Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.211
Filter
1.
J Vis Exp ; (211)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39345159

ABSTRACT

Two-dimensional neutral/neutral gel-electrophoresis (2DGE) emerged as a benchmark technique to analyze DNA replication through natural impediments. This protocol describes how to analyze replication fork progression through structure-prone, expandable DNA repeats within the simian virus 40 (SV40)-based episome in human cells. In brief, upon plasmid transfection into human cells, replication intermediates are isolated by the modified Hirt protocol and treated with the DpnI restriction enzyme to remove non-replicated DNA. Intermediates are then digested by appropriate restriction enzymes to place the repeat of interest within the origin-distal half of a 3-5 kb-long DNA fragment. The replication intermediates are separated into two perpendicular dimensions, first by size and then by shape. Following Southern blot hybridization, this approach allows researchers to observe fork stalling at various structure-forming repeats on the descending half of the replication Y-arc. Furthermore, this positioning of the stall site allows the visualization of various outcomes of repeat-mediated fork stalling, such as fork reversal, the advent of a converging fork, and recombinational fork restart.


Subject(s)
DNA Replication , Plasmids , Simian virus 40 , Simian virus 40/genetics , Simian virus 40/chemistry , Humans , Plasmids/genetics , Repetitive Sequences, Nucleic Acid/genetics , Transfection/methods , DNA, Viral/genetics , DNA, Viral/chemistry , Blotting, Southern/methods
2.
Nucleic Acids Res ; 52(17): 10311-10328, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39126317

ABSTRACT

A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.


Subject(s)
DNA Damage , DNA Helicases , DNA Replication , Simian virus 40 , Phosphorylation , Simian virus 40/genetics , Humans , DNA Helicases/metabolism , DNA Helicases/genetics , Antigens, Polyomavirus Transforming/metabolism , Antigens, Polyomavirus Transforming/genetics , Virus Replication/genetics , Cell Line
3.
Proc Natl Acad Sci U S A ; 121(31): e2404727121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39052829

ABSTRACT

Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. We present an experimental method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A unique gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. We demonstrate this method's efficacy by spiking two known viral genomes, Simian virus 40 (SV40, 5,243 bp) and Human Adenovirus 5 (HAd5, 35,938 bp), into a sewage sample with a final abundance in the droplets of around 0.1% and 0.015%, respectively. We achieve 100% recovery of the complete sequence of the spiked-in SV40 genome with uniform coverage distribution. For the larger HAd5 genome, we cover approximately 99.4% of its sequence. Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables single-genome whole-genome amplification and targeting characterizations of rare viral species and will facilitate our ability to access the mutational profile in single-virus genomes and contribute to an improved understanding of viral ecology.


Subject(s)
Genome, Viral , Simian virus 40 , Genome, Viral/genetics , Simian virus 40/genetics , Simian virus 40/isolation & purification , Metagenomics/methods , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Sewage/virology
4.
Nucleic Acids Res ; 52(15): 8880-8896, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-38967018

ABSTRACT

The simian virus 40 (SV40) replisome only encodes for its helicase; large T-antigen (L-Tag), while relying on the host for the remaining proteins, making it an intriguing model system. Despite being one of the earliest reconstituted eukaryotic systems, the interactions coordinating its activities and the identification of new factors remain largely unexplored. Herein, we in vitro reconstituted the SV40 replisome activities at the single-molecule level, including DNA unwinding by L-Tag and the single-stranded DNA-binding protein Replication Protein A (RPA), primer extension by DNA polymerase δ, and their concerted leading-strand synthesis. We show that RPA stimulates the processivity of L-Tag without altering its rate and that DNA polymerase δ forms a stable complex with L-Tag during leading-strand synthesis. Furthermore, similar to human and budding yeast Cdc45-MCM-GINS helicase, L-Tag uses the fork protection complex (FPC) and the mini-chromosome maintenance protein 10 (Mcm10) during synthesis. Hereby, we demonstrate that FPC increases this rate, and both FPC and Mcm10 increase the processivity by stabilizing stalled replisomes and increasing their chances of restarting synthesis. The detailed kinetics and novel factors of the SV40 replisome establish it as a closer mimic of the host replisome and expand its application as a model replication system.


