Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.718
Filter
1.
Cells ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38920662

ABSTRACT

Recent studies have highlighted neurons and their associated Schwann cells (SCs) as key regulators of cancer development. However, the mode of their interaction with tumor cells or other components of the tumor microenvironment (TME) remains elusive. We established an SC-related 43-gene set as a surrogate for peripheral nerves in the TME. Head and neck squamous cell carcinoma (HNSCC) from The Cancer Genome Atlas (TCGA) were classified into low, intermediate and high SC score groups based on the expression of this gene set. Perineural invasion (PNI) and TGF-ß signaling were hallmarks of SChigh tumors, whereas SClow tumors were enriched for HPV16-positive OPSCC and higher PI3K-MTOR activity. The latter activity was partially explained by a higher frequency of PTEN mutation and PIK3CA copy number gain. The inverse association between PI3K-MTOR activity and peripheral nerve abundance was context-dependent and influenced by the TP53 mutation status. An in silico drug screening approach highlighted the potential vulnerabilities of HNSCC with variable SC scores and predicted a higher sensitivity of SClow tumors to DNA topoisomerase inhibitors. In conclusion, we have established a tool for assessing peripheral nerve abundance in the TME and provided new clinical and biological insights into their regulation. This knowledge may pave the way for new therapeutic strategies and impart proof of concept in appropriate preclinical models.


Subject(s)
Phosphatidylinositol 3-Kinases , Signal Transduction , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Peripheral Nerves/pathology , Peripheral Nerves/metabolism , Peripheral Nerves/virology , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Mutation/genetics , TOR Serine-Threonine Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Class I Phosphatidylinositol 3-Kinases/genetics , Schwann Cells/metabolism , Schwann Cells/pathology , Schwann Cells/virology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Gene Expression Regulation, Neoplastic , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
2.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886712

ABSTRACT

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Subject(s)
Cellulose , Disulfides , Molybdenum , Nerve Regeneration , Schwann Cells , Tissue Scaffolds , Nerve Regeneration/drug effects , Animals , Rats , Tissue Scaffolds/chemistry , Disulfides/chemistry , Disulfides/pharmacology , Schwann Cells/drug effects , Molybdenum/chemistry , Molybdenum/pharmacology , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Rats, Sprague-Dawley , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Cell Proliferation/drug effects , Tissue Engineering/methods , Male , Peripheral Nerve Injuries , Stereoisomerism
3.
Acta Neuropathol Commun ; 12(1): 102, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38907342

ABSTRACT

Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.


Subject(s)
Benzimidazoles , Extracellular Matrix , Schwann Cells , Signal Transduction , Skin Neoplasms , Humans , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology , Skin Neoplasms/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Benzimidazoles/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/genetics , Signal Transduction/drug effects , Neurofibroma/genetics , Neurofibroma/drug therapy , Neurofibroma/metabolism , Neurofibroma/pathology , Female , Male , RNA-Seq , Middle Aged , Adult , Neurofibromatosis 1/genetics , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology , Transcriptome/drug effects
4.
Sci Adv ; 10(25): eado1583, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905335

ABSTRACT

Neuroblastoma is a childhood developmental cancer; however, its embryonic origins remain poorly understood. Moreover, in-depth studies of early tumor-driving events are limited because of the lack of appropriate models. Herein, we analyzed RNA sequencing data obtained from human neuroblastoma samples and found that loss of expression of trunk neural crest-enriched gene MOXD1 associates with advanced disease and worse outcome. Further, by using single-cell RNA sequencing data of human neuroblastoma cells and fetal adrenal glands and creating in vivo models of zebrafish, chick, and mouse, we show that MOXD1 is a determinate of tumor development. In addition, we found that MOXD1 expression is highly conserved and restricted to mesenchymal neuroblastoma cells and Schwann cell precursors during healthy development. Our findings identify MOXD1 as a lineage-restricted tumor-suppressor gene in neuroblastoma, potentiating further stratification of these tumors and development of novel therapeutic interventions.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Tumor Suppressor , Neuroblastoma , Zebrafish , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Animals , Humans , Mice , Zebrafish/genetics , Cell Line, Tumor , Cell Lineage/genetics , Neural Crest/metabolism , Neural Crest/pathology , Schwann Cells/metabolism , Schwann Cells/pathology
5.
Gut Microbes ; 16(1): 2363015, 2024.
Article in English | MEDLINE | ID: mdl-38845453

