Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.743
Filter
1.
PLoS One ; 19(7): e0307708, 2024.
Article in English | MEDLINE | ID: mdl-39052603

ABSTRACT

Advanced glycation end products (AGEs) play an important role in the pathogenesis of age-linked disorders and diabetes mellitus. The aim of this study was to assess the repurposing potential of Phloroglucinol (PHL the antispasmodic drug), as an anti-glycation agent using Fructose-BSA model. The ability of PHL to inhibit AGE formation was evaluated using AGEs formation (Intrinsic fluorescence), fructosamine adduct (NBT) and free lysine availability (TNBSA) assays. The BSA protein conformation was assessed through Thioflavin-T, Congo-Red and Circular Dichroism assays. The lysine blockade and carbonyl entrapment were explored as possible mode of action. Our data showed that PHL significantly decreased the formation of AGEs with an IC50 value of 0.3mM. The fructosamine adducts and free lysine load was found to be reduced. Additionally, the BSA conformation was preserved by PHL. Mechanistic assays did not reveal involvement of lysine blockade as underlying reason for reduction in AGEs load. This was also supported by computational data whereby PHL failed to engage any catalytic residue involved in early fructose-BSA interaction. However, it was found to entrap the carbonyl moieties. In conclusion, the PHL demonstrated anti-glycation potential, which can be attributed to its ability to entrap carbonyl intermediates. Hence, the clinically available antispasmodic drug, presents itself as a promising candidate to be repurposed as anti-glycation agent.


Subject(s)
Glycation End Products, Advanced , Phloroglucinol , Serum Albumin, Bovine , Glycation End Products, Advanced/metabolism , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Glycosylation/drug effects , Lysine/metabolism , Lysine/chemistry , Fructose/chemistry , Fructose/metabolism , Animals , Fructosamine/metabolism , Molecular Docking Simulation , Cattle
2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000037

ABSTRACT

A complication of reducing sugars is that they can undergo Maillard chemical reactions, forming advanced glycation end-products (AGEs) that can induce oxidative stress and inflammation via engagements with the main receptor for AGEs (RAGE) in various tissues. Certain sugars, such as glucose and fructose, are well known to cause AGE formation. Recently, allulose has emerged as a rare natural sugar that is an epimer of fructose and which is of low caloric content that is minimally metabolized, leading to it being introduced as a low-calorie sugar alternative. However, the relative ability of allulose to generate AGEs compared to glucose and fructose is not known. Here we assess the accumulation of AGEs in cell-free, in vitro, and in vivo conditions in response to allulose and compare it to glycation mediated by glucose or fructose. AGEs were quantified in cell-free samples, cell culture media and lysates, and rat serum with glycation-specific ELISAs. In cell-free conditions, we observed concentration and time-dependent increases in AGEs when bovine serum albumin (BSA) was incubated with glucose or fructose and significantly less glycation when incubated with allulose. AGEs were significantly elevated when pulmonary alveolar type II-like cells were co-incubated with glucose or fructose; however, significantly less AGEs were detected when cells were exposed to allulose. AGE quantification in serum obtained from rats fed a high-fat, low-carb (HFLC) Western diet for 2 weeks revealed significantly less glycation in animals co-administered allulose compared to those exposed to stevia. These results suggest allulose is associated with less AGE formation compared to fructose or glucose, and support its safety as a low-calorie sugar alternative.


Subject(s)
Fructose , Glycation End Products, Advanced , Animals , Glycation End Products, Advanced/metabolism , Rats , Glycosylation , Fructose/metabolism , Monosaccharides/metabolism , Glucose/metabolism , Male , Serum Albumin, Bovine/metabolism , Receptor for Advanced Glycation End Products/metabolism , Rats, Sprague-Dawley
3.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000166

ABSTRACT

Pyridoxal-S-methyl-isothiosemicarbazone (PLITSC) is a member of an important group of ligands characterized by different complexation modes to various transition metals. In this contribution, a new complex containing two differently protonated PLITSC ligands ([Fe(PLITSC-H)(PLITSC)]SO4)∙2.5H2O was obtained. The crystal structure was solved by the X-ray analysis and used further for the optimization at B3LYP/6-311++G(d,p)(H,C,N,O,S)/def2-TZVP(Fe) level of theory. Changes in the interaction strength and bond distance due to protonation were observed upon examination by the Quantum Theory of Atoms in Molecules. The protein binding affinity of [Fe(PLITSC-H)(PLITSC)]SO4 towards transport proteins (Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA)) was investigated by the spectrofluorimetric titration and molecular docking. The interactions with the active pocket containing fluorescent amino acids were examined in detail, which explained the fluorescence quenching. The interactions between complex and DNA were followed by the ethidium-bromide displacement titration and molecular docking. The binding along the minor groove was the dominant process involving complex in the proximity of DNA.


