Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Zoonoses Public Health ; 67(1): 44-53, 2020 02.
Article in English | MEDLINE | ID: mdl-31868306

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) can cause diarrhoea and severe diseases in humans, such as haemolytic uraemic syndrome. STEC virulence is considered to correlate with the amount of Shiga toxins (Stx) produced, especially Stx2, whose subtype Stx2a is most frequently associated with high virulence. Stx are encoded in prophages, which play an important role in STEC pathogenesis. The aim of this study was to evaluate stx2a expression levels and Stx2a phage production using qPCR and the double-agar-layer method in 29 STEC strains, corresponding to serotypes O26:H11 (6), O91:H21 (1), O145:H- (11) and O157:H7 (11), isolated from cattle and humans. Results were then tested for possible associations with serotype, origin or some genetic features. We observed heterogeneous levels of stx2a expression and Stx2a phage production. However, statistical comparisons identified a higher stx2a expression in response to mitomycin C in strains isolated from cattle than in those from humans. At the same time, compared to stx2a /stx2c strains, stx2a strains showed a higher increase in phage production under induced conditions. Notably, most of the strains studied, regardless of serotype and origin, carried inducible Stx2a phages and evidenced expression of stx2a that increased along with phage production levels under induced conditions.


Subject(s)
Bacteriophages/physiology , Gene Expression Regulation, Bacterial/drug effects , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/metabolism , Shiga-Toxigenic Escherichia coli/virology , Alkylating Agents/pharmacology , Animals , Cattle , Humans , Mitomycin/pharmacology , Prophages , RNA, Bacterial , Shiga Toxin , Shiga Toxin 2/chemistry , Shiga Toxin 2/genetics , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/genetics
2.
Toxins (Basel) ; 10(3)2018 03 01.
Article in English | MEDLINE | ID: mdl-29494518

ABSTRACT

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) are a subset of pathogens leading to illnesses such as diarrhea, hemolytic uremic syndrome and even death. The Shiga toxins are the main virulence factors and divided in two groups: Stx1 and Stx2, of which the latter is more frequently associated with severe pathologies in humans. RESULTS: An immune library of nanobodies (Nbs) was constructed after immunizing an alpaca with recombinant Shiga toxin-2a B subunit (rStx2aB), to retrieve multiple rStx2aB-specific Nbs. The specificity of five Nbs towards rStx2aB was confirmed in ELISA and Western blot. Nb113 had the highest affinity (9.6 nM) and its bivalent construct exhibited a 100-fold higher functional affinity. The structure of the Nb113 in complex with rStx2aB was determined via X-ray crystallography. The crystal structure of the Nb113-rStx2aB complex revealed that five copies of Nb113 bind to the rStx2aB pentamer and that the Nb113 epitope overlaps with the Gb3 binding site, thereby providing a structural basis for the neutralization of Stx2a by Nb113 that was observed on Vero cells. Finally, the tandem-repeated, bivalent Nb1132 exhibits a higher toxin neutralization capacity compared to monovalent Nb113. CONCLUSIONS: The Nb of highest affinity for rStx2aB is also the best Stx2a and Stx2c toxin neutralizing Nb, especially in a bivalent format. This lead Nb neutralizes Stx2a by competing for the Gb3 receptor. The fusion of the bivalent Nb1132 with a serum albumin specific Nb is expected to combine high toxin neutralization potential with prolonged blood circulation.


Subject(s)
Antibodies, Neutralizing , Recombinant Proteins , Shiga Toxin 2 , Single-Domain Antibodies , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/physiology , Camelids, New World/immunology , Chlorocebus aethiops , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Shiga Toxin 2/chemistry , Shiga Toxin 2/genetics , Shiga Toxin 2/immunology , Shiga Toxin 2/metabolism , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/physiology , Vero Cells
3.
Vet Microbiol ; 169(1-2): 89-95, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24438985

ABSTRACT

Sheep harbor pathogenic Escherichia coli, which may cause severe disease in humans. In this study, the prevalence of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) was examined in sheep feces and carcasses on three farms and at an abattoir in Brazil. The isolates were further characterized for the presence of markers recently associated with disease in humans, to investigate their possible origin and role as food-borne pathogens. At the abattoir, 99 carcass samples yielded two STEC and 10 EPEC isolates while 101 fecal samples yielded five EPEC and eight STEC isolates. On the other hand, on the farms, 202 samples yielded 44 STEC and eight EPEC isolates. The 77 isolates were typed by PFGE. Isolates with the same PFGE pattern and also those that were not restricted with XbaI were termed as "clones" (n=49). The isolates of any one clone mostly originated from the same sampling site. In addition, seven isolates encoded for novel Stx2 variants and five for Stx2e, the subtype related to porcine edema disease, which was for the first time isolated from sheep feces and carcasses. Also, three stx2-only isolates harbored genes of predicted Stx2 variants that were formed by A and B subunits of different types including Stx2a and Stx2d. The EPEC isolates were heterogeneous, 21 (91.3%) of them possessing efa1, ehxA, lpfAO113 or paa genes associated with diarrhea in humans. Thus, using markers recently associated with disease, we have demonstrated that E. coli similar to those pathogenic for humans are present in the sheep intestinal microflora, particularly at the abattoir, underlining the potential for food-borne transmission.


