichia coli PDF peptide deformylase) resulted in a dramatic increase in the proliferation of SW480 colorectal cancer cells. This proliferation coincided with the acquisition of cancer stem cell features, including reduced cell size, enhanced self-renewal capacity, and elevated levels of the cancer stem cell surface marker CD24 and pluripotent transcription factor SOX2. Furthermore, deformylation of Nt-fMet-containing proteins promoted the tumorigenicity of SW480 colorectal cancer cells in an in vivo xenograft mouse model. Taken together, these findings suggest that cytosolic deformylation has a tumor-enhancing effect, highlighting its therapeutic potential for cancer treatment.


Subject(s)
Amidohydrolases , Cell Proliferation , Cytosol , Neoplastic Stem Cells , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Cytosol/metabolism , Mice , Cell Line, Tumor , Amidohydrolases/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , CD24 Antigen/metabolism , SOXB1 Transcription Factors/metabolism , Disease Progression , Methionine/metabolism , Methionine/analogs & derivatives
5.
Funct Integr Genomics ; 24(3): 103, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38913281

ABSTRACT

Breast cancer severely affects women health. 70% of breast cancer are estrogen receptor positive. Breast cancer stem cells are a group of tumor with plasticity, causing tumor relapse and metastasis. RUNX3 is a tumor suppressor frequently inactivated in estrogen receptor positive breast cancer. However, the mechanism of how RUNX3 is involved in the regualation of cancer stem cell traits in estrogen receptor positive breast cancer remains elusive. In this study, we utilized cut-tag assay to investigate the binding profile RUNX3 in BT474 and T47D cell, and confirmed EXOSC4 as the bona-fide target of RUNX3; RUNX3 could bind to the promoter are of EXOSC4 to suppress its expression. Furthermore, EXOSC4 could increase the colony formation, cell invasion and mammosphere formation ability of breast cancer cells and upregulate the the expression of SOX2 and ALDH1. Consistent with these findings, EXOSC4 was associated with poorer survival for Luminal B/Her2 breast cancer patiens. At last, we confirmed that EXOSC4 mediated the tumor suppressive role of RUNX3 in breast cancer cells. In conclusion, we demonstrate that RUNX3 directly binds to the promoter region of EXOSC4, leading to the suppression of EXOSC4 expression and exerting a tumor-suppressive effect in estrogen receptor postivive breast cancer cells.


Subject(s)
Breast Neoplasms , Core Binding Factor Alpha 3 Subunit , Promoter Regions, Genetic , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
6.
In Vivo ; 38(4): 1767-1774, 2024.
Article in English | MEDLINE | ID: mdl-38936924

ABSTRACT

BACKGROUND/AIM: Dermal papilla (DP) stem cells are known for their remarkable regenerative capacity, making them a valuable model for assessing the effects of natural products on cellular processes, including stemness, and autophagy. MATERIALS AND METHODS: Autophagy and stemness characteristics were assessed using real-time RT-PCR to analyze mRNA levels, along with immunofluorescence and western blot techniques for protein level evaluation. RESULTS: Butterfly Pea, Emblica Fruits, Kaffir Lime, and Thunbergia Laurifolia extracts induced autophagy in DP cells. Kaffir Lime-treated cells exhibited increase in the OCT4, NANOG, and SOX2 mRNA (6-, 5, and 5.5-fold, respectively), and protein levels (4-, 3-, and 1.5-fold, respectively). All extracts activated the survival protein kinase B (Akt) in DP cells. CONCLUSION: Natural products are a promising source for promoting hair growth by rejuvenating hair stem cells.


Subject(s)
Autophagy , Biological Products , Hair Follicle , Plant Extracts , Stem Cells , Autophagy/drug effects , Humans , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Biological Products/pharmacology , Plant Extracts/pharmacology , Hair Follicle/drug effects , Hair Follicle/cytology , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Cell Differentiation/drug effects
7.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927713

ABSTRACT

Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.


Subject(s)
Carcinogenesis , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Carcinogenesis/genetics , Epithelial-Mesenchymal Transition/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Animals
8.
Biosci Rep ; 44(7)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38864530

ABSTRACT

Tamoxifen (TAM) is a key player in estrogen receptor-positive (ER+) breast cancer (BC); however, ∼30% of patients experience relapse and a lower survival rate due to TAM resistance. TAM resistance was related to the over expression of SOX-2 gene, which is regulated by the E2F3 transcription factor in the Wnt signaling pathway. It was suggested that SOX-2 overexpression was suppressed by dexamethasone (DEX), a glucocorticoid commonly prescribed to BC patients. The aim of the present study is to explore the effect of combining DEX and TAM on the inhibition of TAM-resistant LCC-2 cells (TAMR-1) through modulating the E2F3/SOX-2-mediated Wnt signaling pathway. The effect of the combination therapy on MCF-7 and TAMR-1 cell viability was assessed. Drug interactions were analyzed using CompuSyn and SynergyFinder softwares. Cell cycle distribution, apoptotic protein expression, gene expression levels of SOX-2 and E2F3, and cell migration were also assessed. Combining DEX with TAM led to synergistic inhibition of TAMR-1 cell proliferation and migration, induced apoptosis, reduced SOX-2 and E2F3 expression and was also associated with S and G2-M phase arrest. Therefore, combining DEX with TAM may present an effective therapeutic option to overcome TAM resistance, by targeting the E2F3/SOX-2/Wnt signaling pathway, in addition to its anti-inflammatory effect.


Subject(s)
Breast Neoplasms , Cell Proliferation , Dexamethasone , Drug Resistance, Neoplasm , Drug Synergism , Tamoxifen , Humans , Tamoxifen/pharmacology , Dexamethasone/pharmacology , Drug Resistance, Neoplasm/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , MCF-7 Cells , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Wnt Signaling Pathway/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , E2F3 Transcription Factor/metabolism , E2F3 Transcription Factor/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics
9.
Sci Rep ; 14(1): 13661, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871732

ABSTRACT

Over the past decades, the immune responses have been suspected of participating in the mechanisms for epilepsy. To assess the immune related pathway in temporal lobe epilepsy (TLE), we explored the altered immune pathways in TLE patients with and without hippocampal sclerosis (HS). We analyzed RNA-seq data from 3 TLE-HS and 3 TLE-nonHS patients, including identification of differentially expressed RNA, function pathway enrichment, the protein-protein interaction network and construction of ceRNA regulatory network. We illustrated the immune related landscape of molecules and pathways on human TLE-HS. Also, we identified several differential immune related genes like HSP90AA1 and SOD1 in TLE-HS patients. Further ceRNA regulatory network analysis found SOX2-OT connected to miR-671-5p and upregulated the target gene SPP1 in TLE-HS patients. Also, we identified both SOX2-OT and SPP1 were significantly upregulated in five different databases including TLE-HS patients and animal models. Our findings established the first immune related genes and possible regulatory pathways in TLE-HS patients and animal models, which provided a novel insight into disease pathogenesis in both patients and animal models. The immune related SOX2-OT/miR-671-5p/SPP1 axis may be the potential therapeutic target for TLE-HS.


Subject(s)
Epilepsy, Temporal Lobe , Gene Regulatory Networks , Hippocampal Sclerosis , MicroRNAs , SOXB1 Transcription Factors , Adult , Animals , Female , Humans , Male , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/immunology , Epilepsy, Temporal Lobe/physiopathology , Gene Expression Profiling , Hippocampal Sclerosis/immunology , Hippocampal Sclerosis/physiopathology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteopontin/genetics , Osteopontin/metabolism , Protein Interaction Maps , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism
10.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892233

ABSTRACT

In this immunohistological study on the peripheral retina of 3-year-old beagle dogs, excised retina specimens were immunostained with antibodies against nestin, Oct4, Nanog, Sox2, CDX2, cytokeratin 18 (CK 18), RPE65, and YAP1, as well as hematoxylin and DAPI, two nuclear stains. Our findings revealed solitary cysts of various sizes in the inner retina. Intriguingly, a mass of small round cells with scant cytoplasms was observed in the cavity of small cysts, while many disorganized cells partially occupied the cavity of the large cysts. The small cysts were strongly positive for nestin, Oct4, Nanog, Sox2, CDX2, CK18, and YAP1. RPE65-positive cells were exclusively observed in the tissue surrounding the cysts. Since RPE65 is a specific marker of retinal pigment epithelial (RPE) cells, the surrounding cells of the peripheral cysts were presumably derived from RPE cells that migrated intraretinally. In the small cysts, intense positive staining for nestin, a marker of retinal stem cells, seemed to indicate that they were derived from retinal stem cells. The morphology and positive staining for markers of blastocyst and RPE cells indicated that the small cysts may have formed structures resembling the blastocyst, possibly caused by the interaction between retinal stem cells and migrated RPE cells.


Subject(s)
Retina , Retinal Pigment Epithelium , Animals , Dogs , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , Nestin/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Biomarkers/metabolism , SOXB1 Transcription Factors/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Immunohistochemistry , Dog Diseases/metabolism , Dog Diseases/pathology
11.
Cells ; 13(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38891067

ABSTRACT

Rapid information processing in the central nervous system requires the myelination of axons by oligodendrocytes. The transcription factor Sox2 and its close relative Sox3 redundantly regulate the development of myelin-forming oligodendrocytes, but little is known about the underlying molecular mechanisms. Here, we characterized the expression profile of cultured oligodendroglial cells during early differentiation and identified Bcas1, Enpp6, Zfp488 and Nkx2.2 as major downregulated genes upon Sox2 and Sox3 deletion. An analysis of mice with oligodendrocyte-specific deletion of Sox2 and Sox3 validated all four genes as downstream targets in vivo. Additional functional assays identified regulatory regions in the vicinity of each gene that are responsive to and bind both Sox proteins. Bcas1, Enpp6, Zfp488 and Nkx2.2 therefore likely represent direct target genes and major effectors of Sox2 and Sox3. Considering the preferential expression and role of these genes in premyelinating oligodendrocytes, our findings suggest that Sox2 and Sox3 impact oligodendroglial development at the premyelinating stage with Bcas1, Enpp6, Zfp488 and Nkx2.2 as their major effectors.


Subject(s)
Cell Differentiation , Homeobox Protein Nkx-2.2 , Oligodendroglia , SOXB1 Transcription Factors , Transcription Factors , Animals , Mice , Cell Differentiation/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Oligodendroglia/metabolism , Oligodendroglia/cytology , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
12.
Nat Commun ; 15(1): 4963, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862535

ABSTRACT

Image-based lineage tracing enables tissue turnover kinetics and lineage potentials of different adult cell populations to be investigated. Previously, we reported a genetic mouse model system, Red2Onco, which ectopically expressed mutated oncogenes together with red fluorescent proteins (RFP). This system enabled the expansion kinetics and neighboring effects of oncogenic clones to be dissected. We now report Red2Flpe-SCON: a mosaic knockout system that uses multicolor reporters to label both mutant and wild-type cells. We develop the Red2Flpe mouse line for red clone-specific Flpe expression, as well as the FRT-based SCON (Short Conditional IntrON) method to facilitate tunable conditional mosaic knockouts in mice. We use the Red2Flpe-SCON method to study Sox2 mutant clonal analysis in the esophageal epithelium of adult mice which reveal that the stem cell gene, Sox2, is less essential for adult stem cell maintenance itself, but rather for stem cell proliferation and differentiation.


Subject(s)
Luminescent Proteins , Mice, Knockout , Red Fluorescent Protein , SOXB1 Transcription Factors , Animals , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Mice , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mosaicism , Cell Differentiation , Cell Proliferation/genetics , Esophagus/metabolism , Esophagus/pathology , Cell Lineage/genetics , Introns/genetics , Female , Male
13.
J Med Virol ; 96(5): e29521, 2024 May.
Article in English | MEDLINE | ID: mdl-38727013

