Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.277
1.
Am J Chin Med ; 52(3): 885-904, 2024.
Article En | MEDLINE | ID: mdl-38716619

Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.


Apoptosis , Breast Neoplasms , Down-Regulation , MAP Kinase Signaling System , SOS1 Protein , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Animals , Humans , Female , Down-Regulation/drug effects , MAP Kinase Signaling System/drug effects , SOS1 Protein/metabolism , SOS1 Protein/genetics , Mice, Nude , Saponins/pharmacology , Saponins/therapeutic use , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Mice , Cell Line, Tumor , Drugs, Chinese Herbal/pharmacology , Phytotherapy , Antineoplastic Agents, Phytogenic/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C
2.
Discov Med ; 36(184): 1070-1079, 2024 May.
Article En | MEDLINE | ID: mdl-38798265

BACKGROUND: Atherosclerosis (AS) is a chronic inflammatory vascular disease with a complex pathogenesis. Astragaloside IV (AST IV), the primary active component of Astragalus, possesses anti-inflammatory, antioxidant, and immunomodulatory properties. This research aims to investigate the outcome of AST IV on AS and its potential molecular mechanism. METHODS: A high-fat diet (21% fat, 50% carbohydrate, 20% protein, 0.15% cholesterol, and 34% sucrose) was utilized to feed Apolipoprotein E deficient (ApoE-/-) SD rats for 8 weeks, followed by continuous intragastric administration of AST IV for 8 weeks. Biochemical detection was conducted for serum lipid levels and changes in vasoactive substances. After Masson staining, aortic root oil red O staining, and Hematoxylin Eosin (HE) staining, the efficacy of AST IV was verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The mRNA expression levels of inflammatory factors and endothelial dysfunction-related biomarkers in rat aortic root tissues were appraised. The changes in the composition of intestinal flora in rats after AST IV treatment were appraised using Image J (Multi-point Tool). Western blot was used to evaluate phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway-related protein levels in rat aortic root tissues. RESULTS: AST IV administration alleviated the pathological symptoms of AS rats. AST IV administration reduced serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), endothelin-1 (ET-1) and angiotensin (Ang)-II (Ang-II) levels, and augmented serum high-density lipoprotein cholesterol (HDL-C) and nitric oxide (NO) levels. At the same time, AST IV administration inhibited the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), macrophage inflammatory protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in the aortic root tissue of AS rats. In addition, the intestinal flora changed significantly after AST IV administration. The number of Bifidobacterium, Lactobacillus, and Bacteroides augmented significantly, and Enterobacter, Enterococcus, Fusobacterium, and Clostridium significantly decreased. Mechanistically, AST IV administration inhibited the phosphorylation of PI3K, Akt, and mTOR in AS rats. When combined with Dactolisib (BEZ235) (a PI3K/Akt/mTOR pathway inhibitor), AST IV could further inhibit phosphorylation and reduce inflammation. CONCLUSION: AST IV has a potential anti-AS effect, which can improve the pathological changes of the aorta in ApoE-/- rats fed with a high-fat diet, reduce the level of inflammatory factors, and modulate the composition of intestinal flora via the PI3K/Akt/mTOR pathway.


Apolipoproteins E , Atherosclerosis , Disease Models, Animal , Gastrointestinal Microbiome , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Saponins , Signal Transduction , TOR Serine-Threonine Kinases , Triterpenes , Animals , Saponins/pharmacology , Saponins/therapeutic use , Saponins/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Rats , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/administration & dosage , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Gastrointestinal Microbiome/drug effects , Male , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Apolipoproteins E/genetics , Diet, High-Fat/adverse effects
3.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Article En | MEDLINE | ID: mdl-38725854

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Diosgenin/analogs & derivatives , Glycolysis , Neovascularization, Pathologic , Ovarian Neoplasms , Saponins , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice, Nude , Mice , Angiogenesis
4.
Int Immunopharmacol ; 132: 112027, 2024 May 10.
Article En | MEDLINE | ID: mdl-38603860

