Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.278
Filter
1.
Environ Monit Assess ; 196(8): 692, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38960989

ABSTRACT

Groundwater monitoring data can be prone to errors and biases due to various factors like borehole and equipment malfunctions, or human mistakes. These inaccuracies can jeopardize the groundwater system, leading to reduced efficiency and potentially causing partial or complete failures in the monitoring system. Traditional anomaly detection methods, which rely on statistical and time-variant techniques, struggle to handle the complex and dynamic nature of anomalies. With advancements in artificial intelligence and the growing need for effective anomaly detection and prevention across different sectors, artificial neural network methods are emerging as capable of identifying more intricate anomalies by considering both temporal and contextual aspects. Nonetheless, there is still a shortage of comprehensive studies on groundwater anomaly detection. The intricate patterns of sequential data from groundwater present numerous challenges, necessitating sophisticated modeling techniques that combine mathematics, statistics, and machine learning for viable solutions. This paper introduces a model designed for high accuracy and efficient computation in detecting anomalies in groundwater monitoring data through a probabilistic approach. We employed the Monte Carlo method and SEAWAT numerical simulation to ascertain the uncertainty in groundwater salinity. Subsequently, a Long Short-Term Memory (LSTM)-Autoencoder model was trained and evaluated, forming the basis of an anomaly detection framework. Each piece of training data was assessed by the LSTM-Autoencoder using the Negative Log Likelihood (NLL) score and a predefined threshold to determine the data's abnormality percentage. The accuracy evaluation of the proposed LSTM-Autoencoder algorithm revealed that this approach achieved commendable performance, with an accuracy of 98.47% in anomaly detection.


Subject(s)
Environmental Monitoring , Groundwater , Neural Networks, Computer , Groundwater/chemistry , Environmental Monitoring/methods , Monte Carlo Method , Salinity
2.
Environ Monit Assess ; 196(8): 686, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958830

ABSTRACT

Environmental contamination by chromium represents a serious public health problem. Therefore, it is crucial to develop and optimize remediation technologies to reduce its concentration in the environment. The aims of this study were to evaluate the uptake of chromium by live and complete microbial mats in experimental mesocosms under different pH and salinity conditions to understand how these factors affect the microphytobenthic community and, consequently, how chromium removal process is influenced. Microbial mats from the estuarine environment were exposed to 15 mg Cr/L under different pH (2, 4, and 8) and salinity (2, 15, and 33) conditions. Salinity, redox potential, and pH were measured throughout the trial in solutions and in microbial mats, while total Cr determinations were performed at the end of the assay. The results demonstrated that the removal efficiency of Cr by microbial mats was significantly improved in solutions at pH 2, remaining unaffected by variations in salinity. Notably, both cyanobacteria and diatoms showed remarkable resistance to Cr exposure under all conditions tested, highlighting their exceptional adaptability. Microbial mats have proved to be effective filters for reducing the concentration of chromium in aqueous solutions with varying pH and salinity levels.


Subject(s)
Chromium , Salinity , Water Pollutants, Chemical , Chromium/analysis , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis , Cyanobacteria , Diatoms , Biodegradation, Environmental
3.
Environ Monit Assess ; 196(8): 696, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963444

ABSTRACT

Salinity-induced desertification is a pressing environmental issue that poses a significant threat to the sustainability of oasis ecosystems worldwide. These ecosystems are vital to the livelihoods of millions of people living in hyper-arid, arid and semi-arid regions, providing essential resources such as food, water and other necessities. However, overexploitation of natural resources, changes in land use and climate change have led to the degradation of these ecosystems, resulting in soil salinisation, waterlogging and other adverse effects. Combating salinity-induced desertification requires a comprehensive approach that addresses both the underlying causes of ecosystem degradation and the direct consequences for local communities. The strategy may include measures for sustainable land use, reforestation and water conservation. It is also essential to involve local communities in these activities and to ensure that their perspectives are heard. The aim of this article is to examine the causes and processes of salinity-induced desertification in oasis ecosystems and the implications for their sustainability. It also examines strategies that are being used to prevent desertification and promote sustainable oasis management. This article aims to raise awareness of this critical issue and to promote action towards a more sustainable future.


Subject(s)
Climate Change , Conservation of Natural Resources , Ecosystem , Salinity , Environmental Monitoring , Soil/chemistry
4.
Sci Rep ; 14(1): 15062, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38956110

ABSTRACT

Soil salinity is a major nutritional challenge with poor agriculture production characterized by high sodium (Na+) ions in the soil. Zinc oxide nanoparticles (ZnO NPs) and biochar have received attention as a sustainable strategy to reduce biotic and abiotic stress. However, there is a lack of information regarding the incorporation of ZnO NPs with biochar to ameliorate the salinity stress (0, 50,100 mM). Therefore, the current study aimed to investigate the potentials of ZnO NPs application (priming and foliar) alone and with a combination of biochar on the growth and nutrient availability of spinach plants under salinity stress. Results demonstrated that salinity stress at a higher rate (100 mM) showed maximum growth retardation by inducing oxidative stress, resulted in reduced photosynthetic rate and nutrient availability. ZnO NPs (priming and foliar) alone enhanced growth, chlorophyll contents and gas exchange parameters by improving the antioxidant enzymes activity of spinach under salinity stress. While, a significant and more pronounced effect was observed at combined treatments of ZnO NPs with biochar amendment. More importantly, ZnO NPs foliar application with biochar significantly reduced the Na+ contents in root 57.69%, and leaves 61.27% of spinach as compared to the respective control. Furthermore, higher nutrient contents were also found at the combined treatment of ZnO NPs foliar application with biochar. Overall, ZnO NPs combined application with biochar proved to be an efficient and sustainable strategy to alleviate salinity stress and improve crop nutritional quality under salinity stress. We inferred that ZnO NPs foliar application with a combination of biochar is more effectual in improving crop nutritional status and salinity mitigation than priming treatments with a combination of biochar.


Subject(s)
Charcoal , Photosynthesis , Plant Leaves , Salt Stress , Spinacia oleracea , Zinc Oxide , Zinc , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Spinacia oleracea/growth & development , Charcoal/pharmacology , Charcoal/chemistry , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Photosynthesis/drug effects , Zinc/pharmacology , Zinc/metabolism , Nutrients/metabolism , Chlorophyll/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Antioxidants/metabolism , Soil/chemistry , Oxidative Stress/drug effects , Salinity
5.
BMC Genomics ; 25(1): 672, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969999

ABSTRACT

The scarcity of freshwater resources resulting in a significant yield loss presents a pressing challenge in agriculture. To address this issue, utilizing abundantly available saline water could offer a smart solution. In this study, we demonstrate that the genome sequence rhizosphere bacterium Tritonibacter mobilis AK171, a halophilic marine bacterium recognized for its ability to thrive in saline and waterlogged environments, isolated from mangroves, has the remarkable ability to enable plant growth using saline irrigation. AK171 is characterized as rod-shaped cells, displays agile movement in free-living conditions, and adopts a rosette arrangement in static media. Moreover, The qualitative evaluation of PGP traits showed that AK171 could produce siderophores and IAA but could not solubilize phosphate nor produce hydrolytic enzymes it exhibits a remarkable tolerance to high temperatures and salinity. In this study, we conducted a comprehensive genome sequence analysis of T. mobilis AK171 to unravel the genetic mechanisms underlying its plant growth-promoting abilities in such challenging conditions. Our analysis revealed diverse genes and pathways involved in the bacterium's adaptation to salinity and waterlogging stress. Notably, T. mobilis AK171 exhibited a high level of tolerance to salinity and waterlogging through the activation of stress-responsive genes and the production of specific enzymes and metabolites. Additionally, we identified genes associated with biofilm formation, indicating its potential role in establishing symbiotic relationships with host plants. Furthermore, our analysis unveiled the presence of genes responsible for synthesizing antimicrobial compounds, including tropodithietic acid (TDA), which can effectively control phytopathogens. This genomic insight into T. mobilis AK171 provides valuable information for understanding the molecular basis of plant-microbial interactions in saline and waterlogged environments. It offers potential applications for sustainable agriculture in challenging conditions.


Subject(s)
Avicennia , Avicennia/microbiology , Genome, Bacterial , Genomics , Rhizosphere , Salinity , Phylogeny , Plant Development , Siderophores/metabolism
6.
Arch Microbiol ; 206(8): 341, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967784

ABSTRACT

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.


