Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.062
Filter
1.
Microbiome ; 12(1): 143, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090708

ABSTRACT

BACKGROUND: Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS: We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS: Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.


Subject(s)
Bacteriophages , Sargassum , Seawater , Symbiosis , Sargassum/microbiology , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Seawater/microbiology , Seawater/virology , Genome, Viral , Metagenome , Bacteria/virology , Bacteria/genetics , Bacteria/classification , Genomics , Microbiota , Phylogeny , Genome, Bacterial , Synechococcus/virology , Synechococcus/genetics
4.
J Environ Radioact ; 278: 107515, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39134076

ABSTRACT

131I has been extensively utilized in nuclear medicine, resulting in its widespread detection in coastal algal samples due to its discharge. Therefore, it is essential to monitor 131I in the coastal algal samples. γ-spectrometry is an expeditious method for measuring 131I, but this method requires the pretreatment of the algal sample. The effect on 131I in the algal sample during the oven-drying treatment is unclear. In this study, the Laminaria japonica Areschoug and Sargassum vachellianum Greville were collected at two locations and analyzed for 131I using γ-spectrometry. Additionally, the content of iodine was measured using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) to clarify the effect of 131I loss during drying treatment at different temperatures. The results demonstrated that the dried Laminaria and Sargassum samples had calculated 131I activity concentration relative standard deviations (RSDs) of 6.34 % and 16.31 %, respectively, while the fresh samples exhibited RSDs of 11.70 % and 15.57 %. Additionally, the iodine content RSDs in the dried samples were 9.19 % for Laminaria and 10.34 % for Sargassum. Significantly, discrepancies in 131I activity concentration between the fresh and dried Laminaria and Sargassum were 5.4 % and 10.3 %. These findings indicate that the temperature factor in drying has no effect on 131I loss in Laminaria and Sargassum in the range of 70 °C-110 °C.


Subject(s)
Iodine Radioisotopes , Laminaria , Spectrometry, Gamma , Water Pollutants, Radioactive , Iodine Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Laminaria/chemistry , Spectrometry, Gamma/methods , Radiation Monitoring/methods , Temperature , Sargassum/chemistry
5.
Fish Shellfish Immunol ; 151: 109754, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977113

ABSTRACT

Copper (Cu) is a crucial element that plays a vital role in facilitating proper biological activities in living organisms. In this study, copper oxide nanoparticles (CuO NPs) were synthesized using a straightforward precipitation chemical method from a copper nitrate precursor at a temperature of 85 °C. Subsequently, these NPs were coated with the aqueous extract of Sargassum angustifolium algae. The size, morphology, and coating of the NPs were analyzed through various methods, revealing dimensions of approximately 50 nm, a multidimensional shaped structure, and successful algae coating. The antibacterial activity of both coated and uncoated CuO NPs against Vibrio harveyi, a significant pathogen in Litopenaeus vannamei, was investigated. Results indicated that the minimum inhibitory concentration (MIC) for uncoated CuO NPs was 1000 µg/mL, whereas for coated CuO NPs, it was 500 µg/mL. Moreover, the antioxidant activity of the synthesized NPs was assessed. Interestingly, uncoated CuO NPs exhibited superior antioxidant activity (IC50 ≥ 16 µg/mL). The study also explored the cytotoxicity of different concentrations (10-100 µg/mL) of both coated and uncoated CuO NPs. Following 48 h of incubation, cell viability assays on shrimp hemocytes and human lymphocytes were conducted. The findings indicated that CuO NPs coated with alga extract at a concentration of 10 µg/mL increased shrimp hemocyte viability. In contrast, uncoated CuO NPs at a concentration of 25 µg/mL and higher, as well as CuO NPs at a concentration of 50 µg/mL and higher, led to a decrease in shrimp hemocyte survival. Notably, this study represents the first quantitative assessment of the toxicity of CuO NPs on shrimp cells, allowing for a comparative analysis with human cells.