BACKGROUND AND PURPOSE: Osteoporosis (OP) is a frequent clinical problem for the elderly. Traditional Chinese Medicine (TCM) has achieved beneficial results in the treatment of OP. Ziyuglycoside II (ZGS II) is a major active compound of Sanguisorba officinalis L. that has shown anti-inflammation and antioxidation properties, but little information concerning its anti-OP potential is available. Our research aims to investigate the mechanism of ZGS II in ameliorating bone loss by inflammatory responses and regulation of gut microbiota and short chain fatty acids (SCFAs) in ovariectomized (OVX) mice. METHODS: We predicted the mode of ZGS II action on OP through network pharmacology and molecular docking, and an OVX mouse model was employed to validate its anti-OP efficacy. Then we analyzed its impact on bone microstructure, the levels of inflammatory cytokines and pain mediators in serum, inflammation in colon, intestinal barrier, gut microbiota composition and SCFAs in feces. RESULTS: Network pharmacology identified 55 intersecting targets of ZGS II related to OP. Of these, we predicted IGF1 may be the core target, which was successfully docked with ZGS II and showed excellent binding ability. Our in vivo results showed that ZGS II alleviated bone loss in OVX mice, attenuated systemic inflammation, enhanced intestinal barrier, reduced the pain threshold, modulated the abundance of gut microbiota involving norank_f__Muribaculaceae and Dubosiella, and increased the content of acetic acid and propanoic acid in SCFAs. CONCLUSIONS: Our data indicated that ZGS II attenuated bone loss in OVX mice by relieving inflammation and regulating gut microbiota and SCFAs.


Fatty Acids, Volatile , Gastrointestinal Microbiome , Molecular Docking Simulation , Osteoporosis , Ovariectomy , Animals , Gastrointestinal Microbiome/drug effects , Fatty Acids, Volatile/metabolism , Female , Mice , Osteoporosis/drug therapy , Osteoporosis/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL , Disease Models, Animal , Saponins/pharmacology , Saponins/therapeutic use , Humans , Cytokines/metabolism , Network Pharmacology , Inflammation/drug therapy
5.
Molecules ; 29(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38675613

Acne is a chronic inflammatory skin disease with a recurring nature that seriously impacts patients' quality of life. Currently, antibiotic resistance has made it less effective in treating acne. However, Paris polyphylla (P. polyphylla) is a valuable medicinal plant with a wide range of chemical components. Of these, P. polyphylla saponins modulate the effects in vivo and in vitro through antibacterial, anti-inflammatory, immunomodulatory, and antioxidant effects. Acne is primarily associated with inflammatory reactions, abnormal sebum function, micro-ecological disorders, hair follicle hyperkeratosis, and, in some patients, immune function. Therefore, the role of P. polyphylla saponins and their values in treating acne is worthy of investigation. Overall, this review first describes the distribution and characteristics of P. polyphylla and the pathogenesis of acne. Then, the potential mechanisms of P. polyphylla saponins in treating acne are listed in detail (reduction in the inflammatory response, antibacterial action, modulation of immune response and antioxidant effects, etc.). In addition, a brief description of the chemical composition of P. polyphylla saponins and its available extraction methods are described. We hope this review can serve as a quick and detailed reference for future studies on their potential acne treatment.


Acne Vulgaris , Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Saponins , Humans , Acne Vulgaris/drug therapy , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/chemistry , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Immunologic Factors/pharmacology , Immunologic Factors/therapeutic use , Immunologic Factors/chemistry , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/therapeutic use , Immunomodulating Agents/isolation & purification , Melanthiaceae/chemistry , Liliaceae/chemistry
6.
COPD ; 21(1): 2329282, 2024 12.
Article En | MEDLINE | ID: mdl-38622983