Subject(s)
Abattoirs , Enteropathogenic Escherichia coli/isolation & purification , Feces/microbiology , Sheep, Domestic/microbiology , Shiga-Toxigenic Escherichia coli/isolation & purification , Amino Acid Sequence , Animals , Brazil , Electrophoresis, Gel, Pulsed-Field , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Molecular Sequence Data , Serotyping , Shiga Toxin 1/chemistry , Shiga Toxin 1/genetics , Shiga Toxin 2/chemistry , Shiga Toxin 2/genetics , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/pathogenicity , Virulence/genetics
4.
J Immunol ; 191(5): 2403-11, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23918978

ABSTRACT

The striking feature of enterohemorrhagic Escherichia coli (EHEC) infections is the production of Shiga toxins (Stx) implicated in the development of the life-threatening hemolytic uremic syndrome. Despite the magnitude of the social impact of EHEC infections, no licensed vaccine or effective therapy is available for human use. One of the biggest challenges is to develop an effective and safe immunogen to ensure nontoxicity, as well as a strong input to the immune system to induce long-lasting, high-affinity Abs with anti-Stx-neutralizing capacity. The enzyme lumazine synthase from Brucella spp. (BLS) is a highly stable dimer of pentamers and a scaffold with enormous plasticity on which to display foreign Ags. Taking into account the advantages of BLS and the potential capacity of the B subunit of Stx2 to induce Abs that prevent Stx2 toxicity by blocking its entrance into the host cells, we engineered a new immunogen by inserting the B subunit of Stx2 at the amino termini of BLS. The resulting chimera demonstrated a strong capacity to induce a long-lasting humoral immune response in mice. The chimera induced Abs with high neutralizing capacity for Stx2 and its variants. Moreover, immunized mice were completely protected against i.v. Stx2 challenge, and weaned mice receiving an oral challenge with EHEC were completely protected by the transference of immune sera. We conclude that this novel immunogen represents a promising candidate for vaccine or Ab development with preventive or therapeutic ends, for use in hemolytic uremic syndrome-endemic areas or during future outbreaks caused by pathogenic strains of Stx-producing E. coli.


Subject(s)
Hemolytic-Uremic Syndrome/prevention & control , Multienzyme Complexes/immunology , Shiga Toxin 2/immunology , Shigella Vaccines/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Brucella , Disease Models, Animal , Enterohemorrhagic Escherichia coli , Female , Male , Mice , Mice, Inbred BALB C , Multienzyme Complexes/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Shiga Toxin 2/chemistry
5.
Vet Microbiol ; 100(1-2): 3-9, 2004 May 20.
Article in English | MEDLINE | ID: mdl-15135507

ABSTRACT

Grazing-fed cattle were previously demonstrated to be reservoir of non-O157 Shigatoxigenic Escherichia coli (STEC) serotypes in Argentina. The acid-resistance of some STEC strains makes it reasonable to assume the presence in feedlot of particular STEC serotypes. Fifty-nine animals were sampled every 2 weeks during 6 months by rectal swabs. Twenty-seven of 59 animals (45.8%) were shown to be Stx2(+); 3/59 (5.1%) carried Stx1(+) and 7/59 (11.9%) were Stx1(+) Stx2(+). Among 44 STEC isolates, 31 isolates were associated to 10 O serogroups (O2, O15, O25, O103, O145, O146, O157, O171, O174, O175) and 13 were considered non-typable (NT). Six H antigens (H2, H7, H8, H19, H21, H25) were distributed in 21 isolates whereas 23 were non-mobile (H-). Seventeen of 44 strains (38.6%) were eaeA(+) and 14 (31.8%) harbored the 60MDa plasmid. The megaplasmid (Mp) and eaeA gene were simultaneously found in a limited number of serotypes belonging to the enterohaemorrhagic E. coli (EHEC). E. coli O157:H7 strains, isolated from four (6.8%) animals, corresponded to the Stx2(+), eaeA(+), Mp(+) pattern. Three O157:H7 strains belonged to phage type 4 and the other strain was atypical. Many serotypes isolated from grain-fed cattle (O2:H25, O15:H21, O25:H19, O145:H-, O146:H-, O146:H21, O157:H7, O175:H8) also differed from those isolated by us previously from grazing animals. The serotypes O15:H21, O25:H19 and O175:H8 had not been identified at present as belonging to STEC. This work provides new data for the understanding of the ecology of STEC in grain-fed cattle and confirms that cattle are an important reservoir of STEC.


Subject(s)
Cattle Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli/classification , Shiga Toxin 1/genetics , Shiga Toxin 2/genetics , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Agglutination Tests/veterinary , Animals , Argentina , Bacteriophage Typing/veterinary , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cattle , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , O Antigens/genetics , Polymerase Chain Reaction/veterinary , Serotyping/veterinary , Shiga Toxin 1/chemistry , Shiga Toxin 2/chemistry , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL