Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.294
Filter
1.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949022

ABSTRACT

Multiple approaches have targeted voltage-gated sodium (Nav) channels for analgesia. In this issue of the JCI, Shin et al. identified a peptide aptamer, NaViPA1, carrying a short polybasic motif flanked by serine residues in a structurally disordered region of loop 1 in tetrodotoxin-sensitive (TTX-S) but not tetrodotoxin-resistant (TTX-R) channels. NaViPA1h inhibited TTX-S NaV channels and attenuated excitability of sensory neurons. Delivery of NaViPA1 in vivo via adeno-associated virions restricted its expression to peripheral sensory neurons and induced analgesia in rats. Targeting of short linear motifs in this manner may provide a gene therapy modality, with minimal side effects due to its peripherally-restricted biodistribution, which opens up a therapeutic strategy for hyperexcitability disorders, including pain.


Subject(s)
Genetic Therapy , Animals , Humans , Rats , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism , Voltage-Gated Sodium Channels/chemistry , Sensory Receptor Cells/metabolism , Pain/genetics , Pain/metabolism , Pain/drug therapy , Amino Acid Motifs
2.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831315

ABSTRACT

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Subject(s)
Calcium Channels, T-Type , Cyclic AMP-Dependent Protein Kinases , Receptors, Interleukin , Sensory Receptor Cells , Signal Transduction , Trigeminal Ganglion , src-Family Kinases , Animals , Calcium Channels, T-Type/metabolism , Calcium Channels, T-Type/genetics , src-Family Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Trigeminal Ganglion/metabolism , Male , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Receptors, Interleukin/metabolism , Mice , Mice, Inbred C57BL , Interleukins/metabolism
3.
JCI Insight ; 9(12)2024 May 21.
Article in English | MEDLINE | ID: mdl-38912580

ABSTRACT

Peripheral nerve injury-induced neuronal hyperactivity in the dorsal root ganglion (DRG) participates in neuropathic pain. The calcium-activated potassium channel subfamily N member 1 (KCNN1) mediates action potential afterhyperpolarization (AHP) and gates neuronal excitability. However, the specific contribution of DRG KCNN1 to neuropathic pain is not yet clear. We report that chronic constriction injury (CCI) of the unilateral sciatic nerve or unilateral ligation of the fourth lumbar nerve produced the downregulation of Kcnn1 mRNA and KCNN1 protein in the injured DRG. This downregulation was partially attributed to a decrease in DRG estrogen-related receptor gamma (ESRRG), a transcription factor, which led to reduced binding to the Kcnn1 promoter. Rescuing this downregulation prevented CCI-induced decreases in total potassium voltage currents and AHP currents, reduced excitability in the injured DRG neurons, and alleviated CCI-induced development and maintenance of nociceptive hypersensitivities, without affecting locomotor function and acute pain. Mimicking the CCI-induced DRG KCNN1 downregulation resulted in augmented responses to mechanical, heat, and cold stimuli in naive mice. Our findings indicate that ESRRG-controlled downregulation of DRG KCNN1 is likely essential for the development and maintenance of neuropathic pain. Thus, KCNN1 may serve as a potential target for managing this disorder.


Subject(s)
Down-Regulation , Ganglia, Spinal , Neuralgia , Sensory Receptor Cells , Animals , Neuralgia/metabolism , Neuralgia/genetics , Ganglia, Spinal/metabolism , Mice , Sensory Receptor Cells/metabolism , Male , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/genetics , Mice, Inbred C57BL , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Disease Models, Animal , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intermediate-Conductance Calcium-Activated Potassium Channels/genetics , Action Potentials
4.
Elife ; 122024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896465

ABSTRACT

Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.


