Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 17.054
Filter
1.
J Biomed Opt ; 29(8): 086004, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139703

ABSTRACT

Significance: The multispectral imaging-based tissue oxygen saturation detecting (TOSD) system offers deeper penetration ( ∼ 2 to 3 mm) and comprehensive tissue oxygen saturation ( StO 2 ) assessment and recognizes the wound healing phase at a low cost and computational requirement. The potential for miniaturization and integration of TOSD into telemedicine platforms could revolutionize wound care in the challenging pandemic era. Aim: We aim to validate TOSD's application in detecting StO 2 by comparing it with wound closure rates and laser speckle contrast imaging (LSCI), demonstrating TOSD's ability to recognize the wound healing process. Approach: Utilizing a murine model, we compared TOSD with digital photography and LSCI for comprehensive wound observation in five mice with 6-mm back wounds. Sequential biochemical analysis of wound discharge was investigated for the translational relevance of TOSD. Results: TOSD demonstrated constant signals on unwounded skin with differential changes on open wounds. Compared with LSCI, TOSD provides indicative recognition of the proliferative phase during wound healing, with a higher correlation coefficient to wound closure rate (TOSD: 0.58; LSCI: 0.44). StO 2 detected by TOSD was further correlated with proliferative phase angiogenesis markers. Conclusions: Our findings suggest TOSD's enhanced utility in wound management protocols, evaluating clinical staging and therapeutic outcomes. By offering a noncontact, convenient monitoring tool, TOSD can be applied to telemedicine, aiming to advance wound care and regeneration, potentially improving patient outcomes and reducing healthcare costs associated with chronic wounds.


Subject(s)
Oxygen Saturation , Wound Healing , Wound Healing/physiology , Animals , Mice , Oxygen Saturation/physiology , Oxygen/metabolism , Skin/diagnostic imaging , Skin/blood supply , Skin/metabolism , Male
2.
J Biomed Opt ; 29(Suppl 3): S33305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39139814

ABSTRACT

Significance: Questions about the accuracy of pulse oximeters in measuring arterial oxygen saturation ( SpO 2 ) in individuals with darker skin pigmentation have resurfaced since the COVID-19 pandemic. This requires investigation to improve patient safety, clinical decision making, and research. Aim: We aim to use computational modeling to identify the potential causes of inaccuracy in SpO 2 measurement in individuals with dark skin and suggest practical solutions to minimize bias. Approach: An in silico model of the human finger was developed to explore how changing melanin concentration and arterial oxygen saturation ( SaO 2 ) affect pulse oximeter calibration algorithms using the Monte Carlo (MC) technique. The model generates calibration curves for Fitzpatrick skin types I, IV, and VI and an SaO 2 range between 70% and 100% in transmittance mode. SpO 2 was derived by inputting the computed ratio of ratios for light and dark skin into a widely used calibration algorithm equation to calculate bias ( SpO 2 - SaO 2 ). These were validated against an experimental study to suggest the validity of the Monte Carlo model. Further work included applying different multiplication factors to adjust the moderate and dark skin calibration curves relative to light skin. Results: Moderate and dark skin calibration curve equations were different from light skin, suggesting that a single algorithm may not be suitable for all skin types due to the varying behavior of light in different epidermal melanin concentrations, especially at 660 nm. The ratio between the mean bias in White and Black subjects in the cohort study was 6.6 and 5.47 for light and dark skin, respectively, from the Monte Carlo model. A linear multiplication factor of 1.23 and exponential factor of 1.8 were applied to moderate and dark skin calibration curves, resulting in similar alignment. Conclusions: This study underpins the careful re-assessment of pulse oximeter designs to minimize bias in SpO 2 measurements across diverse populations.


Subject(s)
Melanins , Monte Carlo Method , Oximetry , Skin Pigmentation , Humans , Oximetry/methods , Melanins/analysis , Skin Pigmentation/physiology , Algorithms , Computer Simulation , Oxygen Saturation/physiology , Calibration , COVID-19 , Oxygen/blood , Oxygen/metabolism , SARS-CoV-2 , Light , Skin/chemistry , Skin/blood supply , Fingers/blood supply , Fingers/physiology
3.
Exp Dermatol ; 33(8): e15153, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39138644