Subject(s)
Bacteria , Crops, Agricultural , Salt Stress , Soil Microbiology , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Bacteria/metabolism , Bacteria/genetics , Bacteria/growth & development , Plant Development , Salt Tolerance , Plant Growth Regulators/metabolism , Soil/chemistry , Salt-Tolerant Plants/microbiology , Salt-Tolerant Plants/growth & development , Salinity
7.
PeerJ ; 12: e17343, 2024.
Article in English | MEDLINE | ID: mdl-38948212

ABSTRACT

Tolerance against acute warming is an essential trait that can determine how organisms cope during heat waves, yet the mechanisms underlying it remain elusive. Water salinity has previously been suggested to modulate warming tolerance in fish and may therefore provide clues towards these limiting mechanisms. Here, using the critical thermal maximum (CTmax) test, we investigated whether short (2 hours) and long (10 days) term exposure to different water salinities (2 hours: 0-5 ppt, 10 days: 0-3 ppt) affected acute warming tolerance in zebrafish (N = 263). We found that water salinity did not affect the warming tolerance of zebrafish at either time point, indicating that salinity does not affect the mechanism limiting acute warming tolerance in zebrafish at these salinity ranges, and that natural fluctuations in salinity levels might not have a large impact on acute warming tolerance in wild zebrafish.


Subject(s)
Salinity , Zebrafish , Zebrafish/physiology , Animals , Hot Temperature/adverse effects , Thermotolerance , Water/metabolism
8.
BMC Plant Biol ; 24(1): 633, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971752

ABSTRACT

BACKGROUND: Alfalfa (Medicago sativa L.) experiences many negative effects under salinity stress, which may be mediated by recurrent selection. Salt-tolerant alfalfa may display unique adaptations in association with rhizobium under salt stress. RESULTS: To elucidate inoculation effects on salt-tolerant alfalfa under salt stress, this study leveraged a salt-tolerant alfalfa population selected through two cycles of recurrent selection under high salt stress. After experiencing 120-day salt stress, mRNA was extracted from 8 random genotypes either grown in 0 or 8 dS/m salt stress with or without inoculation by Ensifer meliloti. Results showed 320 and 176 differentially expressed genes (DEGs) modulated in response to salinity stress or inoculation x salinity stress, respectively. Notable results in plants under 8 dS/m stress included upregulation of a key gene involved in the Target of Rapamycin (TOR) signaling pathway with a concomitant decrease in expression of the SNrK pathway. Inoculation of salt-stressed plants stimulated increased transcription of a sulfate-uptake gene as well as upregulation of the Lysine-27-trimethyltransferase (EZH2), Histone 3 (H3), and argonaute (AGO, a component of miRISC silencing complexes) genes related to epigenetic and post-transcriptional gene control. CONCLUSIONS: Salt-tolerant alfalfa may benefit from improved activity of TOR and decreased activity of SNrK1 in salt stress, while inoculation by rhizobiumstimulates production of sulfate uptake- and other unique genes.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa , Salt Tolerance , Medicago sativa/genetics , Medicago sativa/physiology , Medicago sativa/microbiology , Salt Tolerance/genetics , Salt Stress/genetics , Salinity , Sinorhizobium meliloti/physiology , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology
9.
Sci Rep ; 14(1): 14931, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942909

ABSTRACT

Salinity has become a major environmental concern for agricultural lands, leading to decreased crop yields. Hence, plant biology experts aim to genetically improve barley's adaptation to salinity stress by deeply studying the effects of salt stress and the responses of barley to this stress. In this context, our study aims to explore the variation in physiological and biochemical responses of five Tunisian spring barley genotypes to salt stress during the heading phase. Two salinity treatments were induced by using 100 mM NaCl (T1) and 250 mM NaCl (T2) in the irrigation water. Significant phenotypic variations were detected among the genotypes in response to salt stress. Plants exposed to 250 mM of NaCl showed an important decline in all studied physiological parameters namely, gas exchange, ions concentration and relative water content RWC. The observed decreases in concentrations ranged from, approximately, 6.64% to 40.76% for K+, 5.91% to 43.67% for Na+, 14.12% to 52.38% for Ca2+, and 15.22% to 38.48% for Mg2+ across the different genotypes and salt stress levels. However, under salinity conditions, proline and soluble sugars increased for all genotypes with an average increase of 1.6 times in proline concentrations and 1.4 times in soluble sugars concentration. Furthermore, MDA levels rose also for all genotypes, with the biggest rise in Lemsi genotype (114.27% of increase compared to control). Ardhaoui and Rihane showed higher photosynthetic activity compared to the other genotypes across all treatments. The stepwise regression approach identified potassium content, K+/Na+ ratio, relative water content, stomatal conductance and SPAD measurement as predominant traits for thousand kernel weight (R2 = 84.06), suggesting their significant role in alleviating salt stress in barley. Overall, at heading stage, salt accumulation in irrigated soils with saline water significantly influences the growth of barley by influencing gas exchange parameters, mineral composition and water content, in a genotype-dependent manner. These results will serve on elucidating the genetic mechanisms underlying these variations to facilitate targeted improvements in barley's tolerance to salt stress.