COPD is an inflammatory lung disease that limits airflow and remodels the pulmonary vascular system. This study delves into the therapeutic potential and mechanistic underpinnings of Panax notoginseng Saponins (PNS) in alleviating inflammation and pulmonary vascular remodeling in a COPD rat model. Symmap and ETCM databases provided Panax notoginseng-related target genes, and the CTD and DisGeNET databases provided COPD-related genes. Intersection genes were subjected to protein-protein interaction analysis and pathway enrichment to identify downstream pathways. A COPD rat model was established, with groups receiving varying doses of PNS and a Roxithromycin control. The pathological changes in lung tissue and vasculature were examined using histological staining, while molecular alterations were explored through ELISA, RT-PCR, and Western blot. Network pharmacology research suggested PNS may affect the TLR4/NF-κB pathway linked to COPD development. The study revealed that, in contrast to the control group, the COPD model exhibited a significant increase in inflammatory markers and pathway components such as TLR4, NF-κB, HIF-1α, VEGF, ICAM-1, SELE mRNA, and serum TNF-α, IL-8, and IL-1ß. Treatment with PNS notably decreased these markers and mitigated inflammation around the bronchi and vessels. Taken together, the study underscores the potential of PNS in reducing lung inflammation and vascular remodeling in COPD rats, primarily via modulation of the TLR4/NF-κB/HIF-1α/VEGF pathway. This research offers valuable insights for developing new therapeutic strategies for managing and preventing COPD.


Panax notoginseng , Pulmonary Disease, Chronic Obstructive , Saponins , Rats , Animals , Saponins/pharmacology , Saponins/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , NF-kappa B/metabolism , Panax notoginseng/metabolism , Toll-Like Receptor 4/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Remodeling , Lung , Inflammation/drug therapy
7.
J Med Chem ; 67(9): 7385-7405, 2024 May 09.
Article En | MEDLINE | ID: mdl-38687956

Anemoside B4 (AB4), a triterpenoidal saponin from Pulsatilla chinensis, shows significant anti-inflammatory activity, and may be used for treating inflammatory bowel disease (IBD). Nevertheless, its application is limited due to its high molecular weight and pronounced water solubility. To discover new effective agents for treating IBD, we synthesized 28 AB4 derivatives and evaluated their cytotoxic and anti-inflammatory activities in vitro. Among them, A3-6 exhibited significantly superior anti-inflammatory activity compared to AB4. It showed a significant improvement in the symptoms of DSS-induced colitis in mice, with a notably lower oral effective dose compared to AB4. Furthermore, we discovered that A3-6 bound with pyruvate carboxylase (PC), then inhibited PC activity, reprogramming macrophage function, and alleviated colitis. These findings indicate that A3-6 is a promising therapeutic candidate for colitis, and PC may be a potential new target for treating colitis.


Anti-Inflammatory Agents , Colitis , Pyruvate Carboxylase , Saponins , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Colitis/drug therapy , Colitis/chemically induced , Dextran Sulfate , Drug Discovery , Mice, Inbred C57BL , Pyruvate Carboxylase/antagonists & inhibitors , Pyruvate Carboxylase/metabolism , RAW 264.7 Cells , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Saponins/chemical synthesis , Structure-Activity Relationship
8.
Int Immunopharmacol ; 133: 112086, 2024 May 30.
Article En | MEDLINE | ID: mdl-38642441

Myocardial injury (MI) signifies a pathological aspect of cardiovascular diseases (CVDs) such as coronary artery disease, diabetic cardiomyopathy, and myocarditis. Macrostemonoside T (MST) has been isolated from Allium macrostemon Bunge (AMB), a key traditional Chinese medicine (TCM) used for treating chest stuffiness and pains. Although MST has demonstrated considerable antioxidant activity in vitro, its protective effect against MI remains unexplored. To investigate MST's effects in both in vivo and in vitro models of isoproterenol (ISO)-induced MI and elucidate its underlying molecular mechanisms. This study established an ISO-induced MI model in rats and assessed H9c2 cytotoxicity to examine MST's impact on MI. Various assays, including histopathological staining, TUNEL staining, immunohistochemical staining, DCFH-DA staining, JC-1 staining, ELISA technique, and Western blot (WB), were utilized to explore the potential molecular mechanisms of MI protection. In vivo experiments demonstrated that ISO caused myocardial fiber disorders, elevated cardiac enzyme levels, and apoptosis. However, pretreatment with MST significantly mitigated these detrimental changes. In vitro experiments revealed that MST boosted antioxidant enzyme levels and suppressed malondialdehyde (MDA) production in H9c2 cells. Concurrently, MST inhibited ISO-induced reactive oxygen species (ROS) production and mitigated the decline in mitochondrial membrane potential, thereby reducing the apoptosis rate. Moreover, pretreatment with MST elevated the expression levels of p-PI3K, p-Akt, and p-mTOR, indicating activation of the PI3K/Akt/mTOR signaling pathway and consequent protection against MI. MST attenuated ISO-induced MI in rats by impeding apoptosis through activation of the PI3K/Akt/mTOR signaling pathway. This study presents potential avenues for the development of precursor drugs for CVDs.