ABSTRACT

Methylation panels, tools for investigating epigenetic changes associated with diseases like cancer, can identify DNA methylation patterns indicative of disease, providing diagnostic or prognostic insights. However, the application of methylation panels focusing on the sex-determining region Y-box 1 (SOX1) and paired box gene 1 (PAX1) genes for diagnosing cervical lesions is under-researched. This study aims to examine the diagnostic performance of PAX1/SOX1 gene methylation as a marker for cervical precancerous lesions and its potential application in triage diagnosis. From September 2022 to April 2023, 181 patients with abnormal HPV-DNA tests or cytological exam results requiring colposcopy were studied at Hubei Maternal and Child Health Hospital, China. Data were collected from colposcopy, cytology, HPV-DNA tests, and PAX1/SOX1 methylation detection. Patients were categorized as control, cervical intraepithelial neoplasia Grade 1 (CIN1), Grade 2 (CIN2), Grade 3 (CIN3), and cervical cancer (CC) groups based on histopathology. We performed HPV testing, liquid-based cytology, and PAX1/SOX1 gene methylation testing. We evaluated the diagnostic value of methylation detection in cervical cancer using DNA methylation positivity rate, sensitivity, specificity, and area under the curve (AUC), and explored its potential for triage diagnosis. PAX1/SOX1 methylation positivity rates were: control 17.1%, CIN1 22.5%, CIN2 100.0%, CIN3 90.0%, and CC 100.0%. The AUC values for PAX1 gene methylation detection in diagnosing CIN1+, CIN2+, and CIN3+ were 0.52 (95% confidence interval [CI]: 0.43-0.62), 0.88 (95% CI: 0.80-0.97), and 0.88 (95% CI: 0.75-1.00), respectively. Corresponding AUC values for SOX1 gene methylation detection were 0.47 (95% CI: 0.40-0.58), 0.80 (95% CI: 0.68-0.93), and 0.92 (95% CI: 0.811-1.00), respectively. In HPV16/18-negative patients, methylation detection showed sensitivity of 32.4% and specificity of 83.7% for CIN1+. For CIN2+ and CIN3+, sensitivity was all 100%, with specificities of 83.0% and 81.1%. Among the patients who underwent colposcopy examination, 166 cases had cytological examination results ≤ASCUS, of which 37 cases were positive for methylation, and the colposcopy referral rate was 22.29%. PAX1/SOX1 gene methylation detection exhibits strong diagnostic efficacy for cervical precancerous lesions and holds significant value in triage diagnosis.


Subject(s)
DNA Methylation , Paired Box Transcription Factors , Papillomavirus Infections , SOXB1 Transcription Factors , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Adult , Female , Humans , Middle Aged , Young Adult , Biomarkers, Tumor/genetics , China , Colposcopy , Early Detection of Cancer/methods , Paired Box Transcription Factors/genetics , Papillomavirus Infections/diagnosis , Papillomavirus Infections/virology , Papillomavirus Infections/genetics , Precancerous Conditions/diagnosis , Precancerous Conditions/genetics , Sensitivity and Specificity , SOXB1 Transcription Factors/genetics , Triage/methods , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/virology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics
14.
Sci Rep ; 14(1): 11013, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745039

ABSTRACT

Cancer Stem Cells presumably drive tumor growth and resistance to conventional cancer treatments. From a previous computational model, we inferred that these cells are not uniformly distributed in the bulk of a tumorsphere. To confirm this result, we cultivated tumorspheres enriched in stem cells, and performed immunofluorescent detection of the stemness marker SOX2 using confocal microscopy. In this article, we present an image processing method that reconstructs the amount and location of the Cancer Stem Cells in the spheroids. Its advantage is the use of a statistical criterion to classify the cells in Stem and Differentiated, instead of setting an arbitrary threshold. Moreover, the analysis of the experimental images presented in this work agrees with the results from our computational models, thus enforcing the notion that the distribution of Cancer Stem Cells in a tumorsphere is non-homogeneous. Additionally, the method presented here provides a useful tool for analyzing any image in which different kinds of cells are stained with different markers.


Subject(s)
Neoplastic Stem Cells , Spheroids, Cellular , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , SOXB1 Transcription Factors/metabolism , Image Processing, Computer-Assisted/methods , Microscopy, Confocal , Cell Line, Tumor
15.
Mol Genet Genomics ; 299(1): 53, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753163

ABSTRACT

SoxB subfamily is an important branch of Sox family and plays a key role in animal physiological process, but little is known about their function in planarian regeneration. This study aims to evaluate the function of DjSoxB family genes in intact and regenerating planarians Dugesia japonica. Here, we amplify the full-length cDNA of DjSoxB1 and DjSoxB2 in D. japonica by rapid amplification of the cDNA ends (RACE), detect the expression of DjSoxB family genes in planarian. The results show that DjSoxBs are expressed in parenchymal tissue and the hybridization signals partially disappear after irradiation indicates DjSoxB family genes are expressed in neoblasts. After the RNA interference (RNAi) of DjSoxB1, DjSoxB2 and DjSoxB3 separately, the numbers of proliferative cells are all reduced that causes planarians show slower growth of blastema in the early stage of regeneration, and nerves of planarians are affected that the movement speed of planarians decreases in varying degrees. Specially, planarians in the DjSoxB3 RNAi group show shrinkage and twisting. Overall, this study reveals that DjSoxB family genes play a role in cell proliferation during regeneration. They also play an important role in the maintenance of normal nerve function and nerve regeneration. These results provide directions for the functional study of SoxB family genes and provide an important foundation for planarian regeneration.