Subject(s)
Genotype , Hordeum , Minerals , Salt Stress , Water , Hordeum/genetics , Hordeum/metabolism , Hordeum/physiology , Water/metabolism , Minerals/metabolism , Salinity , Sodium Chloride/pharmacology , Sodium Chloride/metabolism
10.
Toxins (Basel) ; 16(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38922174

ABSTRACT

Despite the fact that the first red tide reported on the coasts of the Iberian Peninsula was due to Lingulodinium polyedra, knowledge about their frequency and, particularly, about the environmental conditions contributing to bloom initiation is still scarce. For this reason, L. polyedra bloom episodes were observed and studied in three Galician rias during the summer season based on the 1993-2008 record database period; additionally, samples were collected in summer 2008. Proliferations of L. polyedra occurred in the rias of Ares and Barqueiro in June and August, respectively, while in the Ria of Coruña, they persisted from the end of June to early September. Red tides developed when the surface temperature reached 17 °C, with "seasonal thermal window" conditions, and when salinities were ≥30, i.e., an "optimal salinity window"; when these parameters were lower than these thresholds, cyst germination decreased. A cyst transport mechanism from sediments to the surface must also exist; this mechanism was found to be natural (tidal currents) in the ria of Barqueiro or anthropogenic (dredging) in the rias of Ares and Coruña. Surface temperatures during summer were usually favorable for cyst germination (85 to 100%) during the 1993-2008 period; however, water temperatures below 10 m depth only rarely reached the 17 °C threshold (2 to 18%). During this 16-year period, dredging activities could explain 71% (Coruña) and 44% (Ares) of the recorded bloom events. When a bloom episode developed in early summer, favorable conditions did not lead to a new red tide, probably due to the lag period required by cysts for germination. Moreover, blooms did not develop when high densities of diatoms (>1,000,000 cells·L-1) remained in the water column as a result of summer upwelling pulses occurring in specific years. The temperature-sediment disturbance pattern found in this study provides a useful tool for the prevention of eventual risks resulting from red tides of this dinoflagellate.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Temperature , Dinoflagellida/growth & development , Spain , Seasons , Environmental Monitoring , Seawater , Geologic Sediments , Salinity
11.
BMC Plant Biol ; 24(1): 604, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926703

ABSTRACT

BACKGROUND AND AIMS: Seed heteromorphism is a plant strategy that an individual plant produces two or more distinct types of diaspores, which have diverse morphology, dispersal ability, ecological functions and different effects on plant life history traits. The aim of this study was to test the effects of seasonal soil salinity and burial depth on the dynamics of dormancy/germination and persistence/depletion of buried trimorphic diaspores of a desert annual halophyte Atriplex centralasiatica. METHODS: We investigated the effects of salinity and seasonal fluctuations of temperature on germination, recovery of germination and mortality of types A, B, C diaspores of A. centralasiatica in the laboratory and buried diaspores in situ at four soil salinities and three depths. Diaspores were collected monthly from the seedbank from December 2016 to November 2018, and the number of viable diaspores remaining (not depleted) and their germinability were determined. RESULTS: Non-dormant type A diaspores were depleted in the low salinity "window" in the first year. Dormant diaspore types B and C germinated to high percentages at 0.3 and 0.1 mol L-1 soil salinity, respectively. High salinity and shallow burial delayed depletion of diaspore types B and C. High salinity delayed depletion time of the three diaspore types and delayed dormancy release of types B and C diaspores from autumn to spring. Soil salinity modified the response of diaspores in the seedbank by delaying seed dormancy release in autum and winter and by providing a low-salt concentration window for germination of non-dormant diaspores in spring and early summer. CONCLUSIONS: Buried trimorphic diaspores of annual desert halophyte A. centralasiatica exhibited diverse dormancy/germination behavior in respond to seasonal soil salinity fluctuation. Prolonging persistence of the seedbank and delaying depletion of diaspores under salt stress in situ primarily is due to inhibition of dormancy-break. The differences in dormancy/germination and seed persistence in the soil seedbank may be a bet-hadging strategy adapted to stressful temporal and spatial heterogeneity, and allows A. centralasiatica to persist in the unpredictable cold desert enevironment.