ABSTRACT

Gut microbiota is responsible for essential functions in human health. Several communication axes between gut microbiota and other organs via neural, endocrine, and immune pathways have been described, and perturbation of gut microbiota composition has been implicated in the onset and progression of an emerging number of diseases. Here, we analyzed peripheral nerves, dorsal root ganglia (DRG), and skeletal muscles of neonatal and young adult mice with the following gut microbiota status: a) germ-free (GF), b) gnotobiotic, selectively colonized with 12 specific gut bacterial strains (Oligo-Mouse-Microbiota, OMM12), or c) natural complex gut microbiota (CGM). Stereological and morphometric analyses revealed that the absence of gut microbiota impairs the development of somatic median nerves, resulting in smaller diameter and hypermyelinated axons, as well as in smaller unmyelinated fibers. Accordingly, DRG and sciatic nerve transcriptomic analyses highlighted a panel of differentially expressed developmental and myelination genes. Interestingly, the type III isoform of Neuregulin1 (NRG1), known to be a neuronal signal essential for Schwann cell myelination, was overexpressed in young adult GF mice, with consequent overexpression of the transcription factor Early Growth Response 2 (Egr2), a fundamental gene expressed by Schwann cells at the onset of myelination. Finally, GF status resulted in histologically atrophic skeletal muscles, impaired formation of neuromuscular junctions, and deregulated expression of related genes. In conclusion, we demonstrate for the first time a gut microbiota regulatory impact on proper development of the somatic peripheral nervous system and its functional connection to skeletal muscles, thus suggesting the existence of a novel 'Gut Microbiota-Peripheral Nervous System-axis.'


Subject(s)
Ganglia, Spinal , Gastrointestinal Microbiome , Neuromuscular Junction , Animals , Neuromuscular Junction/microbiology , Mice , Ganglia, Spinal/metabolism , Ganglia, Spinal/microbiology , Germ-Free Life , Peripheral Nerves/microbiology , Peripheral Nerves/growth & development , Muscle, Skeletal/microbiology , Mice, Inbred C57BL , Neuregulin-1/metabolism , Neuregulin-1/genetics , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Schwann Cells/microbiology , Schwann Cells/metabolism
6.
Nat Commun ; 15(1): 5115, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879607

ABSTRACT

Neurofibromatosis Type II (NFII) is a genetic condition caused by loss of the NF2 gene, resulting in activation of the YAP/TAZ pathway and recurrent Schwann cell tumors, as well as meningiomas and ependymomas. Unfortunately, few pharmacological options are available for NFII. Here, we undertake a genome-wide CRISPR/Cas9 screen to search for synthetic-lethal genes that, when inhibited, cause death of NF2 mutant Schwann cells but not NF2 wildtype cells. We identify ACSL3 and G6PD as two synthetic-lethal partners for NF2, both involved in lipid biogenesis and cellular redox. We find that NF2 mutant Schwann cells are more oxidized than control cells, in part due to reduced expression of genes involved in NADPH generation such as ME1. Since G6PD and ME1 redundantly generate cytosolic NADPH, lack of either one is compatible with cell viability, but not down-regulation of both. Since genetic deficiency for G6PD is tolerated in the human population, G6PD could be a good pharmacological target for NFII.


Subject(s)
CRISPR-Cas Systems , Coenzyme A Ligases , Glucosephosphate Dehydrogenase , Neurofibromin 2 , Schwann Cells , Synthetic Lethal Mutations , Schwann Cells/metabolism , Humans , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/genetics , Neurofibromin 2/metabolism , Neurofibromin 2/genetics , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Animals , Neurofibromatosis 2/metabolism , Neurofibromatosis 2/genetics , NADP/metabolism , Mice , Oxidation-Reduction
7.
J Neural Eng ; 21(4)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38885674