Subject(s)
DNA Replication , Minichromosome Maintenance Proteins , Replication Protein A , Simian virus 40 , Simian virus 40/metabolism , Simian virus 40/genetics , Humans , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Replication Protein A/metabolism , DNA Polymerase III/metabolism , DNA Polymerase III/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , DNA, Viral/metabolism , DNA, Viral/genetics , Virus Replication , Single Molecule Imaging , Antigens, Polyomavirus Transforming/metabolism , Antigens, Polyomavirus Transforming/genetics , DNA, Single-Stranded/metabolism , DNA-Directed DNA Polymerase , Multienzyme Complexes
5.
BMC Vet Res ; 20(1): 198, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745180

ABSTRACT

BACKGROUND: Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS: In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS: Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.


Subject(s)
Fibroblasts , Animals , Fibroblasts/virology , Sheep , Mice , Orf virus/genetics , Mice, Nude , Cell Proliferation , Simian virus 40 , Cell Line , Apoptosis , Antigens, Viral, Tumor/genetics
6.
Cells ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667318

ABSTRACT

Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig's muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual loss of their stemness, thereby limiting their application. To address this conundrum and maintain the normal function of pMuSCs during in vitro passaging, we generated an immortalized pMuSCs (SV40 T-pMuSCs) by stably expressing SV40 T-antigen (SV40 T) using a lentiviral-based vector system. The SV40 T-pMuSCs can be stably sub-cultured for over 40 generations in vitro. An evaluation of SV40 T-pMuSCs was conducted through immunofluorescence staining, quantitative real-time PCR, EdU assay, and SA-ß-gal activity. Their proliferation capacity was similar to that of primary pMuSCs at passage 1, and while their differentiation potential was slightly decreased. SiRNA-mediated interference of SV40 T-antigen expression restored the differentiation capability of SV40 T-pMuSCs. Taken together, our results provide a valuable tool for studying pig skeletal muscle development and differentiation.


Subject(s)
Antigens, Polyomavirus Transforming , Cell Differentiation , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Swine , Antigens, Polyomavirus Transforming/metabolism , Antigens, Polyomavirus Transforming/genetics , Cell Proliferation , Muscle Development , Antigens, Viral, Tumor/metabolism , Antigens, Viral, Tumor/genetics , Simian virus 40/genetics
7.
Genet Test Mol Biomarkers ; 28(5): 189-198, 2024 May.
Article in English | MEDLINE | ID: mdl-38634609

ABSTRACT

Background: In Dayao County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, Southwest China, 5% of the surface is scattered with blue asbestos, which has a high incidence of pleural mesothelioma (PMe). Simian virus 40 (SV40) is a small circular double-stranded DNA polyomavirus that can cause malignant transformation of normal cells of various human and animal tissue types and promote tumor growth. In this study, we investigate whether oncogenic SV40 is associated with the occurrence of PMe in the crocidolite-contaminated area of Dayao County, Yunnan Province, Southwest China. Methods: Tumor tissues from 51 patients with PMe (40 of whom had a history of asbestos exposure) and pleural tissues from 12 non-PMe patients (including diseases such as pulmonary maculopathy and pulmonary tuberculosis) were collected. Three pairs of low-contamination risk primers (SVINT, SVfor2, and SVTA1) were used to detect the gene fragment of SV40 large T antigen (T-Ag) by polymerase chain reaction (PCR). The presence of SV40 T-Ag in PMe tumor tissues and PMe cell lines was detected by Western blotting and immunohistochemical staining with SV40-related antibodies (PAb 101 and PAb 416). Results: PCR, Western blotting, and immunohistochemical staining results showed that the Met5A cell line was positive for SV40 and contained the SV40 T-Ag gene and protein. In contrast, the various PMe cell lines NCI-H28, NCI-H2052, and NCI-H2452 were negative for SV40. PCR was negative for all three sets of low-contamination risk primers in 12 non-PMe tissues and 51 PMe tissues. SV40 T-Ag was not detected in 12 non-PMe tissues or 51 PMe tissues by immunohistochemical staining. Conclusion: Our data suggest that the occurrence of PMe in the crocidolite-contaminated area of Yunnan Province may not be related to SV40 infection and that crocidolite exposure may be the main cause of PMe. The Clinical Trial Registration number: 2020-YXLL20.