Subject(s)
Atriplex , Germination , Salinity , Salt-Tolerant Plants , Seasons , Seeds , Soil , Germination/physiology , Salt-Tolerant Plants/physiology , Salt-Tolerant Plants/growth & development , China , Soil/chemistry , Seeds/physiology , Seeds/growth & development , Atriplex/physiology , Atriplex/growth & development , Seed Bank , Plant Dormancy/physiology , Temperature
12.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927717

ABSTRACT

We conducted transcriptome sequencing on salt-tolerant mutants X5 and X3, and a control (Ctr) strain of Gracilariopsis lemaneiformis after treatment with artificial seawater at varying salinities (30‱, 45‱, and 60‱) for 3 weeks. Differentially expressed genes were identified and a weighted co-expression network analysis was conducted. The blue, red, and tan modules were most closely associated with salinity, while the black, cyan, light cyan, and yellow modules showed a close correlation with strain attributes. KEGG enrichment of genes from the aforementioned modules revealed that the key enrichment pathways for salinity attributes included the proteasome and carbon fixation in photosynthesis, whereas the key pathways for strain attributes consisted of lipid metabolism, oxidative phosphorylation, soluble N-ethylmaleimide-sensitive factor-activating protein receptor (SNARE) interactions in vesicular transport, and porphyrin and chlorophyll metabolism. Gene expression for the proteasome and carbon fixation in photosynthesis was higher in all strains at 60‱. In addition, gene expression in the proteasome pathway was higher in the X5-60 than Ctr-60 and X3-60. Based on the above data and relevant literature, we speculated that mutant X5 likely copes with high salt stress by upregulating genes related to lysosome and carbon fixation in photosynthesis. The proteasome may be reset to adjust the organism's proteome composition to adapt to high-salt environments, while carbon fixation may aid in maintaining material and energy metabolism for normal life activities by enhancing carbon dioxide uptake via photosynthesis. The differences between the X5-30 and Ctr-30 expression of genes involved in the synthesis of secondary metabolites, oxidative phosphorylation, and SNARE interactions in vesicular transport suggested that the X5-30 may differ from Ctr-30 in lipid metabolism, energy metabolism, and vesicular transport. Finally, among the key pathways with good correlation with salinity and strain traits, the key genes with significant correlation with salinity and strain traits were identified by correlation analysis.


Subject(s)
Salt Tolerance , Salt Tolerance/genetics , Transcriptome , Gene Regulatory Networks , Salinity , Photosynthesis/genetics , Osmotic Pressure , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Gene Expression Profiling/methods , Lipid Metabolism/genetics
13.
Sci Rep ; 14(1): 14645, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918548

ABSTRACT

Soil salinity is a major environmental stressor impacting global food production. Staple crops like wheat experience significant yield losses in saline environments. Bioprospecting for beneficial microbes associated with stress-resistant plants offers a promising strategy for sustainable agriculture. We isolated two novel endophytic bacteria, Bacillus cereus (ADJ1) and Priestia aryabhattai (ADJ6), from Agave desmettiana Jacobi. Both strains displayed potent plant growth-promoting (PGP) traits, such as producing high amounts of indole-3-acetic acid (9.46, 10.00 µgml-1), ammonia (64.67, 108.97 µmol ml-1), zinc solubilization (Index of 3.33, 4.22, respectively), ACC deaminase production and biofilm formation. ADJ6 additionally showed inorganic phosphate solubilization (PSI of 2.77), atmospheric nitrogen fixation, and hydrogen cyanide production. Wheat seeds primed with these endophytes exhibited enhanced germination, improved growth profiles, and significantly increased yields in field trials. Notably, both ADJ1 and ADJ6 tolerated high salinity (up to 1.03 M) and significantly improved wheat germination and seedling growth under saline stress, acting both independently and synergistically. This study reveals promising stress-tolerance traits within endophytic bacteria from A. desmettiana. Exploiting such under-explored plant microbiomes offers a sustainable approach to developing salt-tolerant crops, mitigating the impact of climate change-induced salinization on global food security.