Allium , Apoptosis , Isoproterenol , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Allium/chemistry , Rats , Proto-Oncogene Proteins c-akt/metabolism , Male , Cell Line , Apoptosis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Myocardial Infarction/chemically induced , Myocardial Infarction/drug therapy , Myocardial Infarction/prevention & control , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Saponins/pharmacology , Saponins/therapeutic use , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Reactive Oxygen Species/metabolism
9.
J Transl Med ; 22(1): 406, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689349

BACKGROUND: The specific pathogenesis of UC is still unclear, but it has been clear that defects in intestinal barrier function play an important role in it. There is a temporary lack of specific drugs for clinical treatment. Astragaloside IV (AS-IV) is one of the main active ingredients extracted from Astragalus root and is a common Chinese herbal medicine for the treatment of gastrointestinal diseases. This study aimed to determine whether AS-IV has therapeutic value for DSS or LPS-induced intestinal epithelial barrier dysfunction in vivo and in vitro and its potential molecular mechanisms. METHODS: The intestinal tissues from UC patients and colitis mice were collected, intestinal inflammation was observed by colonoscopy, and mucosal barrier function was measured by immunofluorescence staining. PI3K/AKT signaling pathway activator YS-49 and inhibitor LY-29 were administered to colitic mice to uncover the effect of this pathway on gut mucosal barrier modulation. Then, network pharmacology was used to screen Astragaloside IV (AS-IV), a core active component of the traditional Chinese medicine Astragalus membranaceus. The potential of AS-IV for intestinal barrier function repairment and UC treatment through blockade of the PI3K/AKT pathway was further confirmed by histopathological staining, FITC-dextran, transmission electron microscopy, ELISA, immunofluorescence, qRT-PCR, and western blotting. Finally, 16 S rRNA sequencing was performed to uncover whether AS-IV can ameliorate UC by regulating gut microbiota homeostasis. RESULTS: Mucosal barrier function was significantly damaged in UC patients and murine colitis, and the activated PI3K/AKT signaling pathway was extensively involved. Both in vivo and vitro showed that the AS-IV-treated group significantly relieved inflammation and improved intestinal epithelial permeability by inhibiting the activation of the PI3K/AKT signaling pathway. In addition, microbiome data found that gut microbiota participates in AS-IV-mediated intestinal barrier recovery as well. CONCLUSIONS: Our study highlights that AS-IV exerts a protective effect on the integrality of the mucosal barrier in UC based on the PI3K/AKT pathway, and AS-IV may serve as a novel AKT inhibitor to provide a potential therapy for UC.


Colitis, Ulcerative , Intestinal Mucosa , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Saponins , Signal Transduction , Triterpenes , Animals , Humans , Male , Mice , Caco-2 Cells , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use
10.
J Ethnopharmacol ; 327: 118049, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38484954

ETHNOPHARMACOLOGICAL RELEVANCE: Liriope spicata Lour., a species listed in the catalogue of 'Medicinal and Edible Homologous Species', is traditionally used for the treatment of fatigue, restlessness, insomnia and constipation. AIM OF THE STUDY: This study is aimed to evaluate the sedative and hypnotic effect of the saponins from a natural plant L. spicata Lour. in vivo. MATERIALS AND METHODS: The total saponin (LSTS) and purified saponin (LSPS) were extracted from L. spicata, followed by a thorough analysis of their major components using the HPLC-MS. Subsequently, the therapeutic efficacy of LSTS and LSPS was evaluated by the improvement of anxiety and depression behaviors of the PCPA-induced mice. RESULTS: LSTS and LSPS exhibited similar saponin compositions but differ in their composition ratios, with liriopesides-type saponins accounting for a larger proportion in LSTS. Studies demonstrated that both LSTS and LSPS can extend sleep duration and immobility time, while reducing sleep latency in PCPA-induced mice. However, there was no significant difference in weight change among the various mice groups. Elisa results indicated that the LSTS and LSPS could decrease levels of NE, DA, IL-6, and elevate the levels of 5-HT, NO, PGD2 and TNF-α in mice plasma. LSTS enhanced the expression of neurotransmitter receptors, while LSPS exhibited a more pronounced effect in regulating the expression of inflammatory factors. In conclusion, the saponins derived from L. spicata might hold promise as ingredients for developing health foods with sedative and hypnotic effects, potentially related to the modulation of serotonergic and GABAAergic neuron expression, as well as immunomodulatory process.