Subject(s)
Copper , Metal Nanoparticles , Penaeidae , Sargassum , Vibrio , Animals , Copper/chemistry , Copper/pharmacology , Penaeidae/drug effects , Vibrio/drug effects , Sargassum/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Aquaculture , Microbial Sensitivity Tests , Hemocytes/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry
6.
Mar Drugs ; 22(7)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39057425

ABSTRACT

Searching for natural products with anti-tumor activity is an important aspect of cancer research. Seaweed polysaccharides from brown seaweed have shown promising anti-tumor activity; however, their structure, composition, and biological activity vary considerably, depending on many factors. In this study, 16 polysaccharide fractions were extracted and purified from three large brown seaweed species (Sargassum horneri, Scytosiphon lomentaria, and Undaria pinnatifida). The chemical composition analysis revealed that the polysaccharide fractions have varying molecular weights ranging from 8.889 to 729.67 kDa, and sulfate contents ranging from 0.50% to 10.77%. Additionally, they exhibit different monosaccharide compositions and secondary structures. Subsequently, their anti-tumor activity was compared against five tumor cell lines (A549, B16, HeLa, HepG2, and SH-SY5Y). The results showed that different fractions exhibited distinct anti-tumor properties against tumor cells. Flow cytometry and cytoplasmic fluorescence staining (Hoechst/AO staining) further confirmed that these effective fractions significantly induce tumor cell apoptosis without cytotoxicity. qRT-RCR results demonstrated that the polysaccharide fractions up-regulated the expression of Caspase-3, Caspase-8, Caspase-9, and Bax while down-regulating the expression of Bcl-2 and CDK-2. This study comprehensively compared the anti-tumor activity of polysaccharide fractions from large brown seaweed, providing valuable insights into the potent combinations of brown seaweed polysaccharides as anti-tumor agents.


Subject(s)
Antineoplastic Agents , Apoptosis , Polysaccharides , Sargassum , Seaweed , Undaria , Humans , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Apoptosis/drug effects , Seaweed/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Sargassum/chemistry , Undaria/chemistry , Cell Line, Tumor , Animals , Phaeophyceae/chemistry , Hep G2 Cells , HeLa Cells , Mice , Edible Seaweeds
7.
Food Res Int ; 191: 114728, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059922

ABSTRACT

With the increasing need to promote healthy and sustainable diets, seaweeds emerge as an environmentally friendly food source, offering a promising alternative for food production. The aim of this study was to characterize the brown seaweed Sargassum filipendula from the coast of São Paulo, Brazil, regarding its nutritional and techno-functional properties using two dehydration methods, oven drying and lyophilized. A commercial dried sample was used as a control. Analyses of proximate composition, mineral determination, amino acid determination, antioxidant capacity, pH, color, scanning electron microscopy, X-ray diffraction, thermal properties, Fourier-transform infrared spectroscopy, and techno-functional properties were performed. Seaweed flours showed significant differences in physicochemical composition, with dietary fiber content of seaweed flours exceeding 70 %. Glutamic and aspartic acids were the most abundant amino acids, with contents of 88.56 and 56.88 mg/g of protein in Sargassum oven drying. Both for antioxidant potential and bioactive compounds, Sargassum lyophilized flours showed the highest levels of compounds. Sargassum lyophilized exhibited lighter color compared to Sargassum oven drying and Sargassum commercial. Emulsion formation, foam formation capacity and stability were higher in Sargassum lyophilized, as well as water and oil absorption. The results suggest that seaweeds can be used to formulate a wide variety of food products, such as sausages, bread, cakes, soups, and sauces.


Subject(s)
Antioxidants , Freeze Drying , Nutritive Value , Sargassum , Seaweed , Sargassum/chemistry , Antioxidants/analysis , Seaweed/chemistry , Dietary Fiber/analysis , Brazil , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Amino Acids/analysis , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Desiccation/methods
8.
Sci Rep ; 14(1): 15064, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956395