Subject(s)
Crops, Agricultural , Salt Tolerance , Triticum , Triticum/microbiology , Triticum/growth & development , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Bacillus/isolation & purification , Bacillus/physiology , Bacillus/metabolism , Endophytes/physiology , Salinity , Indoleacetic Acids/metabolism , Soil Microbiology , Nitrogen Fixation , Germination , Bacillus cereus/physiology , Bacillus cereus/growth & development , Bacillus cereus/isolation & purification , Seedlings/microbiology , Seedlings/growth & development , Carbon-Carbon Lyases/metabolism
14.
Microbiome ; 12(1): 115, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918820

ABSTRACT

BACKGROUND: Microbial adaptation to salinity has been a classic inquiry in the field of microbiology. It has been demonstrated that microorganisms can endure salinity stress via either the "salt-in" strategy, involving inorganic ion uptake, or the "salt-out" strategy, relying on compatible solutes. While these insights are mostly based on laboratory-cultured isolates, exploring the adaptive mechanisms of microorganisms within natural salinity gradient is crucial for gaining a deeper understanding of microbial adaptation in the estuarine ecosystem. RESULTS: Here, we conducted metagenomic analyses on filtered surface water samples collected from a typical subtropical short residence-time estuary and categorized them by salinity into low-, intermediate-, and high-salinity metagenomes. Our findings highlighted salinity-driven variations in microbial community composition and function, as revealed through taxonomic and Clusters of Orthologous Group (COG) functional annotations. Through metagenomic binning, 127 bacterial and archaeal metagenome-assembled genomes (MAGs) were reconstructed. These MAGs were categorized as stenohaline-specific to low-, intermediate-, or high-salinity-based on the average relative abundance in one salinity category significantly exceeding those in the other two categories by an order of magnitude. Those that did not meet this criterion were classified as euryhaline, indicating a broader range of salinity tolerance. Applying the Boruta algorithm, a machine learning-based feature selection method, we discerned important genomic features from the stenohaline bacterial MAGs. Of the total 12,162 COGs obtained, 40 were identified as important features, with the "inorganic ion transport and metabolism" COG category emerging as the most prominent. Furthermore, eight COGs were implicated in microbial osmoregulation, of which four were related to the "salt-in" strategy, three to the "salt-out" strategy, and one to the regulation of water channel activity. COG0168, annotated as the Trk-type K+ transporter related to the "salt-in" strategy, was ranked as the most important feature. The relative abundance of COG0168 was observed to increase with rising salinity across metagenomes, the stenohaline strains, and the dominant Actinobacteriota and Proteobacteria phyla. CONCLUSIONS: We demonstrated that salinity exerts influences on both the taxonomic and functional profiles of the microbial communities inhabiting the estuarine ecosystem. Our findings shed light on diverse salinity adaptation strategies employed by the estuarine microbial communities, highlighting the crucial role of the "salt-in" strategy mediated by Trk-type K+ transporters for microorganisms thriving under osmotic stress in the short residence-time estuary. Video Abstract.


Subject(s)
Archaea , Bacteria , Estuaries , Metagenome , Metagenomics , Salinity , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Archaea/genetics , Archaea/classification , Archaea/metabolism , Adaptation, Physiological , Microbiota/genetics , Seawater/microbiology , Water Microbiology
15.
Environ Sci Pollut Res Int ; 31(29): 42406-42427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877190

ABSTRACT

This study employed meta-heuristic clustering algorithms to determine the source and mechanism of groundwater salinization in Quebec's Saguenay-Lac-Saint-Jean (SLSJ) region, utilizing hydrogeochemical (38 inorganic constituents, including minor, major, and trace elements) and isotopic data (δ18O and δ2H). A total of 382 groundwater and precipitation samples were examined. Among the meta-heuristic algorithms, Artificial Bee Colony K-Means (ABCKM), Differential Evolution K-Means (DEKM), Harmony Search K-Means (HSKM), Particle Swarm Optimization K-Means (PSOKM), and Genetic K-Means (GKM) were used and investigated, and finally, PSOKM displayed superior performance and was chosen for further investigation. Analysis of diverse plots and hydrogeochemical modeling unveiled the impact of the Laflamme Sea invasion on groundwater chemistry. PSOKM1, PSOKM4, and PSOKM5 exhibited notable carbonate and silicate dissolution, with PSOKM4 demonstrating predominant carbonate dissolution. Cation exchange was identified through binary plots and Chloro Alkaline Index (CAI), with reverse cation exchange predominantly observed in most PSOKM4 samples, while positive values suggested direct cation exchange in other clusters. Spatial dynamics analysis using HFE-D indicated that salinization occurs as groundwater flows through crystalline bedrock aquifers, resulting in a transition from HCO3- dominance in PSOKM4 to Cl- dominance in the remaining clusters. Interaction between groundwater and rock along this path facilitated a transformation towards a Na-Cl end-member. The closely aligned stable isotopes with the Global Meteoric Water Line (GMWL) indicated a blend of meteoric water and seawater as the groundwater source.