Subject(s)
DNA , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine , Ligands , DNA/chemistry , DNA/metabolism , Humans , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Crystallography, X-Ray , Thiosemicarbazones/chemistry , Thiosemicarbazones/metabolism , Cattle , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Animals , Protons , Ferric Compounds/chemistry , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Binding Sites , Iron/chemistry , Iron/metabolism
4.
Microb Pathog ; 193: 106773, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960213

ABSTRACT

Meyerozyma guilliermondii (Candida guilliermondii) is one of the Candida species associated with invasive candidiasis. With the potential for expressing industrially important enzymes, M. guilliermondii strain SO possessed 99 % proteome similarity with the clinical ATCC 6260 isolate and showed pathogenicity towards zebrafish embryos. Recently, three secreted aspartyl proteinases (SAPs) were computationally identified as potential virulence factors in this strain without in vitro verification of SAP activity. The quantification of Candida SAPs activity in liquid broth were also scarcely reported. Thus, this study aimed to characterize M. guilliermondii strain SO's ability to produce SAPs (MgSAPs) in different conditions (morphology and medium) besides analyzing its growth profile. MgSAPs' capability to cleave bovine serum albumin (BSA) was also determined to propose that MgSAPs as the potential virulence factors compared to the avirulent Saccharomyces cerevisiae. M. guilliermondii strain SO produced more SAPs (higher activity) in yeast nitrogen base-BSA-dextrose broth compared to yeast extract-BSA-dextrose broth despite insignificantly different SAP activity in both planktonic and biofilm cells. FeCl3 supplementation significantly increased the specific protein activity (∼40 %). The BSA cleavage by MgSAPs at an acidic pH was proven through semi-quantitative SDS-PAGE, sharing similar profile with HIV-1 retropepsin. The presented work highlighted the MgSAPs on fungal cell wall and extracellular milieu during host infection could be corroborated to the quantitative production in different growth modes presented herein besides shedding lights on the potential usage of retropepsin's inhibitors in treating candidiasis. Molecular and expression analyses of MgSAPs and their deletion should be further explored to attribute their respective virulence effects.


Subject(s)
Aspartic Acid Proteases , Biofilms , Candidiasis , Serum Albumin, Bovine , Virulence Factors , Virulence Factors/metabolism , Virulence Factors/genetics , Aspartic Acid Proteases/metabolism , Aspartic Acid Proteases/genetics , Candidiasis/microbiology , Serum Albumin, Bovine/metabolism , Biofilms/growth & development , Animals , Fungal Proteins/metabolism , Fungal Proteins/genetics , Culture Media/chemistry , Candida/pathogenicity , Candida/metabolism , Candida/genetics , Saccharomycetales/metabolism , Saccharomycetales/pathogenicity , Saccharomycetales/genetics , Virulence
5.
Sci Rep ; 14(1): 15667, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977741