ABSTRACT

Sargassum horneri (S. horneri), a brown seaweed excessively proliferating along Asian coastlines, are damaging marine ecosystems. Thus, this study aimed to enhance nutritional value of S. horneri through lactic acid bacteria fermentation to increase S. horneri utilization as a functional food supplement, and consequently resolve coastal S. horneri accumulation. S. horneri supplemented fermentation was most effective with Lactiplantibacillus pentosus SH803, thus this product (F-SHWE) was used for further in vitro studies. F-SHWE normalized expressions of oxidative stress related genes NF-κB, p53, BAX, cytochrome C, caspase 9, and caspase 3, while non-fermented S. horneri (SHWE) did not, in a H2O2-induced HT-29 cell model. Moreover, in an LPS-induced HT-29 cell model, F-SHWE repaired expressions of inflammation marker genes ZO1, IL1ß, IFNγ more effectively than SHWE. For further functional assessment, F-SHWE was also treated in 3T3-L1 adipocytes. As a result, F-SHWE decreased lipid accumulation, along with gene expression of adipogenesis markers PPARγ, C/EBPα, C/EBPß, aP2, and Lpl; lipogenesis markers Lep, Akt, SREBP1, Acc, Fas; inflammation markers IFN-γ and NF-κB. Notably, gene expression of C/EBPß, IFN-γ and NF-κB were suppressed only by F-SHWE, suggesting the enhancing effect of fermentation on obesity-related properties. Compositional analysis attributed the protective effects of F-SHWE to acetate, an organic acid significantly higher in F-SHWE than SHWE. Therefore, F-SHWE is a novel potential anti-obesity agent, providing a strategy to reduce excess S. horneri populations along marine ecosystems.


Subject(s)
3T3-L1 Cells , Adipocytes , Fermentation , Inflammation , Oxidative Stress , Sargassum , Sargassum/chemistry , Mice , Animals , Adipocytes/metabolism , Adipocytes/drug effects , Oxidative Stress/drug effects , Humans , Inflammation/metabolism , Lactobacillus pentosus/metabolism , HT29 Cells , Adipogenesis/drug effects
9.
Rev Prat ; 74(6): 677-682, 2024 Jun.
Article in French | MEDLINE | ID: mdl-39011708

ABSTRACT

SARGASSUM SEAWEED AS SAULTS THE FRENCH WEST INDIES. Since 2011, Martinique and the islands of Guadeloupe have been affected by repeated groundings, culminating in an exceptional wave in 2018. While the sargassum ( Sargassum natans and S. fluitans ) involved in these phenomena are neither toxic nor urticating, indirect toxicity linked to the presence of microorganisms and heavy metals (arsenic, mercury, etc.) in sargassum clusters has been described. Similarly, after a 24 to 48 hours stay on the shore, sargassum algae enter a putrefaction cycle responsible to produce hydrogen sulfide (H2S) and ammonia (NH3). The acute toxicity of these gases is well known. However, very few data are available on the clinical effects of prolonged exposure to low doses of H2S and NH3. Our team has recently described the syndromic features of chronic exposure, supposing for deleterious effects on the cardiovascular, respiratory and neurological systems.


ALGUES SARGASSES À L'ASSAUT DES ANTILLES. Depuis 2011, la Martinique et les îles de la Guadeloupe sont touchées par des échouements à répétition d'algues sargasses qui ont culminé avec une vague exceptionnelle en 2018. Si les sargasses (Sargassum natans et S. fluitans) impliquées dans ces phénomènes ne sont ni toxiques ni urticantes, une toxicité indirecte liée à la présence de micro-organismes et de métaux lourds (arsenic, mercure…) dans les amas de sargasses est décrite. De même, après un séjour de vingt-quatre à quarante-huit heures sur le littoral, les algues sargasses entrent dans un cycle de putréfaction responsable de la production d'hydrogène sulfuré (H2S) et d'ammoniac (NH3). La toxicité aiguë de ces gaz est bien connue. Il existe en revanche très peu de données disponibles sur les effets cliniques d'une exposition prolongée à de faibles doses d'H2S ou NH3. Notre équipe a récemment décrit le tableau syndromique de l'exposition chronique et suppose des effets délétères sur le système cardiovasculaire, respiratoire et neurologique.