Subject(s)
Algorithms , Groundwater , Groundwater/chemistry , Quebec , Environmental Monitoring , Salinity , Water Pollutants, Chemical/analysis , Cluster Analysis
16.
Environ Geochem Health ; 46(7): 254, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884664

ABSTRACT

Submarine Groundwater Discharge (SGD) and Seawater Intrusion (SWI) are two contrary hydrological processes that occur across the land-sea continuum and understanding their nature is essential for management and development of coastal groundwater resource. Present study has attempted to demarcate probable zones of SGD and SWI along highly populated Odisha coastal plains which is water stressed due to indiscriminate-exploitation of groundwater leading to salinization and fresh groundwater loss from the alluvial aquifers. A multi-proxy investigation approach including decadal groundwater level dynamics, LANDSAT derived sea surface temperature (SST) anomalies and in-situ physicochemical analysis (pH, EC, TDS, salinity and temperature) of porewater, groundwater and seawater were used to locate the SGD and SWI sites. A total of 340 samples for four seasons (85 samples i.e., 30 porewater, 30 seawater and 25 groundwater in each season) were collected and their in-situ parameters were measured at every 1-2 km gap along ~ 145 km coastline of central Odisha (excluding the estuarine region). Considering high groundwater EC values (> 3000 µS/cm), three probable SWI and low porewater salinities (< 32 ppt in pre- and < 25 ppt in post-monsoons), four probable SGD zones were identified. The identified zones were validated with observed high positive hydraulic gradient (> 10 m) at SGD and negative hydraulic gradient (< 0 m) at SWI sites along with anomalous SST (colder in pre- and warmer in post-monsoon) near probable SGD locations. This study is first of its kind along the Odisha coast and may act as initial basis for subsequent investigations on fresh-saline interaction along the coastal plains where environmental integrity supports the livelihood of coastal communities and the ecosystem.


Subject(s)
Environmental Monitoring , Groundwater , Salinity , Seawater , Groundwater/chemistry , Seawater/chemistry , India , Environmental Monitoring/methods , Water Movements , Temperature , Seasons
17.
Sci Total Environ ; 945: 174094, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906288

ABSTRACT

The dinoflagellate Gymnodinium catenatum is considered the primary cause of recurrent paralytic shellfish toxins (PSTs) in shellfish on the Moroccan Mediterranean coasts. The impacts of key environmental factors on the growth, cell yield, cell size and PST content of G. catenatum were determined. Results indicated that increasing salinity from 32 to 39 and nitrate concentrations from 441 µM to 1764 µM did not significantly (ANOVA, P-value >0.63) modify the growth rate of the studied species. Gymnodinium catenatum exhibited the highest growth rate at 24 °C. Cells arrested their division at 15 °C and at ammonium concentration above 441 µM, suggesting that this nitrogen form is toxic for G. catenatum. Furthermore, G. catenatum was unable to assimilate urea as a nitrogen source. In G. catenatum cells, eight analogues of saxitoxin were detected, belonging to the N-sulfocarbamoyl (C1-4, B1 and B2) and decarbamoyl (dc-GTX2/3) toxins. C-toxins contributed 92 % to 98 % of the molar composition of the PSTs. During the exponential growth, C2 tended to dominate, while C3 prevailed during the stationary phase. Toxin content per cell (ranging from 5.5 pg STXeq.cell-1 to 22.4 pg STXeq.cell-1) increased during the stationary growth phase. Cell toxin content increased with the concentrations of nitrate, ranging from 12.1 pg STXeq.cell-1 at 441 µM to 22.4 pg STXeq.cell-1 at 1764 µM during the stationary growth phase. The toxin content of G. catenatum showed the highest values measured at the highest tested temperatures, especially during the stationary phase, where toxicity reached 17.8 pg STXeq.cell-1 and 16.4 pg STXeq.cell-1 at 24 °C and 29 °C, respectively. The results can help understand the fluctuations in the growth and PST content of G. catenatum in its habitat in response to changing environmental variables in the Mediterranean Sea when exposed to increases in warming pressure and eutrophication.