ABSTRACT

Actinic keratosis (AK) classification relies on clinical characteristics limited to the skin's surface. Incorporating sub-surface evaluation may improve the link between clinical classification and the underlying pathology. We aimed to apply dynamic optical coherence tomography (D-OCT) to characterize microvessels in AK I-III and photodamaged (PD) skin, thereby exploring its utility in enhancing clinical and dermatoscopic AK evaluation. This explorative study assessed AK I-III and PD on face or scalp. AK were graded according to the Olsen scheme before assessment with dermatoscopy and D-OCT. On D-OCT, vessel shapes, -pattern and -direction were qualitatively evaluated at predefined depths, while density and diameter were quantified. D-OCT's ability to differentiate between AK grades was compared with dermatoscopy. Forty-seven patients with AK I-III (n = 207) and PD (n = 87) were included. Qualitative D-OCT evaluation revealed vascular differences between AK grades and PD, particularly at a depth of 300 µm. The arrangement of vessel shapes around follicles differentiated AK II from PD (OR = 4.75, p < 0.001). Vessel patterns varied among AK grades and PD, showing structured patterns in AK I and PD, non-specific in AK II (OR = 2.16,p = 0.03) and mottled in AK III (OR = 29.94, p < 0.001). Vessel direction changed in AK II-III, with central vessel accentuation and radiating vessels appearing most frequently in AK III. Quantified vessel density was higher in AK I-II than PD (p ≤ 0.025), whereas diameter remained constant. D-OCT combined with dermatoscopy enabled precise differentiation of AK III versus AK I (AUC = 0.908) and II (AUC = 0.833). The qualitative and quantitative evaluation of vessels on D-OCT consistently showed increased vascularization and vessel disorganization in AK lesions of higher grades.


Subject(s)
Keratosis, Actinic , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Keratosis, Actinic/diagnostic imaging , Keratosis, Actinic/pathology , Aged , Female , Male , Middle Aged , Dermoscopy/methods , Microvessels/diagnostic imaging , Microvessels/pathology , Aged, 80 and over , Scalp/diagnostic imaging , Scalp/blood supply , Scalp/pathology , Skin/blood supply , Skin/diagnostic imaging , Skin/pathology , Severity of Illness Index
4.
Sci Rep ; 14(1): 17809, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090263

ABSTRACT

Skin microvasculature is vital for human cardiovascular health and thermoregulation, but its imaging and analysis presents significant challenges. Statistical methods such as speckle decorrelation in optical coherence tomography angiography (OCTA) often require multiple co-located B-scans, leading to lengthy acquisitions prone to motion artefacts. Deep learning has shown promise in enhancing accuracy and reducing measurement time by leveraging local information. However, both statistical and deep learning methods typically focus solely on processing individual 2D B-scans, neglecting contextual information from neighbouring B-scans. This limitation compromises spatial context and disregards the 3D features within tissue, potentially affecting OCTA image accuracy. In this study, we propose a novel approach utilising 3D convolutional neural networks (CNNs) to address this limitation. By considering the 3D spatial context, these 3D CNNs mitigate information loss, preserving fine details and boundaries in OCTA images. Our method reduces the required number of B-scans while enhancing accuracy, thereby increasing clinical applicability. This advancement holds promise for improving clinical practices and understanding skin microvascular dynamics crucial for cardiovascular health and thermoregulation.


Subject(s)
Imaging, Three-Dimensional , Microvessels , Neural Networks, Computer , Skin , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Humans , Microvessels/diagnostic imaging , Microvessels/physiology , Skin/diagnostic imaging , Skin/blood supply , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods , Deep Learning
5.
Sci Rep ; 14(1): 18345, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112598