Subject(s)
Asbestos, Crocidolite , Pleural Neoplasms , Simian virus 40 , Humans , Simian virus 40/genetics , China/epidemiology , Male , Female , Middle Aged , Aged , Pleural Neoplasms/epidemiology , Pleural Neoplasms/virology , Pleural Neoplasms/genetics , Mesothelioma/virology , Mesothelioma/epidemiology , Mesothelioma/genetics , Polyomavirus Infections/epidemiology , Tumor Virus Infections/epidemiology , Cell Line, Tumor , Mesothelioma, Malignant/genetics , Lung Neoplasms/virology , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Adult
8.
Antiviral Res ; 222: 105817, 2024 02.
Article in English | MEDLINE | ID: mdl-38246207

ABSTRACT

JC polyomavirus (JCPyV) is a nonenveloped, double-stranded DNA virus that infects the majority of the population. Immunocompetent individuals harbor infection in their kidneys, while severe immunosuppression can result in JCPyV spread to the brain, causing the neurodegenerative disease progressive multifocal leukoencephalopathy (PML). Due to a lack of approved therapies to treat JCPyV and PML, the disease results in rapid deterioration, and is often fatal. In order to identify potential antiviral treatments for JCPyV, a high-throughput, large-scale drug screen was performed using the National Institutes of Health Clinical Collection (NCC). Drugs from the NCC were tested for inhibitory effects on JCPyV infection, and drugs from various classes that reduced JCPyV infection were identified, including receptor agonists and antagonists, calcium signaling modulators, and enzyme inhibitors. Given the role of calcium signaling in viral infection including Merkel cell polyomavirus and simian virus 40 polyomavirus (SV40), calcium signaling inhibitors were further explored for the capacity to impact JCPyV infection. Calcium and calmodulin inhibitors trifluoperazine (TFP), W-7, tetrandrine, and nifedipine reduced JCPyV infection, and TFP specifically reduced viral internalization. Additionally, TFP and W-7 reduced infection by BK polyomavirus, SV40, and SARS-CoV-2. These results highlight specific inhibitors, some FDA-approved, for the possible treatment and prevention of JCPyV and several other viruses, and further illuminate the calcium and calmodulin pathway as a potential target for antiviral drug development.


Subject(s)
JC Virus , Leukoencephalopathy, Progressive Multifocal , Neurodegenerative Diseases , Polyomavirus Infections , Sulfonamides , Humans , Calcium , Calmodulin , Leukoencephalopathy, Progressive Multifocal/drug therapy , Leukoencephalopathy, Progressive Multifocal/genetics , JC Virus/genetics , Simian virus 40 , Antiviral Agents/pharmacology
9.
Eur Phys J E Soft Matter ; 46(11): 107, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917241

ABSTRACT

Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.


Subject(s)
Capsid Proteins , Capsid , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , Styrene/analysis , Styrene/metabolism , Scattering, Small Angle , X-Ray Diffraction , Simian virus 40/chemistry , Simian virus 40/genetics , Simian virus 40/metabolism , Virus Assembly
10.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686448

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the digestive tract and originate from the interstitial cells of Cajal (ICC), which is the pacemaker for peristaltic movement in the gastrointestinal tract. Existing GIST cell lines are widely used as cell models for in vitro experimental studies because the mutation sites are known. However, the immortalization methods of these cell lines are unknown, and no Chinese patient-derived GIST cell lines have been documented. Here, we transfected simian virus 40 large T antigen (SV40LT) into primary GIST cells to establish an immortalized human GIST cell line (ImGIST) for the first time. The ImGIST cells had neuronal cell-like irregular radioactive growth and retained the fusion growth characteristics of GIST cells. They stably expressed signature proteins, maintained the biological and genomic characteristics of normal primary GIST cells, and responded well to imatinib, suggesting that ImGIST could be a potential in vitro model for research in GIST to explore the molecular pathogenesis, drug resistance mechanisms, and the development of new adjuvant therapeutic options.


Subject(s)
Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/genetics , Simian virus 40/genetics , Antigens, Viral, Tumor , Cell Line
11.
Toxins (Basel) ; 15(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37755963

ABSTRACT

The yak lives in harsh alpine environments and the rumen plays a crucial role in the digestive system. Rumen-associated cells have unique adaptations and functions. The yak rumen fibroblast cell line (SV40T-YFB) was immortalized by introducing simian virus 40 large T antigen (SV40T) by lentivirus-mediated transfection. Further, we have reported the effects of lipopolysaccharide (LPS) of different concentrations on cell proliferation, extracellular matrix (ECM), and proinflammatory mediators in SV40T-YFB. The results showed that the immortalized yak rumen fibroblast cell lines were identified as fibroblasts that presented oval nuclei, a fusiform shape, and positive vimentin and SV40T staining after stable passage. Chromosome karyotype analysis showed diploid characteristics of yak (n = 60). LPS at different concentrations inhibited cell viability in a dose-dependent manner. SV40T-YFB treated with LPS increased mRNA expression levels of matrix metalloproteinases (MMP-2 and MMP-9), inflammatory cytokines (TNF-α, IL-1ß, IL-6), and urokinase-type plasminogen activator system components (uPA, uPAR). LPS inhibits the expression of tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), plasminogen activator inhibitor-2 (PAI-2), fibronectin (FN), anti-inflammatory factor IL-10, and collagen I (COL I) in SV40T-YFB. Overall, these results suggest that LPS inhibits cell proliferation and induces ECM degradation and inflammatory response in SV40T-YFB.