ABSTRACT

The microreactor with two types of immobilized enzymes, exhibiting excellent orthogonal performance, represents an effective approach to counteract the reduced digestion efficiency resulting from the absence of a single enzyme cleavage site, thereby impacting protein identification. In this study, we developed a hydrophilic dual-enzyme microreactor characterized by rapid mass transfer and superior enzymatic activity. Initially, we selected KIT-6 molecular sieve as the carrier for the dual-IMER due to its three-dimensional network pore structure. Modification involved co-deposition of polyethyleneimine (PEI) and acrylamide (AM) as amine donors, along with dopamine to enhance material hydrophilicity. Remaining amino and double bond functional groups facilitated stepwise immobilization of trypsin and Glu-C. Digestion times for bovine serum albumin (BSA) and bovine hemoglobin (BHb) on the dual-IMER were significantly reduced compared to solution-based digestion (1 min vs. 36 h), resulting in improved sequence coverage (91.30% vs. 82.7% for BSA; 90.24% vs. 89.20% for BHb). Additionally, the dual-IMER demonstrated excellent durability, retaining 96.08% relative activity after 29 reuse cycles. Enhanced protein digestion efficiency can be attributed to several factors: (1) KIT-6's large specific surface area, enabling higher enzyme loading capacity; (2) Its three-dimensional network pore structure, facilitating faster mass transfer and substance diffusion; (3) Orthogonality of trypsin and Glu-C enzyme cleavage sites; (4) The spatial effect introduced by the chain structure of PEI and glutaraldehyde's spacing arm, reducing spatial hindrance and enhancing enzyme-substrate interactions; (5) Mild and stable enzyme immobilization. The KIT-6-based dual-IMER offers a promising technical tool for protein digestion, while the PDA/PEI/AM-KIT-6 platform holds potential for immobilizing other proteins or active substances.


Subject(s)
Acrylamide , Dopamine , Enzymes, Immobilized , Polyethyleneimine , Serum Albumin, Bovine , Trypsin , Polyethyleneimine/chemistry , Dopamine/chemistry , Dopamine/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Acrylamide/chemistry , Trypsin/chemistry , Trypsin/metabolism , Animals , Cattle , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Porosity , Hydrophobic and Hydrophilic Interactions , Hemoglobins/chemistry , Hemoglobins/metabolism , Proteolysis
6.
J Phys Chem B ; 128(29): 7199-7207, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38992922

ABSTRACT

In this paper, we quantify weak protein-protein interactions in solution using cross-interaction chromatography (CIC) and surface plasmon resonance (SPR) and demonstrate that they can be modulated by the addition of millimolar concentrations of free amino acids. With CIC, we determined the second osmotic virial cross-interaction coefficient (B23) as a proxy for the interaction strength between two different proteins. We perform SPR experiments to establish the binding affinity between the same proteins. With CIC, we show that the amino acids proline, glutamine, and arginine render the protein cross-interactions more repulsive or equivalently less attractive. Specifically, we measured B23 between lysozyme (Lys) and bovine serum albumin (BSA) and between Lys and protein isolates (whey and canola). We find that B23 increases when amino acids are added to the solution even at millimolar concentrations, corresponding to protein/ligand stoichiometric ratios as low as 1:1. With SPR, we show that the binding affinity between proteins can change by 1 order of magnitude when 10 mM glutamine is added. In the case of Lys and one whey protein isolate (WPI), it changes from the mM to the M range, thus by 3 orders of magnitude. Interestingly, this efficient modulation of the protein cross-interactions does not alter the protein's secondary structure. The capacity of amino acids to modulate protein cross-interactions at mM concentrations is remarkable and may have an impact across fields in particular for specific applications in the food or pharmaceutical industries.


Subject(s)
Amino Acids , Muramidase , Protein Binding , Serum Albumin, Bovine , Surface Plasmon Resonance , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Muramidase/chemistry , Muramidase/metabolism , Animals , Cattle
7.
J Inorg Biochem ; 258: 112637, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38876026

ABSTRACT

Wet synthesis approach afforded four new heteroleptic mononuclear neutral diamagnetic oxidovanadium(V) complexes, comprising salicylaldehyde-based 2-furoic acid hydrazones and a flavonol coligand of the general composition [VO(fla)(L-ONO)]. The complexes were comprehensively characterized, including chemical analysis, conductometry, infrared, electronic, and mass spectroscopy, as well as 1D 1H and proton-decoupled 13C(1H) NMR spectroscopy, alongside extensive 2D 1H1H COSY, 1H13C HMQC, and 1H13C HMBC NMR analyses. Additionally, the quantum chemical properties of the complexes were studied using Gaussian at the B3LYP, HF, and M062X levels on the 6-31++g(d,p) basis sets. The interaction of these hydrolytically inert vanadium complexes and the BSA was investigated through spectrofluorimetric titration, synchronous fluorimetry, and FRET analysis in a temperature-dependent manner, providing valuable thermodynamic insights into van der Waals interactions and hydrogen bonding. Molecular docking was conducted to gain further understanding of the specific binding sites of the complexes to BSA. Complex 2, featuring a 5-chloro-substituted salicylaldehyde component of the hydrazone, was extensively examined for its biological activity in vivo. The effects of complex administration on biochemical and hematological parameters were evaluated in both healthy and diabetic Wistar rats, revealing antihyperglycemic activity at millimolar concentration. Furthermore, histopathological analysis and bioaccumulation studies of the complex in the brain, kidneys, and livers of healthy and diabetic rats revealed the potential for further development of vanadium(V) hydrazone complexes as antidiabetic and insulin-mimetic agents.