ABSTRACT

Pressure ulcers (PU) are caused by persistent long-term pressure, which compromises the integrity of the epidermis, dermis, and subcutaneous adipose tissue layer by layer, making it difficult to heal. Platelet products such as platelet lysate (PL) can promote tissue regeneration by secreting numerous growth factors based on clinical studies on skin wound healing. However, the components of PL are difficult to retain in wounds. Gelatin methacrylate (GelMA) is a photopolymerizable hydrogel that has lately emerged as a promising material for tissue engineering and regenerative medicine. The PL liquid was extracted, flow cytometrically detected for CD41a markers, and evenly dispersed in the GelMA hydrogel to produce a surplus growth factor hydrogel system (PL@GM). The microstructure of the hydrogel system was observed under a scanning electron microscope, and its sustained release efficiency and biological safety were tested in vitro. Cell viability and migration of human dermal fibroblasts, and tube formation assays of human umbilical vein endothelial cells were applied to evaluate the ability of PL to promote wound healing and regeneration in vitro. Real-time polymerase chain reaction (PCR) and western blot analyses were performed to elucidate the skin regeneration mechanism of PL. We verified PL's therapeutic effectiveness and histological analysis on the PU model. PL promoted cell viability, migration, wound healing and angiogenesis in vitro. Real-time PCR and western blot indicated PL suppressed inflammation and promoted collagen I synthesis by activating STAT3. PL@GM hydrogel system demonstrated optimal biocompatibility and favorable effects on essential cells for wound healing. PL@GM also significantly stimulated PU healing, skin regeneration, and the formation of subcutaneous collagen and blood vessels. PL@GM could accelerate PU healing by promoting fibroblasts to migrate and secrete collagen and endothelial cells to vascularize. PL@GM promises to be an effective and convenient treatment modality for PU, like chronic wound treatment.


Subject(s)
Angiogenesis , Blood Platelets , Gelatin , Methacrylates , Pressure Ulcer , Skin , Wound Healing , Animals , Humans , Mice , Angiogenesis/drug effects , Blood Platelets/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Gelatin/chemistry , Gelatin/pharmacology , Human Umbilical Vein Endothelial Cells , Hydrogels/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Neovascularization, Physiologic/drug effects , Pressure Ulcer/therapy , Regeneration/drug effects , Skin/blood supply , Skin/drug effects , Skin/metabolism , Skin/pathology , STAT3 Transcription Factor/metabolism , Wound Healing/drug effects
6.
Sci Rep ; 14(1): 18400, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117675

ABSTRACT

Estrogens regulate numerous physiological and pathological processes, including wide-ranging effects in wound healing. The effects of estrogens are mediated through multiple estrogen receptors (ERs), including the classical nuclear ERs (ERα and ER ß ), that typically regulate gene expression, and the 7-transmembrane G protein-coupled estrogen receptor (GPER), that predominantly mediates rapid "non-genomic" signaling. Estrogen modulates the expression of various genes involved in epidermal function and regeneration, inflammation, matrix production, and protease inhibition, all critical to wound healing. Our previous work demonstrated improved myocutaneous wound healing in female mice compared to male mice. In the current study, we employed male and female GPER knockout mice to investigate the role of this estrogen receptor in wound revascularization and tissue viability. Using a murine myocutaneous flap model of graded ischemia, we measured real-time flap perfusion via laser speckle perfusion imaging. We conducted histologic and immunohistochemical analyses to assess skin and muscle viability, microvascular density and vessel morphology. Our results demonstrate that GPER is crucial in wound healing, mediating effects that are both dependent and independent of sex. Lack of GPER expression is associated with increased skin necrosis, reduced flap perfusion and altered vessel morphology. These findings contribute to understanding GPER signaling in wound healing and suggest possible therapeutic opportunities by targeting GPER.


Subject(s)
Mice, Knockout , Neovascularization, Physiologic , Receptors, Estrogen , Receptors, G-Protein-Coupled , Wound Healing , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Male , Mice , Female , Skin/metabolism , Skin/blood supply , Ischemia/metabolism , Surgical Flaps
7.
Int Wound J ; 21(8): e70015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39165043

ABSTRACT

The aim of this study was to investigate acute wound healing with dynamic optical coherence tomography (D-OCT). From 22 patients with 23 split skin graft donor sites, vessels at four wound edges, the wound bed, and adjacent and unaffected skin of the contralateral leg were measured by D-OCT at six time points from surgery to 4 weeks of healing. Changes in vessel orientation, density, diameter, morphology and pattern in horizontal, vertical and 3D images were analysed for wound healing and re-epithelialization. At 300 µm depth, there were significant differences of blobs and serpiginous vessels between normal and wounded skin. The wound had significantly more vertically oriented vessels, a higher degree of branching, vessel density and diameter compared with healthy skin. 3D images showed increased angiogenesis from healthy skin towards the wound centre, significantly higher vessel density at the wound than at normal skin and the highest at the interface. During wound healing blobs, coils and serpiginous vessels occurred significantly more frequently in lesional than healthy skin. Vessel density was greatest at the beginning, decreased and then increased by 4 weeks post-surgery. D-OCT helps to evaluate acute wound healing by visualizing and quantifying blood vessel growth in addition to re-epithelialization.