Subject(s)
Sargassum , Seaweed , Humans , Hydrogen Sulfide/poisoning , Hydrogen Sulfide/toxicity , Guadeloupe/epidemiology , Martinique/epidemiology , Ammonia/toxicity , West Indies/epidemiology , Environmental Exposure/adverse effects
10.
Mar Environ Res ; 200: 106659, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39083877

ABSTRACT

Understanding the range shift patterns of foundation species (e.g., macroalgae) under future climatic conditions is critical for biodiversity conservation in coastal ecosystems. These predictions are typically made using species distribution models (SDMs), and severe habitat loss has been predicted for most brown algal forests. Nevertheless, some models showed that local adaptation within species can reduce range loss projections. In this study, we used the brown algae Sargassum fusiforme and Sargassum thunbergii, which are distributed in the Northwest Pacific, to determine whether climate change will cause the Sargassum beds in Northwest Pacific temperate waters to expand or contract. We divided S. fusiforme and S. thunbergii into northern and southern lineages, considering the temperature gradients and phylogeographic structures. We quantified the realized niches of the two lineages using an n-dimensional hypervolume. Significant niche differentiation was detected between lineages for both species, suggesting the existence of local adaptation. Based on these results, lineage-level SDMs were constructed for both species. The prediction results showed the different responses of different lineages to climate change. The suitable distribution area for both species was predicted to move northward, retaining part of the suitable habitat at low latitudes (along the East China Sea). Unfortunately, this expansion could not compensate for losing middle-low latitude areas. Our results have important implications for the future management and protection of macroalgae and emphasize the importance of incorporating intraspecific variation into species distribution predictions.


Subject(s)
Climate Change , Ecosystem , Sargassum , Sargassum/physiology , Biodiversity , Pacific Ocean
11.
Int J Biol Macromol ; 276(Pt 1): 133496, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38986999

ABSTRACT

Dengue virus (DENV) infection poses a global health threat, leading to severe conditions with the potential for critical outcomes. Currently, there are no specific drugs available whereas the vaccine does not offer comprehensive protection across all DENV serotypes. Therefore, the development of potential antiviral agents is necessary to reduce the severity risk and interrupt the transmission circuit. The search for effective antiviral agents against DENV has predominantly focused on natural resources, particularly those demonstrating diverse biological activities and high safety profiles. Cyanobacteria and algae including Leptolyngbya sp., Spirulina sp., Chlorella sp., and Sargassum spp., which are prevalent species in Thailand, have been reported for their diverse biological activities and high safety profiles. However, their anti-DENV activity has not been documented. In this study, the screening assay was performed to compare the antiviral activity against DENV of crude polysaccharide and ethanolic extracts derived from 4 species of cyanobacteria and algae in Vero cells. Polysaccharide extracts from Sargassum spp. were the most effective in inhibiting DENV-2 infection under co-infection conditions, where the virus was exposed to the extract at the time of infection. Treatment of the extract significantly reduced the ability of DENV to bind to the host cells to 47.87 ± 3.88 % while treatment upon virus binding step had no antiviral effect suggesting the underlaying mechanism of the extract on interfering virus binding step. Fucoidan, a key bioactive substance in Sargassum polysaccharide, showed to reduce DENV-2 infection to 26.59 ± 5.01 %, 20.46 ± 6.58 % under the co-infection condition in Vero and A549 cells, respectively. In accompanied with Sargassum polysaccharide, fucoidan disturbed the virus binding to the host cells. These findings warrant further development and exploration of the Sargassum-derived polysaccharide, fucoidan, as a promising candidate for combating DENV infections.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Polysaccharides , Sargassum , Polysaccharides/pharmacology , Polysaccharides/chemistry , Dengue Virus/drug effects , Sargassum/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chlorocebus aethiops , Vero Cells , Animals , Dengue/drug therapy , Dengue/virology , Humans
12.
Int J Biol Macromol ; 276(Pt 1): 133771, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992531