Subject(s)
Planarians , Regeneration , Animals , Planarians/genetics , Planarians/physiology , Regeneration/genetics , RNA Interference , Cell Proliferation/genetics , Helminth Proteins/genetics , Helminth Proteins/metabolism , SOXB1 Transcription Factors/genetics
16.
Mol Biol Rep ; 51(1): 691, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796671

ABSTRACT

BACKGROUND: Altered glycosylation plays a role in carcinogenesis. GALNT14 promotes cancer stem-like properties and drug resistance. GDF-15 is known to induces drug resistance and stemness markers for maintenance of breast cancer (BC) stem-like cell state. Currently there is lack of data on association of GDF-15 and GALNTs. In this study, the expression and interaction of GALNT14 and GDF-15 with stemness (OCT4 and SOX2) and drug resistance (ABCC5) markers were evaluated in BC. METHODS: We investigated tumour tissue from 30 BC patients and adjacent non-tumour tissues. Expression of serum GALNT14 from BC patients and matched healthy controls was evaluated. Expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin in BC tissue was determined by RT-PCR. Knockdown of GALNT14 and GDF-15 in the MCF-7 cell line was done through siRNA, gene expression and protein expression of ß-catenin by western blot were determined. RESULTS: A significant increase in the expression of GALNT14, GDF-15, OCT4, SOX2, ABCC5, and ß-catenin was observed in BC tumour tissues compared to adjacent non-tumour tissues. The serum level of GALNT14 was significantly high in BC patients (80.7 ± 65.3 pg/ml) compared to healthy controls (12.2 ± 9.12 pg/ml) (p < 0.000). To further analyse the signalling pathway involved in BC stemness and drug resistance, GALNT14 and GDF-15 were knocked down in the MCF-7 cell line, and it was observed that after knockdown, the expression level of OCT4, SOX2, ABCC5, and ß-catenin was decreased, and co-knockdown with GALNT14 and GDF-15 further decreased the expression of genes. CONCLUSION: It can be concluded that GALNT14, in association with GDF-15, promotes stemness and intrinsic drug resistance in BC, possibly through the ß-catenin signalling pathway.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Growth Differentiation Factor 15 , N-Acetylgalactosaminyltransferases , Neoplastic Stem Cells , beta Catenin , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Drug Resistance, Neoplasm/genetics , beta Catenin/metabolism , beta Catenin/genetics , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , MCF-7 Cells , Middle Aged , Neoplastic Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , Adult , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Signal Transduction , Wnt Signaling Pathway/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Cell Line, Tumor , Aged
17.
Stem Cell Reports ; 19(5): 710-728, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701780

ABSTRACT

Heterogeneity among both primed and naive pluripotent stem cell lines remains a major unresolved problem. Here we show that expressing the maternal-specific linker histone H1FOO fused to a destabilizing domain (H1FOO-DD), together with OCT4, SOX2, KLF4, and LMYC, in human somatic cells improves the quality of reprogramming to both primed and naive pluripotency. H1FOO-DD expression was associated with altered chromatin accessibility around pluripotency genes and with suppression of the innate immune response. Notably, H1FOO-DD generates naive induced pluripotent stem cells with lower variation in transcriptome and methylome among clones and a more uniform and superior differentiation potency. Furthermore, we elucidated that upregulation of FKBP1A, driven by these five factors, plays a key role in H1FOO-DD-mediated reprogramming.


Subject(s)
Cellular Reprogramming , Histones , Induced Pluripotent Stem Cells , Kruppel-Like Factor 4 , Cellular Reprogramming/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Histones/metabolism , Cell Differentiation/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Chromatin/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome
18.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38759624

ABSTRACT

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Subject(s)
CCCTC-Binding Factor , Enhancer Elements, Genetic , Insulin-Like Growth Factor II , RNA, Long Noncoding , SOXB1 Transcription Factors , Animals , Mice , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Locus Control Region/genetics , Genomic Imprinting , Genomics/methods
19.
BMC Pulm Med ; 24(1): 250, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773432

ABSTRACT

BACKGROUND: This study assessed the diagnosis, staging and treatment guidance of lung cancer (LC) based on seven tumor-associated autoantibodies (TAAbs) -p53, PGP9.5, SOX2, GBU4-5, MAGE A1, CAGE, and GAGE7. METHODS: ELISA was used to determine the TAAb serum levels in 433 patients diagnosed with LC (161 surgical patients) and 76 patients with benign lung disease (16 surgical patients). The statistical characteristic of the TAAbs was compared among patients with different clinicopathological features. Pre- to postoperative changes in TAAb levels were analyzed to determine their value of LC. RESULTS: Among all patients, the positive rate of the seven TAAbs was 23.4%, sensitivity was 26.3%, accuracy was 36.3%, specificity was 93.4%, positive predictive value was 95.8%, and negative predictive value was 18.2%; the positive rate for the LC group (26.3%) was significantly higher than that for the benign group (6.6%; P < 0.001). Significant differences in the positive rate of the seven autoantibodies according to age (P < 0.001), smoking history (P = 0.009) and clinical LC stage (P < 0.001) were found. Smoking was positively associated with the positive of TAAbs (Τ = 0.118, P = 0.008). The positive rates of the seven TAAbs for squamous carcinoma (54.5%), other pathological types (44.4%) and poorly differentiated LC (57.1%) were significantly higher than those for the other types. The positive rate of GBU4-5 was highest among all TAAbs, and the SOX2 level in stage III-IV patients was much higher than that in other stages. For patients undergoing surgery, compared with the preoperative levels, the postoperative levels of the 7 markers, particularly p53 (P = 0.027), PGP9.5 (P = 0.007), GAGE7 (P = 0.014), and GBU4-5 (P = 0.002), were significantly different in the malignant group, especially in stage I-II patients, while no clear pre- to postoperative difference was observed in the benign group. CONCLUSIONS: When the seven TAAbs was positive, it was very helpful for the diagnosis of LC. The 7 TAAbs was valuable for staging and guiding treatment of LC in surgical patients.


Subject(s)
Autoantibodies , Biomarkers, Tumor , Lung Neoplasms , Neoplasm Staging , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/blood , Autoantibodies/blood , Male , Female , Middle Aged , Aged , Biomarkers, Tumor/blood , Adult , SOXB1 Transcription Factors/immunology , Sensitivity and Specificity , Tumor Suppressor Protein p53/immunology , Enzyme-Linked Immunosorbent Assay , Aged, 80 and over , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/blood , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology
20.
Cancer Lett ; 593: 216841, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38614385

ABSTRACT

Aerobic glycolysis accelerates tumor proliferation and progression, and inhibitors or drugs targeting abnormal cancer metabolism have been developing. Cancer stem-like cells (CSCs) significantly contribute to tumor initiation, metastasis, therapy resistance, and recurrence. Formyl peptide receptor 3 (FPR3), a member of FPR family, involves in inflammation, tissue repair, and angiogenesis. However, studies in exploring the regulatory mechanisms of aerobic glycolysis and CSCs by FPR3 in gastric cancer (GC) remain unknown. Here, we demonstrated that overexpressed FPR3 suppressed glycolytic capacity and stemness of tumor cells, then inhibited GC cells proliferation. Mechanistically, FPR3 impeded cytoplasmic calcium ion flux and hindered nuclear factor of activated T cells 1 (NFATc1) nuclear translocation, leading to the transcriptional inactivation of NFATc1-binding neurogenic locus notch homolog protein 3 (NOTCH3) promoter, subsequently obstructing NOTCH3 expression and the AKT/mTORC1 signaling pathway, and ultimately downregulating glycolysis. Additionally, NFATc1 directly binds to the sex determining region Y-box 2 (SOX2) promoter and modifies stemness in GC. In conclusion, our work illustrated that FPR3 played a negative role in GC progression by modulating NFATc1-mediated glycolysis and stemness in a calcium-dependent manner, providing potential insights into cancer therapy.


Subject(s)
Calcium , Cell Proliferation , Glycolysis , NFATC Transcription Factors , Neoplastic Stem Cells , Signal Transduction , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Calcium/metabolism , Animals , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Formyl Peptide/genetics , Gene Expression Regulation, Neoplastic , Receptors, Lipoxin/metabolism , Receptors, Lipoxin/genetics , Mice , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...