Subject(s)
Cellular Senescence , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Osteoclasts/drug effects , Osteoclasts/physiology , Cellular Senescence/drug effects , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Sensory Receptor Cells/metabolism , Disease Models, Animal , Male , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Netrin-1/metabolism , Netrin-1/genetics , Mice, Inbred C57BL
5.
Curr Biol ; 34(12): 2756-2763.e2, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38838665

ABSTRACT

Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Extracellular Vesicles , Sensory Receptor Cells , TRPP Cation Channels , Animals , Cilia/metabolism , Cilia/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Male
6.
Biomed Res ; 45(3): 125-133, 2024.
Article in English | MEDLINE | ID: mdl-38839355

ABSTRACT

Clary sage essential oil (CSEO) is utilized in perfumery, aromatherapy, and skincare. Linalyl acetate (LA), a primary component of CSEO, possesses sedative, anxiolytic, and analgesic properties. However, the mechanism of its analgesic action is not clearly understood. Transient receptor potential ankyrin 1 (TRPA1) channel, a non-selective cation channel, is mainly expressed in sensory neurons and serves as a sensor of various irritants. In this study, we investigated the effects of LA on TRPA1 channel using heterologous expression system and isolated sensory neurons. To detect channel activity, we employed Ca2+ imaging and the whole-cell patch-clamp technique. The analgesic action of LA was measured in a pain-related behavioral mouse model. In cells that heterologously expressed TRPA1, LA diminished [Ca2+]i and current responses to allylisothiocyanate (AITC) and carvacrol: exogenous TRPA1 agonists, and the inhibitory effects were more pronounced for the former than for the latter. Moreover, LA suppressed [Ca2+] i and current responses to PGJ2: an endogenous TRPA1 agonist. Similar inhibitory actions were observed in native TRPA1 channels expressed in mouse sensory neurons. Furthermore, LA diminished PGJ2-induced nociceptive behaviors in mice. These findings suggest that analgesic effects of LA exert through inhibition of nociceptive TRPA1, making it a potential candidate for novel analgesic development.


Subject(s)
Analgesics , Monoterpenes , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Mice , Analgesics/pharmacology , Monoterpenes/pharmacology , Humans , Male , Calcium/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , HEK293 Cells , Disease Models, Animal , Pain/drug therapy , Pain/metabolism
7.
Cells ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891120

ABSTRACT

Methyl-CpG-binding protein 2 (Mecp2) is an epigenetic modulator and numerous studies have explored its impact on the central nervous system manifestations. However, little attention has been given to its potential contributions to the peripheral nervous system (PNS). To investigate the regulation of Mecp2 in the PNS on specific central regions, we generated Mecp2fl/flAdvillincre mice with the sensory-neuron-specific deletion of the Mecp2 gene and found the mutant mice had a heightened sensitivity to temperature, which, however, did not affect the sense of motion, social behaviors, and anxiety-like behavior. Notably, in comparison to Mecp2fl/fl mice, Mecp2fl/flAdvillincre mice exhibited improved learning and memory abilities. The levels of hippocampal synaptophysin and PSD95 proteins were higher in Mecp2fl/flAdvillincre mice than in Mecp2fl/fl mice. Golgi staining revealed a significant increase in total spine density, and dendritic arborization in the hippocampal pyramidal neurons of Mecp2fl/flAdvillincre mice compared to Mecp2fl/fl mice. In addition, the activation of the BDNF-TrkB-CREB1 pathway was observed in the hippocampus and spinal cord of Mecp2fl/flAdvillincre mice. Intriguingly, the hippocampal BDNF/CREB1 signaling pathway in mutant mice was initiated within 5 days after birth. Our findings suggest a potential therapeutic strategy targeting the BDNF-TrkB-CREB1 signaling pathway and peripheral somasensory neurons to treat learning and cognitive deficits associated with Mecp2 disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Dendritic Spines , Hippocampus , Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/deficiency , Hippocampus/metabolism , Hippocampus/pathology , Dendritic Spines/metabolism , Mice , Brain-Derived Neurotrophic Factor/metabolism , Sensory Receptor Cells/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Male , Signal Transduction , Mice, Inbred C57BL , Receptor, trkB/metabolism , Receptor, trkB/genetics
8.
Biomed Pharmacother ; 176: 116879, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850666

ABSTRACT

Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.


Subject(s)
Drug Tolerance , Morphine , Neuralgia , Paclitaxel , Receptor, Cannabinoid, CB2 , Sensory Receptor Cells , Animals , Male , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Female , Morphine/pharmacology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Drug Tolerance/physiology , Mice , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Nociception/drug effects , Mice, Inbred C57BL , Sex Characteristics , Mice, Knockout , Cannabinoid Receptor Agonists/pharmacology
9.
Sci Adv ; 10(25): eadj9173, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905344

ABSTRACT

Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.