ABSTRACT

Objective.To develop a clinically relevant injectable hydrogel derived from decellularized porcine peripheral nerves and with mechanical properties comparable to native central nervous system (CNS) tissue to be used as a delivery vehicle for Schwann cell transplantation to treat spinal cord injury (SCI).Approach.Porcine peripheral nerves (sciatic and peroneal) were decellularized by chemical decellularization using a sodium deoxycholate and DNase (SDD) method previously developed by our group. The decellularized nerves were delipidated using dichloromethane and ethanol solvent and then digested using pepsin enzyme to form injectable hydrogel formulations. Genipin was used as a crosslinker to enhance mechanical properties. The injectability, mechanical properties, and gelation kinetics of the hydrogels were further analyzed using rheology. Schwann cells encapsulated within the injectable hydrogel formulations were passed through a 25-gauge needle and cell viability was assessed using live/dead staining. The ability of the hydrogel to maintain Schwann cell viability against an inflammatory milieu was assessedin vitrousing inflamed astrocytes co-cultured with Schwann cells.Mainresults. The SDD method effectively removes cells and retains extracellular matrix in decellularized tissues. Using rheological studies, we found that delipidation of decellularized porcine peripheral nerves using dichloromethane and ethanol solvent improves gelation kinetics and mechanical strength of hydrogels. The delipidated and decellularized hydrogels crosslinked using genipin mimicked the mechanical strength of CNS tissue. The hydrogels were found to have shear thinning properties desirable for injectable formulations and they also maintained higher Schwann cell viability during injection compared to saline controls. Usingin vitroco-culture experiments, we found that the genipin-crosslinked hydrogels also protected Schwann cells from astrocyte-mediated inflammation.Significance. Injectable hydrogels developed using delipidated and decellularized porcine peripheral nerves are a potential clinically relevant solution to deliver Schwann cells, and possibly other therapeutic cells, at the SCI site by maintaining higher cellular viability and increasing therapeutic efficacy for SCI treatment.


Subject(s)
Hydrogels , Peripheral Nerves , Schwann Cells , Spinal Cord Injuries , Animals , Schwann Cells/physiology , Schwann Cells/drug effects , Hydrogels/chemistry , Hydrogels/administration & dosage , Swine , Spinal Cord Injuries/therapy , Peripheral Nerves/physiology , Peripheral Nerves/drug effects , Spinal Cord Regeneration/physiology , Spinal Cord Regeneration/drug effects , Cells, Cultured , Cell Survival/physiology , Cell Survival/drug effects
8.
ACS Nano ; 18(26): 16556-16576, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889128

ABSTRACT

Critical peripheral nerve deficiencies present as one of the most formidable conundrums in the realm of clinical medicine, frequently culminating in structural degradation and derangement of the neuromuscular apparatus. Engineered extracellular vesicles (EVs) exhibit the potential to ameliorate nerve impairments. However, the advent of Wallerian degeneration (WD), an inexorable phenomenon that ensues post peripheral nerve injury, serves as an insurmountable impediment to the direct therapeutic efficacy of EVs. In this investigation, we have fashioned a dynamic network for the conveyance of PTEN-induced kinase 1 (PINK1) mRNA (E-EV-P@HPCEP) using an adaptive hydrogel with reactive oxygen species (ROS)/Ca2+ responsive ability as the vehicle, bearing dual-targeted, engineered EVs. This intricate system is to precisely deliver PINK1 to senescent Schwann cells (SCs) while concurrently orchestrating a transformation in the inflammatory-senescent milieu following injury, thereby stymying the progression of WD in peripheral nerve fibers through the stimulation of autophagy within the mitochondria of the injured cells and the maintenance of mitochondrial mass equilibrium. WD, conventionally regarded as an inexorable process, E-EV-P@HPCEP achieved functionalized EV targeting, orchestrating a dual-response dynamic release mechanism via boronate ester bonds and calcium chelation, effectuating an enhancement in the inflammatory-senescent microenvironment, which expedites the therapeutic management of nerve deficiencies and augments the overall reparative outcome.


Subject(s)
Calcium , Hydrogels , RNA, Messenger , Reactive Oxygen Species , Schwann Cells , Hydrogels/chemistry , Hydrogels/pharmacology , Reactive Oxygen Species/metabolism , Calcium/metabolism , Calcium/chemistry , Animals , RNA, Messenger/metabolism , RNA, Messenger/genetics , Schwann Cells/metabolism , Protein Kinases/metabolism , Humans , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Peripheral Nerve Injuries/pathology , Rats , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism
9.
Sci Transl Med ; 16(753): eadj1597, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924432

