Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Toxins (Basel) ; 12(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316084

ABSTRACT

Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30-35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody's neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization.


Subject(s)
Antibodies, Monoclonal , Antivenins , Single-Chain Antibodies , Spider Venoms/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antigens/immunology , Antivenins/administration & dosage , Antivenins/immunology , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Models, Molecular , Neutralization Tests , Single-Chain Antibodies/administration & dosage , Single-Chain Antibodies/immunology , Spider Bites/therapy , Spider Venoms/adverse effects , Spiders/immunology
2.
Microbes Infect ; 20(1): 48-56, 2018 01.
Article in English | MEDLINE | ID: mdl-28951317

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic mycosis with lymphatic dissemination that is caused by Paracoccidioides species. Treatment of PCM consists of chemotherapeutics such as itraconazole, trimethoprim, sulfamethoxazole or amphotericin B. However, several studies are aiming to develop therapeutic alternatives for the treatment of fungal infection using new molecules as adjuvants. The single-chain variable fragments (scFv) from an antibody that mimics the main fungal component incorporated within poly(lactide-co-glycolic) acid (PLGA) nanoparticles helped treat the fungal disease. After expressing the scFv in Picchia pastoris (P. pastoris), the recombinant molecules were coupled with PLGA, and the BALB/c mice were immunized before or after infection with yeast Paracoccidioides brasiliensis (P. brasiliensis). Our results showed decreased disease progression and decreased fungal burden. Taken together, our results showed an increased of IFN-γ and IL-12 cytokine production and an increased number of macrophages and dendritic cells in the pulmonary tissue of BALB/c mice treated with a high concentration of our molecule. Our data further confirm that the scFv plays an important role in the treatment of experimental PCM.


Subject(s)
Disease Models, Animal , Lung/microbiology , Nanoparticles/administration & dosage , Paracoccidioides/immunology , Paracoccidioidomycosis/prevention & control , Single-Chain Antibodies/administration & dosage , Animals , Antibodies, Fungal/blood , Antibodies, Fungal/immunology , Antigens, Fungal/immunology , Colony Count, Microbial , Cytokines/biosynthesis , Dendritic Cells/immunology , Fungal Proteins/immunology , Glycoproteins/immunology , Lactic Acid/chemistry , Lung/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Paracoccidioidomycosis/microbiology , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Vaccination
3.
PLoS One ; 10(8): e0133665, 2015.
Article in English | MEDLINE | ID: mdl-26267898

ABSTRACT

Noroviruses are a major cause of acute gastroenteritis, but no vaccines or therapeutic drugs are available. Llama-derived single chain antibody fragments (also called VHH) are small, recombinant monoclonal antibodies of 15 kDa with several advantages over conventional antibodies. The aim of this study was to generate recombinant monoclonal VHH specific for the two major norovirus (NoV) genogroups (GI and GII) in order to investigate their potential as immunotherapy for the treatment of NoV diarrhea. To accomplish this objective, two llamas were immunized with either GI.1 (Norwalk-1968) or GII.4 (MD2004) VLPs. After immunization, peripheral blood lymphocytes were collected and used to generate two VHH libraries. Using phage display technology, 10 VHH clones specific for GI.1, and 8 specific for GII.4 were selected for further characterization. All VHH recognized conformational epitopes in the P domain of the immunizing VP1 capsid protein, with the exception of one GII.4 VHH that recognized a linear P domain epitope. The GI.1 VHHs were highly specific for the immunizing GI.1 genotype, with only one VHH cross-reacting with GI.3 genotype. The GII.4 VHHs reacted with the immunizing GII.4 strain and showed a varying reactivity profile among different GII genotypes. One VHH specific for GI.1 and three specific for GII.4 could block the binding of homologous VLPs to synthetic HBGA carbohydrates, saliva, and pig gastric mucin, and in addition, could inhibit the hemagglutination of red blood cells by homologous VLPs. The ability of Nov-specific VHHs to perform well in these surrogate neutralization assays supports their further development as immunotherapy for NoV treatment and immunoprophylaxis.


Subject(s)
Antibodies, Monoclonal/immunology , Capsid Proteins/immunology , Diarrhea/prevention & control , Gastroenteritis/prevention & control , Immunization, Passive/methods , Single-Chain Antibodies/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Antibody Specificity , Camelids, New World , Capsid Proteins/chemistry , Capsid Proteins/genetics , Cell Surface Display Techniques , Diarrhea/immunology , Diarrhea/virology , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Gastroenteritis/immunology , Gastroenteritis/virology , Gene Library , Hemagglutination Inhibition Tests , Humans , Immune Sera/chemistry , Immunization , Male , Norovirus/drug effects , Norovirus/immunology , Norovirus/pathogenicity , Protein Binding , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Single-Chain Antibodies/administration & dosage , Single-Chain Antibodies/genetics , Single-Chain Antibodies/isolation & purification , Swine
SELECTION OF CITATIONS
SEARCH DETAIL