Subject(s)
Coordination Complexes , Diabetes Mellitus, Experimental , Hydrazones , Hypoglycemic Agents , Molecular Docking Simulation , Vanadium , Animals , Hydrazones/chemistry , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Rats , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Vanadium/chemistry , Flavonols/pharmacology , Flavonols/chemistry , Flavonols/chemical synthesis , Male , Rats, Wistar , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Aldehydes
8.
J Proteomics ; 303: 105215, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38843981

ABSTRACT

Automated methods for enzyme immobilization via 4-triethoxysilylbutyraldehyde (TESB) derived silicone-based coupling agents were developed. TESB and its oxidized derivative, 4-triethoxysilylbutanoic acid (TESBA), were determined to be the most effective. The resulting immobilized enzyme particles (IEPs) displayed robustness, rapid digestion, and immobilization efficiency of 51 ± 8%. Furthermore, we automated the IEP procedure, allowing for multiple enzymes, and/or coupling agents to be fabricated at once, in a fraction of the time via an Agilent Bravo. The automated trypsin TESB and TESBA IEPs were shown to rival a classical in-gel digestion method. Moreover, pepsin IEPs favored cleavage at leucine (>50%) over aromatic and methionine residues. The IEP method was then adapted for an in-situ immobilized enzyme microreactor (IMER) fabrication. We determined that TESBA could functionalize the silica capillary's inner wall while simultaneously acting as an enzyme coupler. The IMER digestion of bovine serum albumin (BSA), mirroring IEP digestion conditions, yielded a 33-40% primary sequence coverage per LC-MS/MS analysis in as little as 15 min. Overall, our findings underscore the potential of both IEP and IMER methods, paving the way for automated analysis and a reduction in enzyme waste through reuse, thereby contributing to a more cost-effective and timely study of the proteome. SIGNIFICANCE: This research introduces 4-triethoxysilylbutyraldehyde (TESB) and its derivatives as silicon-based enzyme coupling agents and an automated liquid handling method for bottom-up proteomics (BUP) while streamlining sample preparation for high-throughput processing. Additionally, immobilized enzyme particle (IEP) fabrication and digestion within the 96-well plate allows for flexibility in protocol where different enzyme-coupler combinations can be employed simultaneously. By enabling the digestion of entire microplates and reducing manual labor, the proposed method enhances reproducibility and offers a more efficient alternative to classical in-gel techniques. Furthermore, pepsin IEPs were noted to favor cleavage at leucine residues which represents an interesting finding when compared to the literature that warrants further study. The capability of immobilized enzyme microreactors (IMER) for rapid digestion (in as little as 15 min) demonstrated the system's efficiency and potential for rapid proteomic analysis. This advancement in BUP not only improves efficiency, but also opens avenues for a fully automated, mass spectrometry-integrated proteomics workflow, promising to expedite research and discoveries in complex biological studies.


Subject(s)
Enzymes, Immobilized , Proteomics , Proteomics/methods , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Silicon/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/analysis , Serum Albumin, Bovine/metabolism , Workflow , Animals , Trypsin/chemistry , Trypsin/metabolism , Cattle
9.
Inorg Chem ; 63(27): 12624-12634, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38910548