Subject(s)
Dinoflagellida , Marine Toxins , Salinity , Temperature , Marine Toxins/analysis , Mediterranean Sea , Saxitoxin/analysis , Morocco , Nutrients/analysis
18.
Environ Microbiol ; 26(6): e16661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849711

ABSTRACT

Inland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition. Here, we investigated the effects of drought on microbial colonization and decomposition of Sarcocornia fruticosa woody stems across different habitats in a saline watershed: on the dry floodplain, submerged in the stream channel and at the shoreline (first submerged, then emerged). Unexpectedly, weight loss was not enhanced in the submerged stems, while decomposition process differed between habitats. On the floodplain, it was dominated by fungi and high cellulolytic activity; in submerged conditions, a diverse community of bacteria and high ligninolytic activity dominated; and, on the shoreline, enzyme activities were like submerged conditions, but with a fungal community similar to the dry conditions. Results indicate distinct degradation paths being driven by different stress factors: strong water scarcity and photodegradation in dry conditions, and high salinity and reduced oxygen in wet conditions. This suggests that fungi are more resistant to drought, and bacteria to salinity. Overall, in saline watersheds, variations in multiple stress factors exert distinct environmental filters on bacteria and fungi and their role in the decomposition of plant material, affecting carbon cycling and microbial interactions.


Subject(s)
Bacteria , Droughts , Fungi , Plant Stems , Rivers , Salinity , Bacteria/metabolism , Bacteria/classification , Fungi/metabolism , Rivers/microbiology , Plant Stems/microbiology , Plant Stems/metabolism , Ecosystem
19.
BMC Plant Biol ; 24(1): 538, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867179

ABSTRACT

BACKGROUND: The combination of compost and biochar (CB) plays an important role in soil restoration and mitigation strategies against drought stress in plants. In the current study, the impact of CB was determined on the characteristics of saline calcareous soil and the productivity of fenugreek (Trigonella foenum-graecum L.) plants. The field trials examined CB rates (CB0, CB10 and CB20 corresponding to 0, 10, and 20 t ha‒1, respectively) under deficit irrigation [DI0%, DI20%, and DI40% receiving 100, 80, and 60% crop evapotranspiration (ETc), respectively] conditions on growth, seed yield (SY), quality, and water productivity (WP) of fenugreek grown in saline calcareous soils. RESULTS: In general, DI negatively affected the morpho-physio-biochemical responses in plants cultivated in saline calcareous soils. However, amendments of CB10 or CB20 improved soil structure under DI conditions. This was evidenced by the decreased pH, electrical conductivity of soil extract (ECe), and bulk density but increased organic matter, macronutrient (N, P, and K) availability, water retention, and total porosity; thus, maintaining better water and nutritional status. These soil modifications improved chlorophyll, tissue water contents, cell membrane stability, photosystem II photochemical efficiency, photosynthetic performance, and nutritional homeostasis of drought-stressed plants. This was also supported by increased osmolytes, non-enzymatic, and enzymatic activities under DI conditions. Regardless of DI regimes, SY was significantly (P ≤ 0.05) improved by 40.0 and 102.5% when plants were treated with CB10 and CB20, respectively, as similarly observed for seed alkaloids (87.0, and 39.1%), trigonelline content (43.8, and 16.7%) and WP (40.9, and 104.5%) over unamended control plants. CONCLUSIONS: Overall, the application of organic amendments of CB can be a promising sustainable solution for improving saline calcareous soil properties, mitigating the negative effects of DI stress, and enhancing crop productivity in arid and semi-arid agro-climates.


Subject(s)
Charcoal , Composting , Seeds , Soil , Trigonella , Trigonella/metabolism , Trigonella/physiology , Trigonella/growth & development , Soil/chemistry , Seeds/growth & development , Composting/methods , Dehydration , Water/metabolism , Salinity
20.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822656

ABSTRACT

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Subject(s)
Climate Change , Harmful Algal Bloom , Salinity , Photosynthesis , Phytoplankton/growth & development , Phytoplankton/physiology , Carbon/metabolism , Carbon/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...