Saponins , Sleep Initiation and Maintenance Disorders , Animals , Mice , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use , Sleep Initiation and Maintenance Disorders/chemically induced , Sleep Initiation and Maintenance Disorders/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Plants, Edible , Anxiety
11.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38521426

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Saponins , Triterpenes , Humans , Mice , Animals , Cisplatin/toxicity , Molecular Docking Simulation , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Saponins/chemistry , Triterpenes/pharmacology , Triterpenes/therapeutic use , Triterpenes/chemistry
12.
Int Immunopharmacol ; 130: 111749, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38430804

AIMS: Saikosaponin F (SsF) is one of the major active ingredients of Radix Bupleuri, an herb widely used in the treatment of depression. Studies have shown that dry eye disease often occurs together with depression. The aim of this study is to investigate whether SsF can improve depression-associated dry eye disease and explore the underlying mechanism. METHODS: Behavioral test was used to verify the effect of SsF on CUMS-induced depression-like behaviors in mice. Corneal fluorescein staining, phenol red cotton thread test and periodic acid-Schiff (PAS) staining were used to observe the effect of SsF on depression-associated dry eye disease. Western blot (WB) was performed to observe the expression of TAK1 protein and key proteins of NF-κB and MAPK (P38) inflammatory pathways in the hippocampus and cornea. Immunohistochemical staining was used to observe the expression of microglia, and immunoprecipitation was used to observe K63-linked TAK1 ubiquitination. Subsequently, we constructed a viral vector sh-TAK1 to silence TAK1 protein to verify whether SsF exerted its therapeutic effect based on TAK1. The expression of inflammatory factors such as IL-1ß, TNF-α and IL-18 in hippocampus and cornea were detected by ELISA. Overexpression of TRIM8 (OE-TRIM8) by viral vector was used to verify whether SsF improved depression-associated dry eye disease based on TRIM8. RESULTS: SsF treatment significantly improved the depression-like behavior, increased tear production and restored corneal injury in depression-related dry eye model mice. SsF treatment downregulated TAK1 expression and TRIM8-induced K63-linked TAK1 polyubiquitination, while inhibiting the activation of NF-κB and MAPK (P38) inflammatory pathways and microglial expression. In addition, selective inhibition of TAK1 expression ameliorated depression-associated dry eye disease, while overexpression of TRIM8 attenuated the therapeutic effect of SsF on depression-associated dry eye disease. CONCLUSION: SsF inhibited the polyubiquitination of TAK1 by acting on TRIM8, resulting in the downregulation of TAK1 expression, inhibition of inflammatory response, and improvement of CUMS-induced depression-associated dry eye disease.


Antidepressive Agents , Depression , Dry Eye Syndromes , MAP Kinase Kinase Kinases , NF-kappa B , Oleanolic Acid , Saponins , Ubiquitin-Protein Ligases , Animals , Male , Mice , Depression/complications , Depression/drug therapy , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/etiology , Inflammation/drug therapy , MAP Kinase Kinase Kinases/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins , NF-kappa B/metabolism , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Saponins/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
13.
Phytomedicine ; 128: 155432, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518645

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Antineoplastic Agents, Phytogenic , Saponins , Steroids , Saponins/pharmacology , Saponins/chemistry , Saponins/therapeutic use , Humans , Steroids/pharmacology , Steroids/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Neoplasms/drug therapy , Animals , Apoptosis/drug effects
14.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 128-136, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38430031