ABSTRACT

Four Ag(I) complexes with mefenamato and nitrogen heterocyclic ligands, [Ag(2-apy)(mef)]2 (1), [Ag(3-apy)(mef)] (2), [Ag2(tmpyz)(mef)2] (3), and {[Ag(4,4'-bipy)(mef)]2(CH3CN)1.5(H2O)2}n (4), (mef = mefenamato, 2-apy = 2-aminopyridine, 3-apy = 3-aminopyridine, tmpyz = 2,3,5,6-tetramethylpyrazine, 4,4'-bipy = 4,4'-bipyridine), were synthesized and characterized. The interactions of these complexes with BSA were investigated by fluorescence spectroscopy, which indicated that these complexes quench the fluorescence of BSA by a static mechanism. The fluorescence data also indicated that the complexes showed good affinity for BSA, and one binding site on BSA was suitable for the complexes. The in vitro cytotoxicity of the four complexes against human cancer cell lines (MCF-7, HepG-2, A549, and MDA-MB-468) and one normal cell line (HTR-8) was evaluated by the MTT assay. Complex 1 displayed high cytotoxic activity against A549 cells. Further studies revealed that complex 1 could enhance the intracellular levels of ROS (reactive oxygen species) in A549 cells, cause cell cycle arrest in the G0/G1 phase, and induce apoptosis in A549 cells in a dose-dependent manner.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Drug Screening Assays, Antitumor , Mefenamic Acid , Silver , Humans , Silver/chemistry , Silver/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mefenamic Acid/pharmacology , Mefenamic Acid/chemistry , Apoptosis/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Cell Proliferation/drug effects , Nitrogen/chemistry , Molecular Structure , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Cell Line, Tumor
10.
Bioconjug Chem ; 35(7): 1044-1052, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38875443

ABSTRACT

Subcutaneous (SC) injection of protein-based therapeutics is a convenient and clinically established drug delivery method. However, progress is needed to increase the bioavailability. Transport of low molecular weight (Mw) biotherapeutics such as insulin and small molecule contrast agents such as lipiodol has been studied using X-ray computed tomography (CT). This analysis, however, does not translate to the investigation of higher Mw therapeutics, such as monoclonal antibodies (mAbs), due to differences in molecular and formulation properties. In this study, an iodinated fluorescein analog rose bengal (RB) was used as a radiopaque and fluorescent label to track the distribution of bovine serum albumin (BSA) compared against unconjugated RB and sodium iodide (NaI) via CT and confocal microscopy following injection into ex vivo porcine SC tissue. Importantly, the high concentration BSA-RB exhibited viscosities more like that of viscous biologics than the small molecule contrast agents, suggesting that the labeled protein may serve as a more suitable formulation for the investigation of injection plumes. Three-dimensional (3D) renderings of the injection plumes showed that the BSA-RB distribution was markedly different from unconjugated RB and NaI, indicating the need for direct visualization of large protein therapeutics using conjugated tags rather than using small molecule tracers. Whereas this proof-of-concept study shows the novel use of RB as a label for tracking BSA distribution, our experimental approach may be applied to high Mw biologics, including mAbs. These studies could provide crucial information about diffusion in SC tissue and the influence of injection parameters on distribution, transport, and downstream bioavailability.


Subject(s)
Rose Bengal , Serum Albumin, Bovine , Tomography, X-Ray Computed , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Animals , Rose Bengal/chemistry , Cattle , Tomography, X-Ray Computed/methods , Microscopy, Fluorescence/methods , Protein Transport , Subcutaneous Tissue/diagnostic imaging , Subcutaneous Tissue/metabolism , Swine , Fluorescent Dyes/chemistry
11.
Int J Biol Macromol ; 274(Pt 2): 133370, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38917913

ABSTRACT

In this paper, the interaction of three berberine mid-chain fatty acid salts ([BBR][FAs]), viz. berberine caproate ([BBR][CAP]), berberine heptylate ([BBR][HEP]) and berberine octoate ([BBR][OCT]), with bovine serum albumin (BSA) was studied by means of UV-visible absorption spectroscopy, fluorescence spectroscopy, fourier transform infrared spectroscopy (FT-IR) and molecular docking techniques. Fluorescence experiments revealed that three berberine salts quench the fluorescence of BSA by static quenching mechanism resulted from a stable [BBR][FAs]-BSA complex formation. The stoichiometric numbers of [BBR][FAs]-BSA complexes were found to be 1:1. Synchronous and three-dimensional fluorescence spectra as well as FT-IR demonstrated that the binding of [BBR][FAs] altered the microenvironment and conformation of BSA. The binding average distance from [BBR][FAs] to BSA (3.2-3.5 nm) was determined according to Förster energy transfer theory. Site probe investigation showed that [BBR][FAs] bound to BSA active site I (sub-domain IIA). The binding promotes the esterase-like activity of BSA. The molecular docking results confirmed the fluorescence competition findings and provided the type of binding forces. Furthermore, the relationship between the anionic chain length of [BBR][FAs] and the interaction was explored, and the positive correlation was found.