Subject(s)
Tomography, Optical Coherence , Wound Healing , Humans , Tomography, Optical Coherence/methods , Wound Healing/physiology , Male , Female , Middle Aged , Aged , Adult , Skin Transplantation/methods , Skin/injuries , Skin/blood supply , Skin/diagnostic imaging , Re-Epithelialization/physiology , Aged, 80 and over
8.
Braz J Med Biol Res ; 57: e13624, 2024.
Article in English | MEDLINE | ID: mdl-39194032

ABSTRACT

Energy drinks are nonalcoholic beverages whose main ingredients are sugar, taurine, and caffeine. The consumption of energy drinks is increasing worldwide, but only a few conflicting studies have investigated the vascular effects of energy drinks in young adults. The aim of this study was to evaluate microvascular reactivity before and after energy drinks consumption in young healthy male volunteers. This was a cross-sectional prospective study. Microvascular reactivity signals were evaluated in the skin of the forearm using laser speckle contrast imaging with acetylcholine (ACh) iontophoresis before and 90 and 180 min after the randomized consumption of one ED or the same volume of water (control), followed by a postocclusive reactive hyperemia (PORH) test. Thirty-two volunteers were evaluated (age: 25.4±4.3 years). Energy drink consumption prevented the rest-induced reduction in cutaneous vascular conductance over time that was observed in the control group. In the control group, there were significant reductions in microvascular vasodilation at 90 and 180 min compared to baseline (P=0.004), but this was not the case in the energy drink group (P=0.76). Our results demonstrated that the reduction in microvascular conductance associated with prolonged immobility can be prevented by the consumption of one energy drink, highlighting the vasodilator effects of this beverage in young individuals at rest. The between-study variability in terms of the brand of energy drinks and the ingested volume, as well as the method of vascular evaluation and the inclusion criteria, may explain the discrepancies among previous studies on the vascular effects of energy drinks.


Subject(s)
Energy Drinks , Humans , Male , Adult , Prospective Studies , Cross-Sectional Studies , Young Adult , Vasodilation/drug effects , Vasodilation/physiology , Rest/physiology , Forearm/blood supply , Microcirculation/drug effects , Microcirculation/physiology , Skin/blood supply , Skin/drug effects , Hyperemia , Microvessels/drug effects , Acetylcholine/administration & dosage , Acetylcholine/pharmacology
9.
Physiol Rep ; 12(14): e16149, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016164

ABSTRACT

The purpose of this study was to investigate whether endothelin-A receptor (ETAR) inhibition in non-Hispanic Black (NHB) and White (NHW) young adults depends on biological sex. We recruited females during low hormone (n = 22) and high hormone (n = 22) phases, and males (n = 22). Participants self-identified as NHB (n = 33) or NHW (n = 33). Participants were instrumented with two microdialysis fibers: (1) lactated Ringer's (control) and (2) 500 nM BQ-123 (ETAR antagonist). Local heating was used to elicit cutaneous vasodilation, and an infusion of 20 mM L-NAME to quantify NO-dependent vasodilation. At control sites, NO-dependent vasodilation was lowest in NHB males (46 ± 13 %NO) and NHB females during low hormone phases (47 ± 12 %NO) compared to all NHW groups. Inhibition of ETAR increased NO-dependent vasodilation in NHB males (66 ± 13 %NO), in both groups of females during low hormone phases (NHW, control: 64 ± 12 %NO, BQ-123: 85 ± 11 %NO; NHB, BQ-123: 68 ± 13 %NO), and in NHB females during high hormone phases (control: 61 ± 11 %NO, BQ-123: 83 ± 9 %NO). There was no effect for ETAR inhibition in NHW males or females during high hormone phases. These data suggest the effect of ETAR inhibition on NO-dependent vasodilation is influenced by biological sex and racial identity.


Subject(s)
Endothelin A Receptor Antagonists , Peptides, Cyclic , Receptor, Endothelin A , Skin , Vasodilation , Adult , Female , Humans , Male , Young Adult , Endothelin A Receptor Antagonists/pharmacology , Microvessels/physiology , Microvessels/drug effects , Microvessels/metabolism , Nitric Oxide/metabolism , Peptides, Cyclic/pharmacology , Receptor, Endothelin A/metabolism , Sex Characteristics , Skin/blood supply , Skin/metabolism , Vasodilation/drug effects , Black or African American , White
10.
J Biomed Opt ; 29(Suppl 3): S33304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989257

ABSTRACT

Significance: Imaging blood oxygen saturation ( SO 2 ) in the skin can be of clinical value when studying ischemic tissue. Emerging multispectral snapshot cameras enable real-time imaging but are limited by slow analysis when using inverse Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial neural networks (ANNs) facilitates a significantly faster analysis but requires a large amount of high-quality training data from a wide range of tissue types for a precise estimation of SO 2 . Aim: We aim to develop a framework for training ANNs that estimates SO 2 in real time from multispectral data with a precision comparable to inverse MC. Approach: ANNs are trained using synthetic data from a model that includes MC simulations of light propagation in tissue and hardware characteristics. The model includes physiologically relevant variations in optical properties, unique sensor characteristics, variations in illumination spectrum, and detector noise. This approach enables a rapid way of generating high-quality training data that covers different tissue types and skin pigmentation. Results: The ANN implementation analyzes an image in 0.11 s, which is at least 10,000 times faster than inverse MC. The hardware modeling is significantly improved by an in-house calibration of the sensor spectral response. An in-vivo example shows that inverse MC and ANN give almost identical SO 2 values with a mean absolute deviation of 1.3%-units. Conclusions: ANN can replace inverse MC and enable real-time imaging of microcirculatory SO 2 in the skin if detailed and precise modeling of both tissue and hardware is used when generating training data.


Subject(s)
Microcirculation , Monte Carlo Method , Neural Networks, Computer , Oxygen Saturation , Skin , Skin/blood supply , Skin/diagnostic imaging , Skin/chemistry , Humans , Microcirculation/physiology , Oxygen Saturation/physiology , Oxygen/blood , Image Processing, Computer-Assisted/methods , Computer Simulation
11.
Lasers Med Sci ; 39(1): 193, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052099

ABSTRACT

Laser therapy has been widely used to treat port-wine stains (PWS) and other cutaneous vascular lesions via selective photothermolysis. Animal models are a valuable tool for investigating thermal responses beneath the skin. However, in previous animal experiments, such as the dorsal skin chamber model, one side of the skin was removed, resulting in the loss of mechanical support for the target blood vessel. In this study, the optical clearing technique was applied to the dorsal skin, allowing direct observation of real thermal responses within the tissue without removing the covering skin. The target blood vessels were irradiated with a pulsed 1064 nm Nd: YAG laser. The corresponding thermal responses were recorded using a CCD camera. Additionally, variations in skin reflectance spectra were measured before and after laser irradiation. Due to the optical clearing and reflectance spectra measurement, vessel responses such as contraction, reperfusion, and full occlusion were correlated with specific variation patterns in reflectance spectral signals.


Subject(s)
Lasers, Solid-State , Skin , Animals , Skin/radiation effects , Skin/blood supply , Lasers, Solid-State/therapeutic use , Blood Vessels/radiation effects , Spectrum Analysis/methods , Port-Wine Stain/radiotherapy
12.
J Proteome Res ; 23(8): 3496-3514, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38986055

ABSTRACT

Dupilumab is a monoclonal antibody approved for the treatment of atopic dermatitis (AD); however, its effects on molecular, cellular, and immunological levels remain to be elucidated. In this study, blood and dermal interstitial fluid (ISF) from nonlesional (NL) and lesional (L) skin were collected from eight patients with moderate to severe AD, before (visit 2-v2) and at the end of a 16-week treatment with dupilumab (visit 10-v10). Clinical treatment effect was demonstrated by significantly decreased AD severity scores at the end of treatment. At v10 versus v2, the percentages of CD4+ interleukin-producing cells showed a decreasing trend in ISF L and NL, unbound IL-4 levels in plasma were increased, IL-5 levels in ISF L reduced, and levels of factors involved in anti-inflammatory pathways and re-epithelization increased. At v2, ISF L showed that AD lesions might have altered amino acid pathways and lipid signaling compared to ISF NL. At v10, ISF L exhibited raised levels of long- and very-long-chain fatty acids and lipids compared to v2. Furthermore, dupilumab administration caused reduced expression of miR-155-5p and miR-378a-3p in ISF L. In conclusion, results from the present study provided novel knowledge by linking local immune and metabolic alterations to AD pathogenesis and treatment response.