ABSTRACT

Congenital pseudarthrosis of the tibia (CPT) is a severe pathology marked by spontaneous bone fractures that fail to heal, leading to fibrous nonunion. Half of patients with CPT are affected by the multisystemic genetic disorder neurofibromatosis type 1 (NF1) caused by mutations in the NF1 tumor suppressor gene, a negative regulator of RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Here, we analyzed patients with CPT and Prss56-Nf1 knockout mice to elucidate the pathogenic mechanisms of CPT-related fibrous nonunion and explored a pharmacological approach to treat CPT. We identified NF1-deficient Schwann cells and skeletal stem/progenitor cells (SSPCs) in pathological periosteum as affected cell types driving fibrosis. Whereas NF1-deficient SSPCs adopted a fibrotic fate, NF1-deficient Schwann cells produced critical paracrine factors including transforming growth factor-ß and induced fibrotic differentiation of wild-type SSPCs. To counteract the elevated RAS-MAPK signaling in both NF1-deficient Schwann cells and SSPCs, we used MAPK kinase (MEK) and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Combined MEK-SHP2 inhibition in vivo prevented fibrous nonunion in the Prss56-Nf1 knockout mouse model, providing a promising therapeutic strategy for the treatment of fibrous nonunion in CPT.


Subject(s)
Mice, Knockout , Neurofibromin 1 , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Pseudarthrosis , Schwann Cells , Animals , Female , Humans , Male , Mice , Cell Differentiation/drug effects , Fibrosis , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Neurofibromatosis 1/pathology , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/complications , Neurofibromin 1/metabolism , Neurofibromin 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Pseudarthrosis/pathology , Pseudarthrosis/metabolism , Pseudarthrosis/congenital , Schwann Cells/metabolism , Schwann Cells/drug effects , Schwann Cells/pathology , Stem Cells/metabolism , Stem Cells/drug effects , Tibia/pathology
10.
Neuropeptides ; 106: 102438, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38749170

ABSTRACT

Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , Phenotype , Schwann Cells , Schwann Cells/physiology , Animals , Nerve Regeneration/physiology , Humans , Peripheral Nerve Injuries/therapy , Recovery of Function/physiology , Myelin Sheath/physiology
11.
Synapse ; 78(3): e22293, 2024 May.
Article in English | MEDLINE | ID: mdl-38779935

ABSTRACT

The differentiation of bone marrow stromal cells (BMSCs) into Schwann-like cells (SCLCs) has the potential to promote the structural and functional restoration of injured axons. However, the optimal induction protocol and its underlying mechanisms remain unclear. This study aimed to compare the effectiveness of different induction protocols in promoting the differentiation of rat BMSCs into SCLCs and to explore their potential mechanisms. BMSCs were induced using two distinct methods: a composite factor induction approach (Protocol-1) and a conditioned culture medium induction approach (Protocol-2). The expression of Schwann cells (SCs) marker proteins and neurotrophic factors (NTFs) in the differentiated cells was assessed. Cell proliferation and apoptosis were also measured. During induction, changes in miR-21 and Sprouty RTK signaling antagonist 2 (SPRY2) mRNA were analyzed. Following the transfection of BMSCs with miR-21 agomir or miR-21 antagomir, induction was carried out using both protocols, and the expression of SPRY2, ERK1/2, and SCs marker proteins was examined. The results revealed that NTFs expression was higher in Protocol-1, whereas SCs marker proteins expression did not significantly differ between the two groups. Compared to Protocol-1, Protocol-2 exhibited enhanced cell proliferation and fewer apoptotic and necrotic cells. Both protocols showed a negative correlation between miR-21 and SPRY2 expression throughout the induction stages. After induction, the miR-21 agomir group exhibited reduced SPRY2 expression, increased ERK1/2 expression, and significantly elevated expression of SCs marker proteins. This study demonstrates that Protocol-1 yields higher NTFs expression, whereas Protocol-2 results in stronger SCLCs proliferation. Upregulating miR-21 suppresses SPRY2 expression, activates the ERK1/2 signaling pathway, and promotes BMSC differentiation into SCLCs.