Subject(s)
Berberine , Fatty Acids , Molecular Docking Simulation , Protein Binding , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Berberine/chemistry , Berberine/metabolism , Cattle , Animals , Fatty Acids/chemistry , Fatty Acids/metabolism , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Salts/chemistry , Spectrum Analysis , Binding Sites
12.
Int J Biol Macromol ; 274(Pt 1): 132792, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38834110

ABSTRACT

Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5 ±â€¯1.75 µM among all synthesized compounds and comparable with cisplatin.


Subject(s)
Coordination Complexes , DNA , Molecular Docking Simulation , Serum Albumin, Bovine , DNA/chemistry , DNA/metabolism , Humans , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Esters/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Ligands , Protein Binding , MCF-7 Cells , Cattle , Animals , Nickel/chemistry , Cell Line, Tumor
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124528, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38801789

ABSTRACT

The need for a systematic approach in developing new metal-based drugs with dual anticancer-antimicrobial properties is emphasized by the vulnerability of cancer patients to bacterial infections. In this context, a novel organometallic assembly was designed, featuring ruthenium(II) coordination with p-cymene, one chlorido ligand, and a bidentate neutral Schiff base derived from 4-methoxybenzaldehyde and N,N-dimethylethylenediamine. The compound was extensively characterized in both solid-state and solution, employing single crystal X-ray diffraction, nuclear magnetic resonance, infrared, ultraviolet-visible spectroscopy, and density functional theory, alongside Hirshfeld surface analysis. The hydrolysis kinetic was thoroughly investigated, revealing the important role of the chloro-aqua equilibrium in the dynamics of binding with deoxyribonucleic acid and bovine serum albumin. Notably, the aqua species exhibited a pronounced affinity for deoxyribonucleic acid, engaging through electrostatic and hydrogen bonding interactions, while the chloro species demonstrated groove-binding properties. Interaction with albumin revealed distinct binding mechanisms. The aqua species displayed covalent binding, contrasting with the ligand-like van der Waals interactions and hydrogen bonding observed with the chloro specie. Molecular docking studies highlighted site-specific interactions with biomolecular targets. Remarkably, the compound exhibited wide spectrum moderate antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, coupled with low micromolar cytotoxic activity against human colorectal adenocarcinoma cells and significant activity against human leukemic monocyte lymphoma cells. The presented findings encourage further development of this compound, promising avenues for its evolution into a versatile therapeutic agent targeting both infectious diseases and cancer.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , DNA , Ruthenium , Schiff Bases , Serum Albumin, Bovine , Schiff Bases/chemistry , Schiff Bases/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , DNA/metabolism , DNA/chemistry , Humans , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Hydrolysis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Ethylenediamines/chemistry , Ethylenediamines/pharmacology , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Water/chemistry , Animals , Cell Line, Tumor , Microbial Sensitivity Tests , Solubility , Protein Binding , Molecular Docking Simulation , Bacteria/drug effects
14.
Environ Sci Technol ; 58(23): 9954-9966, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804966

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.


Subject(s)
Blood Proteins , Fluorocarbons , Protein Binding , Species Specificity , Trout , Animals , Humans , Fluorocarbons/metabolism , Fluorocarbons/blood , Blood Proteins/metabolism , Cattle , Trout/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/chemistry
15.
J Inorg Biochem ; 257: 112553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759263