Subject(s)
Lipopolysaccharides , Rumen , Animals , Cattle , Lipopolysaccharides/pharmacology , Simian virus 40/genetics , Fibroblasts , Antigens, Viral, Tumor , Cell Line , Factor X
12.
Proc Natl Acad Sci U S A ; 120(30): e2308010120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459531

ABSTRACT

Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.


Subject(s)
Antigens, Polyomavirus Transforming , Simian virus 40 , Antigens, Polyomavirus Transforming/genetics , Antigens, Polyomavirus Transforming/metabolism , Simian virus 40/genetics , Simian virus 40/metabolism , Nucleic Acid Denaturation , Adenylyl Imidodiphosphate , DNA Replication , DNA/genetics , DNA/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA, Single-Stranded , DNA, Viral/genetics , DNA, Viral/metabolism
13.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902338

ABSTRACT

Polyomaviruses (PyVs) are highly prevalent in humans and animals. PyVs cause mild illness, however, they can also elicit severe diseases. Some PyVs are potentially zoonotic, such as simian virus 40 (SV40). However, data are still lacking about their biology, infectivity, and host interaction with different PyVs. We investigated the immunogenic properties of virus-like particles (VLPs) derived from viral protein 1 (VP1) of human PyVs. We immunised mice with recombinant HPyV VP1 VLPs mimicking the structure of viruses and compared their immunogenicity and cross-reactivity of antisera using a broad spectrum of VP1 VLPs derived from the PyVs of humans and animals. We demonstrated a strong immunogenicity of studied VLPs and a high degree of antigenic similarity between VP1 VLPs of different PyVs. PyV-specific monoclonal antibodies were generated and applied for investigation of VLPs phagocytosis. This study demonstrated that HPyV VLPs are highly immunogenic and interact with phagocytes. Data on the cross-reactivity of VP1 VLP-specific antisera revealed antigenic similarities among VP1 VLPs of particular human and animal PyVs and suggested possible cross-immunity. As the VP1 capsid protein is the major viral antigen involved in virus-host interaction, an approach based on the use of recombinant VLPs is relevant for studying PyV biology regarding PyV interaction with the host immune system.


Subject(s)
Capsid Proteins , Polyomavirus Infections , Humans , Animals , Mice , Capsid Proteins/chemistry , Simian virus 40 , Antigens , Immune Sera
14.
Biochem Biophys Res Commun ; 650: 103-108, 2023 04 02.
Article in English | MEDLINE | ID: mdl-36774687

ABSTRACT

The establishment of cell lines with a high protein production is the most crucial objective in the field of biopharmaceuticals. To this end, efforts have been made to increase transgene expression through promoter improvement, but the efficiency or stability of protein production was insufficient for use in commercial production. Here, we developed a novel strategy to increase the efficiency and stability of protein production by hybridizing a promoter that exhibits higher expression levels at the transient level with a promoter that exhibits higher stability at the stable level. Expression levels of transgenes by each promoter were measured at transient and stable levels for five single promoters: Rous sarcoma virus (RSV), cytomegalovirus (CMV), human phosphoglycerate kinase (hPGK), simian virus 40 (SV40), and zebrafish ubiquitin B (Ubb). The hPGK promoter enabled high-yield transgene expression at transient levels and the SV40 promoter enabled sustained expression at stable levels. Therefore, hPGK and SV40 promoters were selected as candidates for establishing hybrid promoters and two hybrid promoters were constructed; one hybrid promoter in which the SV40 promoter is added before the hPGK promoter (a.k.a. SKYI) and the other hybrid promoter in which the SV40 promoter is added after the hPGK promoter (a.k.a. SKYII). Of the two hybrid promoters, the hybrid promoter SKYII promoted high-yield transgene expression at both transient and stable levels compared to single hPGK and SV40. Together, our findings open new doors in the field of biopharmaceuticals by presenting a novel promoter platform that can be used for high-yield and sustained protein production.