ABSTRACT

Sargassum fusiforme is a brown seaweed that grows abundantly along the rocky coastlines of Asian countries. The polysaccharides derived from Sargassum fusiforme (SFPS) have received much interest due to their various bioactivities, such as hypolipidemic, hypoglycemic, and antioxidant activities. In this study, we extracted and purified SFPS, and obtained the ultrasonic degradation product (SFPSUD). The lipid regulatory effects of SFPS and SFPSUD were investigated in a zebrafish model fed a high-fat diet. The results showed that SFPS significantly decreased the levels of total cholesterol (TC) and triglycerides (TG), and increased the activities of lipoprotein lipase (LPL) and hepatic lipase (HL). SFPSUD was more effective than the SFPS in reducing the TC and TG levels in zebrafish, as well as increasing the LPL and HL activities. Histopathological observations of zebrafish livers showed that SFPSUD significantly improved lipid metabolism disorder in the hepatocytes. The possible lipid-lowering mechanism in zebrafish associated with SFPS and SFPSUD may involve acceleration of the lipid metabolism rate by increasing the activities of LPL and HL. Thus, SFPSUD could be tested as a highly effective hypolipidemic drug. Our results suggest that SFPS and SFPSUD have potential uses as functional foods for the prevention and treatment of hyperlipidemia. Ultrasound can be effectively applied to degrade SFPS to improve its physicochemical properties and bioactivities.


Subject(s)
Diet, High-Fat , Hypolipidemic Agents , Lipid Metabolism , Polysaccharides , Sargassum , Zebrafish , Animals , Sargassum/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Lipoprotein Lipase/metabolism , Triglycerides/blood , Triglycerides/metabolism , Hyperlipidemias/drug therapy , Hyperlipidemias/metabolism , Cholesterol/blood , Cholesterol/metabolism , Lipase/metabolism , Edible Seaweeds
13.
Sci Total Environ ; 946: 174151, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909804

ABSTRACT

Important foraging and nesting habitats for Caribbean green sea turtles (Chelonia mydas) exist within the Mesoamerican Reef System in the Mexican Caribbean. During the last 25 years, urban development and touristic activities have drastically increased in Quintana Roo, Mexico. Moreover, in the last decade, massive pelagic sargasso blooms have also afflicted this region; however, information about the biochemical responses of Caribbean green turtles to these inputs is absent. This study aimed to assess if the oxidative stress indicators in the red blood cells of green turtles are valuable biomarkers of the extent of the anthropic impact in this region. Persistent organic pollutants (POPs) were also measured in the plasma of free-living green turtles during 2015-2018 to characterize these habitats further. As biochemical biomarkers, the production rate of superoxide radical (O2•-), carbonylated protein content, and lipid peroxidation (TBARS) levels, and the activities of superoxide dismutase, glutathione S-transferase (GST), catalase, glutathione peroxidase were measured in erythrocytes. A 15 % occurrence of fibropapillomatosis (FP) was revealed, with tumor size being positively correlated with CAT activity in the affected individuals. A multivariate analysis embracing all oxidative stress markers discriminated green turtles between years of capture (p < 0.001), with those sampled during 2015 presenting the highest production of O2•- (p = 0.001), activities of GST (p < 0.001), levels of TBARS (p < 0.001) and carbonylated proteins (p = 0.02). These local and temporal biochemical responses coincided with the first massive Sargassum spp. bloom reported in the region. The results of this study corroborate the utility of the oxidative stress indicators as biomarkers of environmental conditions (sargasso blooms and POPs) in the green turtle as sentinel species.


Subject(s)
Ecosystem , Environmental Monitoring , Oxidative Stress , Turtles , Animals , Turtles/physiology , Mexico , Water Pollutants, Chemical/analysis , Biomarkers , Catalase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Sargassum/physiology , Superoxide Dismutase/metabolism
14.
Ecotoxicol Environ Saf ; 280: 116522, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38843743