As the main active ingredient of Astragalus, Astragaloside IV (AS-IV) can ameliorate pulmonary fibrosis. In this experiment, we studied how AS-IV reduces idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) or TGF-ß1 was treated in mice or alveolar epithelial cells to mimic IPF in vivo as well as in vitro. ASV-IV alleviated levels of inflammatory cytokines and fibrosis markers in IPF model. Through detection of autophagy-related genes, ASV-IV was observed to induce autophagy in IPF. Besides, ASV-IV inhibited miR-21 expression in IPF models, and overexpression of miR-21 could reverse the protective potential of ASV-IV on IPF. PTEN was targeted by miR-21 and was up-regulated by ASV-IV in IPF models. In addition, levels of inflammatory cytokines and fibrosis markers, autophagy, as well as the PI3K/AKT/mTOR pathway regulated by ASV-IV could be neutralized after treatment with autophagy inhibitors, miR-21 mimics, or si-PTEN. Our study demonstrates that ASV-IV inhibits IPF through activation of autophagy by miR-21-mediated PTEN/PI3K/AKT/mTOR pathway, suggesting that ASV-IV could be acted to be a promising therapeutic method for IPF.


Idiopathic Pulmonary Fibrosis , MicroRNAs , Saponins , Triterpenes , Animals , Mice , Autophagy/drug effects , Fibrosis , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Triterpenes/pharmacology , Triterpenes/therapeutic use , PTEN Phosphohydrolase/drug effects , PTEN Phosphohydrolase/metabolism
15.
J Cell Mol Med ; 28(6): e18146, 2024 Mar.
Article En | MEDLINE | ID: mdl-38426932

Acne vulgaris represents a chronic inflammatory condition, the pathogenesis of which is closely associated with the altered skin microbiome. Recent studies have implicated a profound role of Gram-negative bacteria in acne development, but there is a lack of antiacne agents targeting these bacteria. Polyphyllins are major components of Rhizoma Paridis with great anti-inflammatory potential. In this study, we aimed to evaluate the antiacne effects and the underlying mechanisms of PPH and a PPH-enriched Rhizoma Paridis extract (RPE) in treating the Gram-negative bacteria-induced acne. PPH and RPE treatments significantly suppressed the mRNA and protein expressions of interleukin (IL)-1ß and IL-6 in lipopolysaccharide (LPS)-induced RAW 264.7 and HaCaT cells, along with the intracellular reactive oxygen species (ROS) generation. Furthermore, PPH and RPE inhibited the nuclear translocation of nuclear factor kappa-B (NF-κB) P65 in LPS-induced RAW 264.7 cells. Based on molecular docking, PPH could bind to kelch-like ECH-associated protein 1 (KEAP1) protein. PPH and RPE treatments could activate nuclear factor erythroid 2-related factor 2 (NRF2) and upregulate haem oxygenase-1 (HO-1). Moreover, RPE suppressed the mitogen-activated protein kinase (MAPK) pathway. Therefore, PPH-enriched RPE showed anti-inflammatory and antioxidative effects in vitro, which is promising for alternative antiacne therapeutic.


Acne Vulgaris , Saponins , Humans , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lipopolysaccharides/adverse effects , Saponins/pharmacology , Saponins/therapeutic use , Molecular Docking Simulation , Anti-Inflammatory Agents/therapeutic use , NF-kappa B/metabolism , Gram-Negative Bacteria/metabolism , Acne Vulgaris/drug therapy , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Inflammation/metabolism
16.
Phytother Res ; 38(4): 2007-2022, 2024 Apr.
Article En | MEDLINE | ID: mdl-38372176

This review highlights the increasing interest in one of the natural compounds called saponins, for their potential therapeutic applications in addressing inflammation which is a key factor in various chronic diseases. It delves into the molecular mechanisms responsible for the anti-inflammatory effects of these amphiphilic compounds, prevalent in plant-based foods and marine organisms. Their structures vary with soap-like properties influencing historical uses in traditional medicine and sparking renewed scientific interest. Recent research focuses on their potential in chronic inflammatory diseases, unveiling molecular actions such as NF-κB and MAPK pathway regulation and COX/LOX enzyme inhibition. Saponin-containing sources like Panax ginseng and soybeans suggest novel anti-inflammatory therapies. The review explores their emerging role in shaping the gut microbiome, influencing composition and activity, and contributing to anti-inflammatory effects. Specific examples, such as Panax notoginseng and Gynostemma pentaphyllum, illustrate the intricate relationship between saponins, the gut microbiome, and their collective impact on immune regulation and metabolic health. Despite promising findings, the review emphasizes the need for further research to comprehend the mechanisms behind anti-inflammatory effects and their interactions with the gut microbiome, underscoring the crucial role of a balanced gut microbiome for optimal health and positioning saponins as potential dietary interventions for managing chronic inflammatory conditions.