Subject(s)
Ganglia, Spinal , Transcriptome , Trigeminal Ganglion , Animals , Humans , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Trigeminal Ganglion/cytology , Trigeminal Ganglion/metabolism , Single-Cell Analysis/methods , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/cytology , Species Specificity , Mice , Atlases as Topic , Gene Expression Profiling , Rats
10.
Cells ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38920658

ABSTRACT

The development of cell-type-specific dendritic arbors is integral to the proper functioning of neurons within their circuit networks. In this study, we examine the regulatory relationship between the cytosolic chaperonin CCT, key insulin pathway genes, and an E3 ubiquitin ligase (Cullin1) in dendritic development. CCT loss of function (LOF) results in dendritic hypotrophy in Drosophila Class IV (CIV) multi-dendritic larval sensory neurons, and CCT has recently been shown to fold components of the TOR (Target of Rapamycin) complex 1 (TORC1) in vitro. Through targeted genetic manipulations, we confirm that an LOF of CCT and the TORC1 pathway reduces dendritic complexity, while overexpression of key TORC1 pathway genes increases the dendritic complexity in CIV neurons. Furthermore, both CCT and TORC1 LOF significantly reduce microtubule (MT) stability. CCT has been previously implicated in regulating proteinopathic aggregation, thus, we examine CIV dendritic development in disease conditions as well. The expression of mutant Huntingtin leads to dendritic hypotrophy in a repeat-length-dependent manner, which can be rescued by Cullin1 LOF. Together, our data suggest that Cullin1 and CCT influence dendritic arborization through the regulation of TORC1 in both health and disease.


Subject(s)
Cullin Proteins , Dendrites , Drosophila Proteins , Drosophila melanogaster , Animals , Cullin Proteins/metabolism , Cullin Proteins/genetics , Dendrites/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/genetics , Larva/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Microtubules/metabolism , Sensory Receptor Cells/metabolism , Signal Transduction , Transcription Factors , Chaperonin Containing TCP-1
11.
Nat Commun ; 15(1): 5288, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902277

ABSTRACT

Psoriasis is an immune-mediated skin disease associated with neurogenic inflammation, but the underlying molecular mechanism remains unclear. We demonstrate here that acid-sensing ion channel 3 (ASIC3) exacerbates psoriatic inflammation through a sensory neurogenic pathway. Global or nociceptor-specific Asic3 knockout (KO) in female mice alleviates imiquimod-induced psoriatic acanthosis and type 17 inflammation to the same extent as nociceptor ablation. However, ASIC3 is dispensable for IL-23-induced psoriatic inflammation that bypasses the need for nociceptors. Mechanistically, ASIC3 activation induces the activity-dependent release of calcitonin gene-related peptide (CGRP) from sensory neurons to promote neurogenic inflammation. Botulinum neurotoxin A and CGRP antagonists prevent sensory neuron-mediated exacerbation of psoriatic inflammation to similar extents as Asic3 KO. In contrast, replenishing CGRP in the skin of Asic3 KO mice restores the inflammatory response. These findings establish sensory ASIC3 as a critical constituent in psoriatic inflammation, and a promising target for neurogenic inflammation management.


Subject(s)
Acid Sensing Ion Channels , Calcitonin Gene-Related Peptide , Mice, Knockout , Psoriasis , Sensory Receptor Cells , Animals , Acid Sensing Ion Channels/metabolism , Acid Sensing Ion Channels/genetics , Female , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/genetics , Psoriasis/chemically induced , Mice , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics , Sensory Receptor Cells/metabolism , Skin/metabolism , Skin/pathology , Imiquimod , Mice, Inbred C57BL , Disease Models, Animal , Inflammation/metabolism , Neurogenic Inflammation/metabolism , Humans , Nociceptors/metabolism , Interleukin-23/metabolism , Interleukin-23/genetics
12.
Genetics ; 227(2)2024 06 05.
Article in English | MEDLINE | ID: mdl-38785371

ABSTRACT

Since the days of Ramón y Cajal, the vast diversity of neuronal and particularly dendrite morphology has been used to catalog neurons into different classes. Dendrite morphology varies greatly and reflects the different functions performed by different types of neurons. Significant progress has been made in our understanding of how dendrites form and the molecular factors and forces that shape these often elaborately sculpted structures. Here, we review work in the nematode Caenorhabditis elegans that has shed light on the developmental mechanisms that mediate dendrite morphogenesis with a focus on studies investigating ciliated sensory neurons and the highly elaborated dendritic trees of somatosensory neurons. These studies, which combine time-lapse imaging, genetics, and biochemistry, reveal an intricate network of factors that function both intrinsically in dendrites and extrinsically from surrounding tissues. Therefore, dendrite morphogenesis is the result of multiple tissue interactions, which ultimately determine the shape of dendritic arbors.