ABSTRACT

The present work demonstrates the synthesis, structural diversity and coordination behavior of some selected new Ni(II)-Tpy complexes. The structural analysis revealed the coordination of the selected terpyridine ligands with the core metal atom in two different modes via dimeric species (1:1 fashion) through the Cl-bridging and a bis(Tpy)-Ni complex (2:1 fashion). Perhaps the most striking manifestations of these Ni(II)-Tpy complexes are BSA/DNA binding ability and anticancer activity. In addition, the cytotoxicity studies of Tpy ligand (4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 5-methylthiophene-2-carboxylate) and the Ni(II) complexes were carried out using lung cancer cell line (A549), breast cancer cell line (MCF-7) and normal cell line (Vero cell). The cytotoxicity results were compared with the cisplatin control group. Notably, bis-terpyridyl complex 3C (R = 4-([2,2':6',2″-terpyridin]-4'-yl)phenyl 4-isopropoxybenzoate) demonstrates better activity with the IC50 value of 23.13 ± 3 µm for A549 and 22.7 ± 3 for MCF-7. The DFT calculations reveal the significant energy differences of HOMO and LUMO for the ligands and their corresponding Ni(II) complexes. The Tpy ligands and Ni(II)-Tpy complexes were investigated for BSA binding and further all the Ni(II) complexes were analyzed for DNA binding studies.


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA , Nickel , Pyridines , Serum Albumin, Bovine , Humans , Nickel/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , DNA/metabolism , DNA/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Pyridines/chemistry , Pyridines/pharmacology , A549 Cells , MCF-7 Cells , Animals , Cattle
16.
Biomater Sci ; 12(12): 3086-3099, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38716803

ABSTRACT

The interaction of foreign implants with their surrounding environment is significantly influenced by the adsorption of proteins on the biomaterial surfaces, playing a role in microbial adhesion. Therefore, understanding protein adsorption on solid surfaces and its effect on microbial adhesion is essential to assess the associated risk of infection. The aim of this study is to evaluate the effect of conditioning by fibronectin (Fn) or bovine serum albumin (BSA) protein layers of silica (SiO2) surfaces on the adhesion and detachment of two pathogenic microorganisms: Pseudomonas aeruginosa PAO1-Tn7-gfp and Candida albicans CIP 48.72. Experiments are conducted under both static and hydrodynamic conditions using a shear stress flow chamber. Through the use of very low wall shear stresses, the study brings the link between the static and dynamic conditions of microbial adhesion. The results reveal that the microbial adhesion critically depends on: (i) the presence of a protein layer conditioning the SiO2 surface, (ii) the type of protein and (iii) the protein conformation and organization in the conditioning layer. In addition, a very distinct adhesion behaviour of P. aeruginosa is observed towards the two tested proteins, Fn and BSA. This effect is reinforced by the amount of proteins adsorbed on the surface and their organization in the layer. The results are discussed in the light of atomic force microscopy analysis of the organization and conformation of proteins in the layers after adsorption on the SiO2 surface, as well as the specificity in bacterial behaviour when interacting with these protein layers. The study also demonstrates the very distinctive behaviours of the prokaryote P. aeruginosa PAO1-Tn7-gfp compared to the eukaryote C. albicans CIP 48.72. This underscores the importance of considering species-specific interactions between the protein conditioning layer and different pathogenic microorganisms, which appear crucial in designing tailored anti-adhesive surfaces.


Subject(s)
Bacterial Adhesion , Candida albicans , Fibronectins , Pseudomonas aeruginosa , Serum Albumin, Bovine , Silicon Dioxide , Surface Properties , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Fibronectins/chemistry , Fibronectins/metabolism , Silicon Dioxide/chemistry , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/physiology , Candida albicans/physiology , Candida albicans/chemistry , Adsorption , Animals , Cattle , Biocompatible Materials/chemistry
17.
Nat Commun ; 15(1): 3919, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724503

ABSTRACT

Biological macromolecules can condense into liquid domains. In cells, these condensates form membraneless organelles that can organize chemical reactions. However, little is known about the physical consequences of chemical activity in and around condensates. Working with model bovine serum albumin (BSA) condensates, we show that droplets swim along chemical gradients. Active BSA droplets loaded with urease swim toward each other. Passive BSA droplets show diverse responses to externally applied gradients of the enzyme's substrate and products. In all these cases, droplets swim toward solvent conditions that favor their dissolution. We call this behavior "dialytaxis", and expect it to be generic, as conditions which favor dissolution typically reduce interfacial tension, whose gradients are well-known to drive droplet motion through the Marangoni effect. These results could potentially suggest alternative physical mechanisms for active transport in living cells, and may enable the design of fluid micro-robots.