Panax notoginseng , Saponins , Humans , Saponins/therapeutic use , Panax notoginseng/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , NF-kappa B
17.
J Ethnopharmacol ; 325: 117885, 2024 May 10.
Article En | MEDLINE | ID: mdl-38331123

ETHNOPHARMACOLOGICAL RELEVANCE: The Timosaponin BⅡ (TBⅡ) is one of the main active components of the traditional Chinese medicine Anemarrhena asphodeloides, and it is a steroidal saponin with various pharmacological activities such as anti-oxidation, anti-inflammatory and anti-apoptosis. However, its role in acute ulcerative colitis remains unexplored thus far. AIM OF THE STUDY: This study aims to investigate the protective effect of TBⅡ against dextran sulfate sodium (DSS)-induced ulcerative colitis in mice and elucidate its underlying mechanisms. METHODS: Wild-type (WT) and NLRP3 knockout (NLRP3-/-) mice were applied to evaluate the protective effect of TBⅡ in DSS-induced mice colitis. Pharmacological inhibition of NLRP3 or adenovirus-mediated NLRP3 overexpression in bone marrow-derived macrophages (BMDM) from WT mice and colonic epithelial HCoEpiC cells was used to assess the role of TBⅡ in LPS + ATP-induced cell model. RNA-seq, ELISA, western blots, immunofluorescence staining, and expression analysis by qPCR were performed to examine the alterations of colonic NLRP3 expression in DSS-induced colon tissues and LPS + ATP-induced cells, respectively. RESULTS: In mice with DSS-induced ulcerative colitis, TBⅡ treatment attenuated clinical symptoms, repaired the intestinal mucosal barrier, reduced inflammatory infiltration, and alleviated colonic inflammation. RNA-seq analysis and protein expression levels demonstrated that TBⅡ could prominently inhibit NLRP3 signaling. TBⅡ-mediated NLRP3 inhibition was associated with alleviating intestinal permeability and inflammatory response via the blockage of communication between epithelial cells and macrophages, probably in an NLRP3 inhibition mechanism. However, pharmacological inhibition of NLRP3 by MCC950 or Ad-NLRP3 mediated NLRP3 overexpression significantly impaired the TBⅡ-mediated anti-inflammatory effect. Mechanistically, TBⅡ-mediated NLRP3 inhibition may be partly associated with the suppression of NF-κB, a master pro-inflammatory factor for transcriptional regulation of NLRP3 expression in the priming step. Moreover, co-treatment TBⅡ with NF-κB inhibitor BAY11-7082 partly impaired TBⅡ-mediated NLRP3 inhibition, and consequently affected the IL-1ß mature and secretion. Importantly, TBⅡ-mediated amelioration was not further enhanced in NLPR3-/- mice. CONCLUSION: TBⅡ exerted a prominent protective effect against DSS-induced colitis via regulation of alleviation of intestinal permeability and inflammatory response via the blockage of crosstalk between epithelial cells and macrophages in an NLRP3-mediated inhibitory mechanism. These beneficial effects could make TBⅡ a promising drug for relieving colitis.