Subject(s)
Caenorhabditis elegans , Dendrites , Morphogenesis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/cytology , Dendrites/metabolism , Morphogenesis/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/cytology
13.
Nat Commun ; 15(1): 4273, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769103

ABSTRACT

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Sex Characteristics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Male , Female , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Sensory Receptor Cells/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Profiling
14.
Cell ; 187(12): 2935-2951.e19, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38772371

ABSTRACT

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.


Subject(s)
Calcitonin Gene-Related Peptide , Germinal Center , Immunity, Humoral , Spleen , Animals , Male , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Calcitonin Gene-Related Peptide/metabolism , Capsaicin/pharmacology , Cyclic AMP/metabolism , Dinoprostone/metabolism , Ganglia, Spinal/metabolism , Germinal Center/immunology , Mice, Inbred C57BL , Nociceptors/metabolism , Receptor Activity-Modifying Protein 1/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Signal Transduction , Spleen/innervation , Spleen/immunology , Female
15.
Sci Transl Med ; 16(746): eadk8198, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718132

ABSTRACT

The phosphate modification of drugs is a common chemical strategy to increase solubility and allow for parenteral administration. Unfortunately, phosphate modifications often elicit treatment- or dose-limiting pruritus through an unknown mechanism. Using unbiased high-throughput drug screens, we identified the Mas-related G protein-coupled receptor X4 (MRGPRX4), a primate-specific, sensory neuron receptor previously implicated in itch, as a potential target for phosphate-modified compounds. Using both Gq-mediated calcium mobilization and G protein-independent GPCR assays, we found that phosphate-modified compounds potently activate MRGPRX4. Furthermore, a humanized mouse model expressing MRGPRX4 in sensory neurons exhibited robust phosphomonoester prodrug-evoked itch. To characterize and confirm this interaction, we further determined the structure of MRGPRX4 in complex with a phosphate-modified drug through single-particle cryo-electron microscopy (cryo-EM) and identified critical amino acid residues responsible for the binding of the phosphate group. Together, these findings explain how phosphorylated drugs can elicit treatment-limiting itch and identify MRGPRX4 as a potential therapeutic target to suppress itch and to guide future drug design.


Subject(s)
Disease Models, Animal , Pruritus , Receptors, G-Protein-Coupled , Animals , Pruritus/metabolism , Pruritus/chemically induced , Pruritus/pathology , Pruritus/drug therapy , Humans , Receptors, G-Protein-Coupled/metabolism , Mice , HEK293 Cells , Phosphorylation/drug effects , Phosphates/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Prodrugs/pharmacology , Cryoelectron Microscopy
16.
Acta Biomater ; 182: 1-13, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38750917

ABSTRACT

Skin denervation has been shown to cause remission of psoriatic lesions in patients, which can reappear if reinnervation occurs. This effect can be induced by the activation of dendritic cells through sensory innervation. However, a direct effect of nerves on the proliferation of keratinocytes involved in the formation of psoriatic plaques has not been investigated. We developed, by tissue engineering, a model of psoriatic skin made of patient skin cells that showed increased keratinocyte proliferation and epidermal thickness compared to healthy controls. When this model was treated with CGRP, a neuropeptide released by sensory neurons, an increased keratinocyte proliferation was observed in the psoriatic skin model, but not in the control. When a sensory nerve network was incorporated in the psoriatic model and treated with capsaicin to induce neuropeptide release, an increase of keratinocyte proliferation was confirmed, which was blocked by a CGRP antagonist while no difference was noticed in the innervated healthy control. We showed that sensory neurons can participate directly to keratinocyte hyperproliferation in the formation of psoriatic lesions through the release of CGRP, independently of the immune system. Our unique tissue-engineered innervated psoriatic skin model could be a valuable tool to better understand the mechanism by which nerves may modulate psoriatic lesion formation in humans. STATEMENT OF SIGNIFICANCE: This study shows that keratinocytes extracted from patients' psoriatic skin retain, at least in part, the disease phenotype. Indeed, when combined in a 3D model of tissue-engineered psoriatic skin, keratinocytes exhibited a higher proliferation rate, and produced a thicker epidermis than a healthy skin control. In addition, their hyperproliferation was aggravated by a treatment with CGRP, a neuropeptide released by sensory nerves. In a innervated model of tissue-engineered psoriatic skin, an increase in keratinocyte hyperproliferation was also observed after inducing neurons to release neuropeptides. This effect was prevented by concomitant treatment with an antagonist to CGRP. Thus, this study shows that sensory nerves can directly participate to affect keratinocyte hyperproliferation in psoriasis through CGRP release.