Subject(s)
Genetic Vectors , Zebrafish , Animals , Humans , Promoter Regions, Genetic , Transgenes , Cell Line , Simian virus 40/genetics
15.
Viruses ; 14(9)2022 09 14.
Article in English | MEDLINE | ID: mdl-36146848

ABSTRACT

Bovine polyomavirus-1 (BoPyV-1, Epsilonpolyomavirus bovis) is widespread in cattle and has been detected in commercialized beef at supermarkets in the USA and Germany. BoPyV-1 has been questioned as a probable zoonotic agent with documented increase in seropositivity in people exposed to cattle. However, to date, BoPyV-1 has not been causally associated with pathology or disease in any animal species, including humans. Here we describe and illustrate pathological findings in an aborted bovine fetus naturally infected with BoPyV-1, providing evidence of its pathogenicity and probable abortigenic potential. Our results indicate that: (i) BoPyV-1 can cause severe kidney lesions in cattle, including tubulointerstitial nephritis with cytopathic changes and necrosis in tubular epithelial cells, tubular and interstitial inflammation, and interstitial fibroplasia; (ii) lesions are at least partly attributable to active viral replication in renal tubular epithelial cells, which have abundant intranuclear viral inclusions; (iii) BoPyV-1 large T (LT) antigen, resulting from early viral gene expression, can be detected in infected renal tubular epithelial cells using a monoclonal antibody raised against Simian Virus-40 polyomavirus LT antigen; and (iv) there is productive BoPyV-1 replication and virion assembly in the nuclei of renal tubular epithelial cells, as demonstrated by the ultrastructural observation of abundant arrays of viral particles with typical polyomavirus morphology. Altogether, these lesions resemble the "cytopathic-inflammatory pathology pattern" proposed in the pathogenesis of Human polyomavirus-1-associated nephropathy in immunocompromised people and kidney allograft recipients. Additionally, we sequenced the complete genome of the BoPyV-1 infecting the fetus, which represents the first whole genome of a BoPyV-1 from the Southern Hemisphere. Lastly, the BoPyV-1 strain infecting this fetus was isolated, causing a cytopathic effect in Madin-Darby bovine kidney cells. We conclude that BoPyV-1 is pathogenic to the bovine fetus under natural circumstances. Further insights into the epidemiology, biology, clinical relevance, and zoonotic potential of BoPyV-1 are needed.


Subject(s)
Kidney Transplantation , Nephritis, Interstitial , Polyomavirus Infections , Polyomavirus , Tumor Virus Infections , Animals , Antibodies, Monoclonal , Antigens, Viral, Tumor , Cattle , Fetus/pathology , Humans , Kidney , Kidney Transplantation/adverse effects , Nephritis, Interstitial/complications , Nephritis, Interstitial/pathology , Polyomavirus Infections/complications , Simian virus 40 , Tumor Virus Infections/complications
16.
J Med Virol ; 94(11): 5507-5511, 2022 11.
Article in English | MEDLINE | ID: mdl-35790406

ABSTRACT

Evidence of Simian virus 40 (SV40) DNA sequences or gene products has been reported in a variety of organ systems in humans. However, the route of transmission and the significance of SV40 polyomavirus infection in human are unknown. The aim of study was to characterize the frequency of SV40 infection in immunocompetent and immunocompromised patients with respiratory diseases. Respiratory specimens from patients with respiratory tract illness obtained from nasopharyngeal aspirates (n = 280) were screened for SV40 polyomavirus using real-time PCR; coinfection with other viruses was examined. Positive results were confirmed with sequencing. Of the 280 samples analysed, 2 (0.71%) were positive for SV40. SV40 was identified in nasopharyngeal aspirate samples from children aged 8 and 14 months who were immunocompetent. Both patients had upper or lower respiratory tract infection. Coinfections with other viruses were found in 50% of the SV40 positive samples. The data suggest that SV40 can infect respiratory tract, that respiratory tract may represent a route of transmission or a site for virus persistence, and that with the high rate of co-infection, SV40 may not involved in respiratory diseases.