Colitis, Ulcerative , Colitis , Saponins , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , Inflammasomes/metabolism , Colitis/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/adverse effects , Saponins/pharmacology , Saponins/therapeutic use , Adenosine Triphosphate/metabolism , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Colon/metabolism
18.
Gene ; 909: 148305, 2024 May 30.
Article En | MEDLINE | ID: mdl-38403172

OBJECTIVE: The objective of this study was to assess the impact of the total saponins of Panax japonicus (TSPJ) on Type 2 diabetes mellitus (T2DM). RESULTS: The intervention of TSPJ was found to have the ability to reverse physiological indicators associated with T2DM, while also enhancing the expression of genes involved in glucose metabolism and intestinal homeostasis. Additionally, alterations in the composition of the gut microbiota were observed. Based on the findings of experimental results and network pharmacology analysis, it is evident that vascular endothelial growth factor A (VEGFA) serves as a prominent shared target between TSPJ and diabetes. The outcomes observed in T2DM mice overexpressing VEGFA align with those observed in T2DM mice treated with TSPJ. CONCLUSIONS: TSPJ administration and VEGFA overexpression yield similar effects on T2DM in mice. Thus, in terms of mechanism, by upregulating the expression of VEGFA, TSPJ may ameliorate metabolic imbalance, preserve intestinal homeostasis, and lessen the symptoms of type 2 diabetes. The findings demonstrated the viability of using VEGFA as a type 2 diabetes therapy option and offered important insights into the therapeutic mechanisms by TSPJ in the management of T2DM. To determine the exact mechanisms behind the effects of TSPJ and VEGFA and to assess their potential therapeutic uses, more research efforts are necessary.


Diabetes Mellitus, Type 2 , Panax , Saponins , Animals , Mice , Saponins/pharmacology , Saponins/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Vascular Endothelial Growth Factor A/genetics
19.
J Ethnopharmacol ; 326: 117778, 2024 May 23.
Article En | MEDLINE | ID: mdl-38310990

ETHNOPHARMACOLOGICAL RELEVANCE: In China, the Chinese patent drug Realgar-Indigo naturalis Formula (RIF) is utilized for the therapy of acute promyelocytic leukemia (APL). Comprising four traditional Chinese herb-Realgar, Indigo naturalis, Salvia miltiorrhiza, and Pseudostellaria heterophylla-it notably includes tetra-arsenic tetra-sulfide, indirubin, tanshinone IIa, and total saponins of Radix Pseudostellariae as its primary active components. Due to its arsenic content, RIF distinctly contributes to the therapy for APL. However, the challenge of arsenic resistance in APL patients complicates the clinical use of arsenic agents. Interestingly, RIF demonstrates a high remission rate in APL patients, suggesting that its efficacy is not significantly compromised by arsenic resistance. Yet, the current state of research on RIF's ability to reverse arsenic resistance remains unclear. AIM OF THE STUDY: To investigate the mechanism of different combinations of the compound of RIF in reversing arsenic resistance in APL. MATERIALS AND METHODS: The present study utilized the arsenic-resistant HL60-PMLA216V-RARα cell line to investigate the effects of various RIF compounds, namely tetra-arsenic tetra-sulfide (A), indirubin (I), tanshinone IIa (T), and total saponins of Radix Pseudostellariae (S). The assessment of cell viability, observation of cell morphology, and evaluation of cell apoptosis were performed. Furthermore, the mitochondrial membrane potential, changes in the levels of PMLA216V-RARα, apoptosis-related factors, and the PI3K/AKT/mTOR pathway were examined, along with autophagy in all experimental groups. Meanwhile, we observed the changes about autophagy after blocking the PI3K or mTOR pathway. RESULTS: Tanshinone IIa, indirubin and total saponins of Radix Pseudostellariae could enhance the effect of tetra-arsenic tetra-sulfide down-regulating PMLA216V-RARα, and the mechanism was suggested to be related to inhibiting mTOR pathway to activate autophagy. CONCLUSIONS: We illustrated that the synergistic effect of different compound combinations of RIF can regulate autophagy through the mTOR pathway, enhance cell apoptosis, and degrade arsenic-resistant PMLA216V-RARα.


Abietanes , Arsenic , Arsenicals , Drugs, Chinese Herbal , Leukemia, Promyelocytic, Acute , Saponins , Humans , Arsenic/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/chemically induced , Phosphatidylinositol 3-Kinases , Arsenicals/pharmacology , Arsenicals/therapeutic use , Sulfides/pharmacology , Sulfides/therapeutic use , Saponins/therapeutic use
20.
Pharmacol Res ; 201: 107090, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309381

Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.


Oleanolic Acid , Oleanolic Acid/analogs & derivatives , Saponins , Depression/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Neuronal Plasticity
...