ABSTRACT

This study aimed to evaluate the effect of adding liquid extract of algae (Hypnea musciformis, Grateloupia acuminata, and Sargassum muticum) (HGS) and Magnesium oxide nanoparticles (MgO NPs) using this extract to rear water of Oreochromis niloticus, on improving culture water indices, growth performance, digestive enzyme, hemato-biochemical characters, immune, antioxidative responses, and resistance after challenged by Aeromonas hydrophila with specific refer to the potential role of the mixture in vitro as resistance against three strains bacteria (Aeromonas sobria, Pseudomonas fluorescens, P. aeruginosa) and one parasite (Cichlidogyrus tilapia). The first group represented control, HGS0, whereas the other group, HGS5, HGS10, and HGS15 mL-1 of liquid extract, as well as all groups with 7.5 µg mL-1 MgO-NPs added to culture water of O. niloticus, for 60 days. Data showed that increasing levels at HGS 10 and HGS15 mL-1 in to-culture water significantly enhanced growth-stimulating digestive enzyme activity and a significantly improved survival rate of O. niloticus after being challenged with A. hydrophila than in the control group. The total viability, coliform, fecal coliform count, and heavy metal in muscle partially decreased at HGS 10 and HGS15 mL-1 than in the control group. Correspondingly, the highest positive effect on hemato-biochemical indices was noticed at levels HGS 10 and HGS15 mL-1. Fish noticed an improvement in immune and antioxidant indices compared to control groups partially at HGS 10 and HGS15 mL-1. Interestingly, fish cultured in rearing water with the mixture provided downregulated the related inflammatory genes (HSP70, TNF, IL-1ß, and IL-8) partially at HGS15 mL-1. In vitro, the mixture showed positive efficiency as an antibacterial and partially antiparasitic at HGS 10 and HGS15 mL-1. This study proposes utilizing a mixture of (HGS) and (MgO-NPs) with optimum levels of 10-15 mL-1 in cultured water to improve water indices, growth, health status, and increased resistance of O. niloticus against bacterial and parasitic infection.


Subject(s)
Cichlids , Disease Resistance , Magnesium Oxide , Water Quality , Animals , Magnesium Oxide/pharmacology , Cichlids/immunology , Disease Resistance/drug effects , Seaweed , Fish Diseases/microbiology , Fish Diseases/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nanoparticles , Green Chemistry Technology , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Aeromonas hydrophila/drug effects , Sargassum
15.
Nutrients ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38892548

ABSTRACT

We previously demonstrated that diet supplementation with seaweed Sargassum fusiforme (S. fusiforme) prevented AD-related pathology in a mouse model of Alzheimer's Disease (AD). Here, we tested a lipid extract of seaweed Himanthalia elongata (H. elongata) and a supercritical fluid (SCF) extract of S. fusiforme that is free of excess inorganic arsenic. Diet supplementation with H. elongata extract prevented cognitive deterioration in APPswePS1ΔE9 mice. Similar trends were observed for the S. fusiforme SCF extract. The cerebral amyloid-ß plaque load remained unaffected. However, IHC analysis revealed that both extracts lowered glial markers in the brains of APPswePS1ΔE9 mice. While cerebellar cholesterol concentrations remained unaffected, both extracts increased desmosterol, an endogenous LXR agonist with anti-inflammatory properties. Both extracts increased cholesterol efflux, and particularly, H. elongata extract decreased the production of pro-inflammatory cytokines in LPS-stimulated THP-1-derived macrophages. Additionally, our findings suggest a reduction of AD-associated phosphorylated tau and promotion of early oligodendrocyte differentiation by H. elongata. RNA sequencing on the hippocampus of one-week-treated APPswePS1ΔE9 mice revealed effects of H. elongata on, amongst others, acetylcholine and synaptogenesis signaling pathways. In conclusion, extracts of H. elongata and S. fusiforme show potential to reduce AD-related pathology in APPswePS1ΔE9 mice. Increasing desmosterol concentrations may contribute to these effects by dampening neuroinflammation.


Subject(s)
Alzheimer Disease , Dietary Supplements , Disease Models, Animal , Seaweed , Animals , Alzheimer Disease/drug therapy , Seaweed/chemistry , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Plant Extracts/pharmacology , Mice, Transgenic , Sargassum/chemistry , Humans , Plaque, Amyloid , Cholesterol/metabolism , Cholesterol/blood , Male , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , tau Proteins/metabolism
16.
Sci Rep ; 14(1): 12874, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38834629

ABSTRACT

Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Dinitrochlorobenzene , Disease Models, Animal , Mice, Inbred BALB C , Sargassum , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Sargassum/chemistry , Mice , RAW 264.7 Cells , Humans , Ethanol/chemistry , Plant Extracts/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Skin/drug effects , Skin/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Cytokines/metabolism
17.
Sci Rep ; 14(1): 13282, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858416