Subject(s)
Cell Differentiation , Cell Proliferation , Membrane Proteins , Mesenchymal Stem Cells , MicroRNAs , Rats, Sprague-Dawley , Schwann Cells , Animals , Schwann Cells/metabolism , Schwann Cells/cytology , MicroRNAs/metabolism , MicroRNAs/genetics , Cell Differentiation/physiology , Rats , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Proliferation/physiology , Cells, Cultured , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Apoptosis/physiology , Nerve Growth Factors/metabolism , Nerve Growth Factors/genetics , Culture Media, Conditioned/pharmacology , Nerve Tissue Proteins
12.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791273

ABSTRACT

The HMG-domain containing transcription factor Sox10 plays a crucial role in regulating Schwann cell survival and differentiation and is expressed throughout the entire Schwann cell lineage. While its importance in peripheral myelination is well established, little is known about its role in the early stages of Schwann cell development. In a search for direct target genes of Sox10 in Schwann cell precursors, the transcriptional co-repressor Tle4 was identified. At least two regions upstream of the Tle4 gene appear involved in mediating the Sox10-dependent activation. Once induced, Tle4 works in tandem with the bHLH transcriptional repressor Hes1 and exerts a dual inhibitory effect on Sox10 by preventing the Sox10 protein from transcriptionally activating maturation genes and by suppressing Sox10 expression through known enhancers of the gene. This mechanism establishes a regulatory barrier that prevents premature activation of factors involved in differentiation and myelin formation by Sox10 in immature Schwann cells. The identification of Tle4 as a critical downstream target of Sox10 sheds light on the gene regulatory network in the early phases of Schwann cell development. It unravels an elaborate regulatory circuitry that fine-tunes the timing and extent of Schwann cell differentiation and myelin gene expression.


Subject(s)
Cell Differentiation , DNA-Binding Proteins , SOXE Transcription Factors , Schwann Cells , Animals , Humans , Mice , Rats , Cell Differentiation/genetics , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics , Feedback, Physiological , Gene Expression Regulation , Myelin Sheath/metabolism , Schwann Cells/metabolism , Schwann Cells/cytology , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , DNA-Binding Proteins/metabolism
13.
Int J Biol Macromol ; 271(Pt 1): 132394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761905

ABSTRACT

The treatment of peripheral nerve injury is a clinical challenge that tremendously affected the patients' health and life. Anisotropic topographies and electric cues can simulate the regenerative microenvironment of nerve from physical and biological aspects, which show promising application in nerve regeneration. However, most studies just unilaterally emphasize the effect of sole topological- or electric- cue on nerve regeneration, while rarely considering the synergistic function of both cues simultaneously. In this study, a biomimetic-inspired piezoelectric topological ovalbumin/BaTiO3 scaffold that can provide non-invasive electrical stimulation in situ was constructed by combining piezoelectric BaTiO3 nanoparticles and surface microtopography. The results showed that the incorporation of piezoelectric nanoparticles could improve the mechanical properties of the scaffolds, and the piezoelectric output of the scaffolds after polarization was significantly increased. Biological evaluation revealed that the piezoelectric topological scaffolds could regulate the orientation growth of SCs, promote axon elongation of DRG, and upregulate the genes expression referring to myelination and axon growth, thus rapidly integrated chemical-mechanical signals and transmitted them for effectively promoting neuronal myelination, which was closely related to peripheral neurogenesis. The study suggests that the anisotropic surface topology combined with non-invasive electronic stimulation of the ovalbumin/BaTiO3 scaffolds possess a promising application prospect in the repair and regeneration of peripheral nerve injury.


Subject(s)
Barium Compounds , Ovalbumin , Schwann Cells , Tissue Scaffolds , Titanium , Tissue Scaffolds/chemistry , Animals , Titanium/chemistry , Barium Compounds/chemistry , Anisotropy , Ganglia, Spinal/cytology , Rats , Biomimetic Materials/chemistry , Nerve Regeneration
14.
Neurosci Lett ; 833: 137813, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723761

ABSTRACT

A significant public health burden is peripheral nerve damage (PNI), which is frequently brought on by trauma. Macrophages were essential to the effective regeneration of nerves and restoration of function. It is still not entirely understood how macrophages and Schwann cells interact after damage during remyelination. Here, we established an inflammatory model in bone marrow-derived macrophages (BMDMs) and a rat sciatic nerve damage model to investigate the possible relationship between lipopolysaccharides (LPS)-induced exosomes derived from Schwann cells (LPS SCs-Exos) and peripheral nerve repair. The pro-inflammatory macrophage was changed into a pro-regeneration macrophage by LPS SC-Exos. Notably, it was discovered that SC-Exos had a substantial enrichment of OTULIN. OTULIN was a key mediator in the regulatory effects of LPS SC-Exos by deubiquitinating ERBB2 and preventing its degradation. The local injection of SC-Exos into the nerve damage site led in a faster functional recovery, axon regeneration and remyelination, and an increased M2 macrophage polarization, whereas OTULIN knockdown reversed these effects in vivo. Our results indicate that LPS SC-Exos may offer a therapeutic avenue for peripheral nerve regeneration by promoting macrophage polarization toward an M2 phenotype through the shuttling of OTULIN and deubiquitination of ERBB2. SIGNIFICANCE STATEMENT: OTULIN protein from SC-Exos mediated the macrophages polarization and axonal growth in BMDMs through promoting ubiquitination of ERBB2 and triggering the degradation of ERBB2. The findings offered prospective therapeutic hints for PNI therapy approaches that target axonal regrowth.


Subject(s)
Exosomes , Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Rats, Sprague-Dawley , Schwann Cells , Animals , Schwann Cells/metabolism , Exosomes/metabolism , Macrophages/metabolism , Peripheral Nerve Injuries/metabolism , Rats , Nerve Regeneration/physiology , Nerve Regeneration/drug effects , Receptor, ErbB-2/metabolism , Male , Ubiquitination , Mice , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Mice, Inbred C57BL , Lipopolysaccharides
15.
J Toxicol Sci ; 49(5): 241-248, 2024.
Article in English | MEDLINE | ID: mdl-38692911

ABSTRACT

Methylmercury is an environmental polluting organometallic compound that exhibits neurotoxicity, as observed in Minamata disease patients. Methylmercury damages peripheral nerves in Minamata patients, causing more damage to sensory nerves than motor nerves. Peripheral nerves are composed of three cell types: dorsal root ganglion (DRG) cells, anterior horn cells (AHCs), and Schwann cells. In this study, we compared cultured these three cell types derived from the rat for susceptibility to methylmercury cytotoxicity, intracellular accumulation of mercury, expression of L-type amino acid transporter 1 (LAT1), which transports methylmercury into cells, and expression of multidrug resistance-associated protein 2 (MRP2), which transports methylmercury-glutathione conjugates into the extracellular space. Of the cells examined, we found that DRG cells were the most susceptible to methylmercury with markedly higher intracellular accumulation of mercury. The constitutive level of LAT1 was higher and that of MRP2 lower in DRG cells compared with those in AHC and Schwann cells. Additionally, decreased cell viability caused by methylmercury was significantly reduced by either the LAT1 inhibitor, JPH203, or siRNA-mediated knockdown of LAT1. On the other hand, an MRP2 inhibitor, MK571, significantly intensified the decrease in the cell viability caused by methylmercury. Our results provide a cellular basis for sensory neve predominant injury in the peripheral nerves of Minamata disease patients.


Subject(s)
ATP-Binding Cassette Transporters , Cell Survival , Ganglia, Spinal , Methylmercury Compounds , Schwann Cells , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Methylmercury Compounds/toxicity , Schwann Cells/drug effects , Schwann Cells/metabolism , Cell Survival/drug effects , Cells, Cultured , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Peripheral Nerves/metabolism , Peripheral Nerves/drug effects , Male , Rats , Multidrug Resistance-Associated Protein 2
16.
Skelet Muscle ; 14(1): 10, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760872

ABSTRACT

Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.


Subject(s)
Disease Models, Animal , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Schwann Cells/metabolism , Schwann Cells/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male
17.
J Nanobiotechnology ; 22(1): 283, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789980

ABSTRACT

BACKGROUND: Endothelial cell (EC)-driven intraneural revascularization (INRV) and Schwann cells-derived exosomes (SCs-Exos) both play crucial roles in peripheral nerve injury (PNI). However, the interplay between them remains unclear. We aimed to elucidate the effects and underlying mechanisms of SCs-Exos on INRV following PNI. RESULTS: We found that GW4869 inhibited INRV, as well as that normoxic SCs-Exos (N-SCs-Exos) exhibited significant pro-INRV effects in vivo and in vitro that were potentiated by hypoxic SCs-Exos (H-SCs-Exos). Upregulation of glycolysis emerged as a pivotal factor for INRV after PNI, as evidenced by the observation that 3PO administration, a glycolytic inhibitor, inhibited the INRV process in vivo and in vitro. H-SCs-Exos more significantly enhanced extracellular acidification rate/oxygen consumption rate ratio, lactate production, and glycolytic gene expression while simultaneously suppressing acetyl-CoA production and pyruvate dehydrogenase E1 subunit alpha (PDH-E1α) expression than N-SCs-Exos both in vivo and in vitro. Furthermore, we determined that H-SCs-Exos were more enriched with miR-21-5p than N-SCs-Exos. Knockdown of miR-21-5p significantly attenuated the pro-glycolysis and pro-INRV effects of H-SCs-Exos. Mechanistically, miR-21-5p orchestrated EC metabolism in favor of glycolysis by targeting von Hippel-Lindau/hypoxia-inducible factor-1α and PDH-E1α, thereby enhancing hypoxia-inducible factor-1α-mediated glycolysis and inhibiting PDH-E1α-mediated oxidative phosphorylation. CONCLUSION: This study unveiled a novel intrinsic mechanism of pro-INRV after PNI, providing a promising therapeutic target for post-injury peripheral nerve regeneration and repair.


Subject(s)
Endothelial Cells , Exosomes , Glycolysis , Peripheral Nerve Injuries , Schwann Cells , Schwann Cells/metabolism , Exosomes/metabolism , Animals , Endothelial Cells/metabolism , Mice , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Male , Rats , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Inbred C57BL , Neovascularization, Physiologic , Rats, Sprague-Dawley , Aniline Compounds , Benzylidene Compounds
18.
Molecules ; 29(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38792144

ABSTRACT

Peripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve regeneration (PNR) and functional recovery. This is partly attributed to the absence of bioactive agents such as stem cells or growth factors in FDA-approved conduits due to safety, harvesting, and reproducibility concerns. Therefore, curcumin, a bioactive phytochemical, has emerged as a promising alternative bioactive agent due to its ability to enhance PNR and overcome said challenges. However, its hydrophobicity and rapid degradation in aqueous solutions are considerable limitations. In this work, a nanoscale delivery platform with tannic acid (TA) and polyvinylpyrrolidone (PVP) was developed to encapsulate curcumin for increased colloidal and chemical stability. The curcumin nanoparticles (CurNPs) demonstrate significantly improved stability in water, reduced degradation rates, and controlled release kinetics when compared to free curcumin. Further, cell studies show that the CurNP is biocompatible when introduced to neuronal cells (SH-SY5Y), rat Schwann cells (RSC-S16), and murine macrophages (J774 A.1) at 5 µM, 5 µM, and 10 µM of curcumin, respectively. As a result of these improved physicochemical properties, confocal fluorescence microscopy revealed superior delivery of curcumin into these cells when in the form of CurNPs compared to its free form. A hydrogen peroxide-based oxidative stress study also demonstrated the CurNP's potential to protect J774 A.1 cells against excessive oxidative stress. Overall, this study provides evidence for the suitability of CurNPs to be used as a bioactive agent in NC applications.


Subject(s)
Curcumin , Nanoparticles , Curcumin/pharmacology , Curcumin/chemistry , Animals , Rats , Nanoparticles/chemistry , Mice , Humans , Drug Delivery Systems , Nerve Regeneration/drug effects , Polymers/chemistry , Schwann Cells/drug effects , Drug Liberation , Tannins/chemistry , Tannins/pharmacology , Cell Line , Oxidative Stress/drug effects , Povidone/chemistry
19.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735969

ABSTRACT

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Subject(s)
Macrophages , Nerve Regeneration , Peripheral Nerve Injuries , Polyurethanes , Rats, Sprague-Dawley , Schwann Cells , Animals , Nerve Regeneration/drug effects , Polyurethanes/chemistry , Rats , Macrophages/drug effects , Schwann Cells/drug effects , Nanofibers/chemistry , Sciatic Nerve/drug effects , Guided Tissue Regeneration/methods , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Tissue Scaffolds/chemistry , Mice , RAW 264.7 Cells
20.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750519

ABSTRACT

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Subject(s)
Bone Regeneration , Calcium Phosphates , Osteogenesis , Osteosarcoma , Tissue Scaffolds , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rabbits , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Osteogenesis/drug effects , Polyesters/chemistry , Humans , Cell Differentiation/drug effects , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/therapy , Cell Line, Tumor , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Schwann Cells/drug effects , Nanofibers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Selenium/chemistry , Selenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...