Subject(s)
Calcitonin Gene-Related Peptide , Cell Proliferation , Keratinocytes , Psoriasis , Sensory Receptor Cells , Tissue Engineering , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Calcitonin Gene-Related Peptide/metabolism , Psoriasis/pathology , Psoriasis/metabolism , Cell Proliferation/drug effects , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology , Sensory Receptor Cells/drug effects , Models, Biological , Female , Adult , Male , Skin/innervation , Skin/pathology , Skin/metabolism
17.
J Histochem Cytochem ; 72(5): 275-287, 2024 05.
Article in English | MEDLINE | ID: mdl-38725415

ABSTRACT

The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.


Subject(s)
Calcium , Isothiocyanates , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Isothiocyanates/pharmacology , Mice , Calcium/metabolism , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/agonists , Capsaicin/pharmacology , In Situ Hybridization , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/agonists , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Male
18.
J Clin Invest ; 134(13)2024 May 09.
Article in English | MEDLINE | ID: mdl-38722683

ABSTRACT

This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.


Subject(s)
Dependovirus , NAV1.7 Voltage-Gated Sodium Channel , Sensory Receptor Cells , Animals , Rats , Dependovirus/genetics , Sensory Receptor Cells/metabolism , Male , Humans , Female , NAV1.7 Voltage-Gated Sodium Channel/metabolism , NAV1.7 Voltage-Gated Sodium Channel/genetics , Ganglia, Spinal/metabolism , Rats, Sprague-Dawley , Neuralgia/metabolism , Neuralgia/genetics , Neuralgia/drug therapy , Analgesia
19.
J Comp Neurol ; 532(6): e25627, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813969

ABSTRACT

During development, cell-intrinsic and cell-extrinsic factors play important roles in neuronal differentiation; however, the underlying mechanisms in nonmammalian species remain largely unknown. We here investigated the mechanisms responsible for the differentiation of sensory input neurons in the chick entopallium, which receives its primary visual input via the tectofugal pathway from the nucleus rotundus. The results obtained revealed that input neurons in the entopallium expressed Potassium Voltage-Gated Channel Subfamily H Member 5 (KCNH5/EAG2) mRNA from embryonic day (E) 11. On the other hand, the onset of protein expression was E20, which was 1 day before hatching. We confirm that entopallium input neurons in chicks were generated during early neurogenesis in the lateral and ventral ventricular zones. Notably, neurons derived from the lateral (LP) and ventral pallium (VP) exhibited a spatially distinct distribution along the rostro-caudal axis. We further demonstrated that the expression of EAG2 was directly regulated by input activity from thalamic axons. Collectively, the present results reveal that thalamic input activity is essential for specifying input neurons among LP- and VP-derived early-generated neurons in the developing chick entopallium.


Subject(s)
Neurogenesis , Thalamus , Animals , Chick Embryo , Neurogenesis/physiology , Thalamus/embryology , Thalamus/cytology , Thalamus/metabolism , Sensory Receptor Cells/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/cytology , Chickens , Cell Differentiation/physiology , Gene Expression Regulation, Developmental/physiology
20.
Genesis ; 62(2): e23597, 2024 04.
Article in English | MEDLINE | ID: mdl-38590121

ABSTRACT

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Subject(s)
Olfactory Bulb , Vomeronasal Organ , Mice , Animals , Olfactory Bulb/physiology , Sensory Receptor Cells/metabolism , Vomeronasal Organ/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...