ABSTRACT

Recent research has emphasized the role of macrophage-secreted factors on skeletal muscle metabolism. We studied Sargassum Serratifolium ethanol extract (ESS) in countering lipopolysaccharide (LPS)-induced changes in the macrophage transcriptome and their impact on skeletal muscle. Macrophage-conditioned medium (MCM) from LPS-treated macrophages (LPS-MCM) and ESS-treated macrophages (ESS-MCM) affected C2C12 myotube cells. LPS-MCM upregulated muscle atrophy genes and reduced glucose uptake, while ESS-MCM reversed these effects. RNA sequencing revealed changes in the immune system and cytokine transport pathways in ESS-treated macrophages. Protein analysis in ESS-MCM showed reduced levels of key muscle atrophy-related proteins, TNF-α, IL-6, IL-1, and GDF-15. These proteins play crucial roles in muscle function. These findings highlight the intricate relationship between the macrophage transcriptome and their secreted factors in either impairing or enhancing skeletal muscle function. ESS treatment has the potential to reduce macrophage-derived cytokines, preserving skeletal muscle function.


Subject(s)
Macrophages , Muscular Atrophy , Plant Extracts , Sargassum , Sargassum/chemistry , Macrophages/metabolism , Macrophages/drug effects , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Transcriptome , Lipopolysaccharides , Cytokines/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Cell Line , Culture Media, Conditioned/pharmacology , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/drug effects
18.
Mar Drugs ; 22(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38921558

ABSTRACT

Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Sargassum , Xanthophylls , Zika Virus , Antiviral Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/chemistry , Zika Virus/drug effects , Animals , Sargassum/chemistry , Chlorocebus aethiops , Xanthophylls/pharmacology , Xanthophylls/isolation & purification , Xanthophylls/chemistry , Vero Cells , Zika Virus Infection/drug therapy , Zika Virus Infection/virology
19.
Mar Drugs ; 22(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38921584

ABSTRACT

The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Seaweed , Seaweed/chemistry , Algeria , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests , Sargassum/chemistry , Spectroscopy, Fourier Transform Infrared , Phaeophyceae/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
20.
Nutrients ; 16(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38931192

ABSTRACT

BACKGROUND: Brown seaweed is promising for the treatment of type 2 diabetes mellitus (T2DM). Its bioactive constituents can positively affect plasma glucose homeostasis in healthy humans. We investigated the effect of the brown seaweeds Sargassum (S.) fusiforme and Fucus (F.) vesiculosus in their natural form on glucose regulation in patients with T2DM. METHODS: We conducted a randomized, double-blind, placebo-controlled pilot trial. Thirty-six participants with T2DM received, on a daily basis, either 5 g of dried S. fusiforme, 5 g of dried F. vesiculosus, or 0.5 g of dried Porphyra (control) for 5 weeks, alongside regular treatment. The primary outcome was the between-group difference in the change in weekly average blood glucose levels (continuous glucose monitoring). The secondary outcomes were the changes in anthropometrics, plasma lipid levels, and dietary intake. The data were analyzed using a linear mixed-effects model. RESULTS: The change in weekly average glucose levels was 8.2 ± 2.1 to 9.0 ± 0.7 mmol/L (p = 0.2) in the S. fusiforme group (n = 12) and 10.1 ± 3.3 to 9.2 ± 0.7 mmol/L (p = 0.9) in the F. vesiculosus group (n = 10). The between-group difference was non-significant. Similarly, no between-group differences were observed for the changes in the secondary outcomes. DISCUSSION: A daily intake of 5 g of fresh, dried S. fusiforme or F. vesiculosus alongside regular treatment had no differential effect on weekly average blood glucose levels in T2DM.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Fucus , Sargassum , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Blood Glucose/metabolism , Blood Glucose/drug effects , Male , Female , Middle Aged , Fucus/chemistry , Pilot Projects , Overweight/blood , Feasibility Studies , Aged , Adult , Seaweed , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Edible Seaweeds
SELECTION OF CITATIONS
SEARCH DETAIL