Subject(s)
Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Animals , Urease/metabolism , Urease/chemistry , Solubility , Cattle , Solvents/chemistry , Surface Tension
18.
Phys Rev E ; 109(4-1): 044401, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38755822

ABSTRACT

The possibility that distant biomolecules in a cell interact via electromagnetic (e.m.) radiation was proposed many years ago to explain the high rate of encounters of partners in some enzymatic reactions. The results of two recent experiments designed to test the propensity of protein bovine serum albumin (BSA) to interact via e.m. radiation with other proteins were interpreted in a theoretical framework based on three main assumptions: (i) in order to experience this kind of interaction the protein must be in an out-of-equilibrium state; (ii) in this state there is a condensation of energy in low-frequency vibrational modes; and (iii) the hydration layers of water around the protein sustain the energy condensation. In the present paper we present the results of molecular dynamics simulations of BSA in four states: at equilibrium and out-of-equilibrium in water, and at room and high temperature in vacuum. By comparing physical properties of the system in the four states, our simulations provide a qualitative and quantitative assessment of the three assumptions on which the theoretical framework is based. Our results confirm the assumptions of the theoretical model showing energy condensation at low frequency and electretlike alignment between the protein's and the water's dipoles; they also allow a quantitative estimate of the contribution of the out-of-equilibrium state and of the water to the observed behavior of the protein. In particular, it has been found that in the out-of-equilibrium state the amplitude of the oscillation of the protein's dipole moment greatly increases, thereby enhancing a possible absorption or emission of e.m. radiation. The analysis of BSA's dynamics outlined in the present paper provides a procedure for checking the propensity of a biomolecule to interact via e.m. radiation with its biochemical partners.


Subject(s)
Molecular Dynamics Simulation , Serum Albumin, Bovine , Water , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Water/chemistry , Water/metabolism , Cattle , Animals , Temperature , Protein Conformation , Thermodynamics
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124421, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38759394

ABSTRACT

Albumin is undoubtedly the most studied protein thanks to its widespread diffusion and biochemistry; despite its binding ability towards different dyes, provoking dye's colour change, has been exploited for decades for quantification purposes, the joint effect of working pH, ionic strength, and dye's pKa still remains only sporadically discussed. In the present study, the interaction of Bovine Serum Albumin (BSA) with five dyes belonging to the sulfonephthalein group, Bromophenol Blue (BPB, pKa = 3.75), Bromocresol Green (BCG, pKa = 4.42), Chlorophenol Red (CPR, pKa = 5.74), Bromocresol Purple (BCP, pKa = 6.05) and Bromothymol Blue (BTB, pKa = 6.72), is investigated at four working pH values (3.5, 6.0, 7.5 and 9.0) and two ionic strength conditions by UV-Vis spectroscopy. Principal Component Analysis is then applied to rationalize dye behavior upon BSA addition at each pH value and to summarize the protein effect on dyes' spectral features, identifying three general behaviors. The most relevant systems are then submitted to further characterization involving a solution equilibria study aimed at determining conditional binding constants for the selected DSA-dye adducts and fluorescence, CD, and 1H NMR spectroscopy to evaluate the binding effect on the species involved.


Subject(s)
Coloring Agents , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Coloring Agents/chemistry , Cattle , Hydrogen-Ion Concentration , Osmolar Concentration , Animals , Solutions , Spectrophotometry, Ultraviolet , Protein Binding , Bromphenol Blue/chemistry , Bromphenol Blue/metabolism , Spectrometry, Fluorescence , Bromcresol Green/chemistry , Bromcresol Green/metabolism , Principal Component Analysis , Bromcresol Purple/chemistry , Bromcresol Purple/metabolism
20.
Food Chem ; 452: 139594, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749142

ABSTRACT

Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.


Subject(s)
Betacyanins , Bread , Glycation End Products, Advanced , Molecular Docking Simulation , Plant Extracts , Serum Albumin, Bovine , Glycosylation , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/chemistry , Betacyanins/chemistry , Betacyanins/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Bread/analysis , Cactaceae/chemistry , Cactaceae/metabolism , Animals , Cattle
SELECTION OF CITATIONS
SEARCH DETAIL