Subject(s)
Coinfection , Polyomavirus Infections , Respiratory Tract Infections , Child , DNA, Viral/genetics , Humans , Real-Time Polymerase Chain Reaction , Simian virus 40/genetics
17.
Nanoscale ; 14(32): 11535-11542, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35861608

ABSTRACT

We report a new type of nanoparticle, consisting of a nucleic acid core (>7500 nt) folded into a 35 nm DNA origami sphere, encapsulated by a capsid composed of all three SV40 virus capsid proteins. Compared to the prototype reported previously, whose capsid consists of VP1 only, the new nanoparticle closely adopts the unique intracellular pathway of the native SV40, suggesting that the proteins of the synthetic capsid retain their native viral functionality. Some of the challenges in the design of such near-future composite drugs destined for gene delivery are discussed.


Subject(s)
Capsid , Viruses , Capsid Proteins/metabolism , DNA/metabolism , DNA, Viral/metabolism , Simian virus 40 , Virion , Virus Assembly , Viruses/metabolism
18.
Virology ; 573: 59-71, 2022 08.
Article in English | MEDLINE | ID: mdl-35717712

ABSTRACT

Since epigenetic regulation seemed likely to be involved in SV40 early transcription following infection, we have analyzed the organization of nucleosomes carrying histone modifications (acetyl-H3, acetyl-H4, H3K9me1, H3K9me3, H3K4me1, H3K4me3, H3K27me3, H4K20me1) at 30 min and 2 h post infection in SV40 minichromosomes prepared in the absence or presence of the transcription inhibitor dichloro-1-beta-d-ribofuranosyl benzimidazole. The former condition was used to determine how SV40 chromatin structure changed during early transcription, and the latter was used to determine the role of active transcription. The location of RNAPII was used as a marker to identify where histone modifications were most likely to be involved in regulation. Acetyl-H3 acted like epigenetic memory by being present at sites subsequently bound by RNAPII, while H3K9me1 and H3K27me3 were reorganized to the late side of the SV40 regulatory region apparently to repress late transcription. The organization of acetyl-H3 and H3K9me1 but not H3K27me3 required active transcription.


Subject(s)
Epigenesis, Genetic , Histone Code , Acetylation , Chromatin/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Simian virus 40/genetics , Simian virus 40/metabolism , Transcription, Genetic
19.
Cell Mol Life Sci ; 79(5): 242, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35429286

ABSTRACT

Simian virus 40 (SV40) is a potentially oncogenic virus of monkey origin. Transmission, prevalence, and pathogenicity rates of SV40 are unclear, but infection can occur in humans, for example individuals with high contact with rhesus macaques and individuals that received contaminated early batches of polio vaccines in 1950-1963. In addition, several human polyomaviruses, proven carcinogenic, are also highly common in global populations. Cellular senescence is a major mechanism of cancer prevention in vivo. Hyperactivation of Ras usually induces cellular senescence rather than cell transformation. Previous studies suggest small t antigen (ST) of SV40 may interfere with cellular senescence induced by Ras. In the current study, ST was demonstrated to inhibit Ras-induced cellular senescence (RIS) and accumulation of DNA damage in Ras-activated cells. In addition, ST suppressed the signal transmission from BRaf to MEK and thus blocked the downstream transmission of the activated Ras signal. B56γ knockdown mimicked the inhibitory effects of ST overexpression on RIS. Furthermore, KSR1 knockdown inhibited Ras activation and the subsequent cellular senescence. Further mechanism studies indicated that the phosphorylation level of KSR1 rather than the levels of the total protein regulates the activation of Ras signaling pathway. In sum, ST inhibits the continuous hyperactivation of Ras signals by interfering with the normal functions of PP2A-B56γ of dephosphorylating KSR1, thus inhibiting the occurrence of cellular senescence. Although the roles of SV40 in human carcinogenesis are controversial so far, our study has shown that ST of polyomaviruses has tumorigenic potential by inhibiting oncogene-induced senescence (OIS) as a proof of concept.


Subject(s)
Antigens, Viral, Tumor , Simian virus 40 , Animals , Antigens, Viral, Tumor/genetics , Antigens, Viral, Tumor/metabolism , Carcinogenesis , Cellular Senescence , Macaca mulatta/metabolism , Signal Transduction , Simian virus 40/metabolism
20.
PLoS Pathog ; 18(4): e1010401, 2022 04.
Article in English | MEDLINE | ID: mdl-35363834

ABSTRACT

Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.


Subject(s)
BK Virus , Polyomavirus Infections , Polyomavirus , BK Virus/genetics , Humans , Polyomavirus/genetics , Polyomavirus Infections/genetics , RNA Splicing , Simian virus 40/genetics
SELECTION OF CITATIONS
SEARCH DETAIL