Subject(s)
Antibodies, Monoclonal, Humanized , Dermatitis, Atopic , Extracellular Fluid , Humans , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Extracellular Fluid/drug effects , Extracellular Fluid/metabolism , Male , Female , Adult , Inflammation Mediators/metabolism , Metabolome/drug effects , Interleukin-4/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Skin/metabolism , Skin/drug effects , Skin/blood supply , Middle Aged , Interleukin-5
13.
Microvasc Res ; 155: 104718, 2024 09.
Article in English | MEDLINE | ID: mdl-39019108

ABSTRACT

Psoriasis is characterized by excessive angiogenesis, with increased distortion and dilation of the dermal blood vessels. These vascular alterations are ascribed, at least in part, to the changes in dermal microvascular endothelial cell functions. However, despite the recognition of vascular normalization as an emerging strategy for the treatment of psoriasis, in-depth studies of human dermal microvascular endothelial cells (HDMECs) have been missing. The difficulty of isolation and culture of HDMECs has impeded the study of endothelial dysfunction in psoriasis. Researchers have done a great deal of work to study the abnormal characteristics of keratinocytes, fibroblasts, and leukocytes in psoriatic skin tissue. Recently, with successful isolation of HDMECs from psoriasis, great progress has been made in the elucidation of the pathogenic role of these cells in psoriasis. It is of great therapeutic significance to study the molecular mechanism of HDMECs in psoriasis. We review here the abnormalities of HDMECs in psoriasis.


Subject(s)
Endothelial Cells , Microvessels , Neovascularization, Pathologic , Psoriasis , Skin , Humans , Psoriasis/pathology , Psoriasis/physiopathology , Endothelial Cells/pathology , Endothelial Cells/metabolism , Skin/blood supply , Skin/pathology , Microvessels/pathology , Microvessels/physiopathology , Microvessels/metabolism , Animals , Signal Transduction , Phenotype , Angiogenesis
14.
J Appl Physiol (1985) ; 137(2): 421-428, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38961822

ABSTRACT

To determine whether using nicotine exacerbates exertional heat strain through an increased metabolic heat production (Hprod) or decreased skin blood flow (SkBF), 10 nicotine-naïve trained males [37 ± 12 yr; peak oxygen consumption (V̇o2peak): 66 ± 10 mL·min-1·kg-1] completed four trials at 20°C and 30°C following overnight transdermal nicotine (7 mg·24 h-1) and placebo use in a crossover, double-blind design. They cycled for 60 min (55% V̇o2peak) followed by a time trial (∼75% V̇o2peak) during which measures of gastrointestinal (Tgi) and mean weighted skin ([Formula: see text]sk) temperatures, SkBF, Hprod, and mean arterial pressure (MAP) were made. The difference in ΔTgi between nicotine and placebo trials was greater during 30°C (0.4 ± 0.5°C) than 20°C (0.1 ± 0.7°C), with [Formula: see text]sk higher during nicotine than placebo trials (0.5 ± 0.5°C, P = 0.02). SkBF became progressively lower during nicotine than placebo trials (P = 0.01) and progressively higher during 30°C than 20°C trials (P < 0.01); MAP increased from baseline (P < 0.01) and remained elevated in all trials. The difference in Hprod between 30°C and 20°C trials was lower during nicotine than placebo (P = 0.01) and became progressively higher during 30°C than 20°C trials with exercise duration (P = 0.03). Mean power output during the time trial was lower during 30°C than 20°C trials (24 ± 25 W, P = 0.02), and although no effect of nicotine was observed (P > 0.59), two participants (20%) were unable to complete their 30°C nicotine trials as one reached the ethical limit for Tgi (40.0°C), whereas the other withdrew due to "nausea and chills" (Tgi = 39.7°C). These results demonstrate that nicotine use increases thermal strain and risk of exertional heat exhaustion by reducing SkBF.NEW & NOTEWORTHY In naïve participants, acute nicotine use exerts a hyperthermic effect that increases the risk of heat exhaustion during exertional heat strain, which is driven by a blunted skin blood flow response. This has implications for 1) populations that face exertional heat strain and demonstrate high nicotine use (e.g., athletes and military, 25%-50%) and 2) study design whereby screening and exclusion for nicotine use or standardization of prior use (e.g., overnight abstinence) is encouraged.


Subject(s)
Cross-Over Studies , Nicotine , Oxygen Consumption , Skin , Humans , Male , Nicotine/adverse effects , Nicotine/administration & dosage , Double-Blind Method , Adult , Oxygen Consumption/drug effects , Oxygen Consumption/physiology , Skin/drug effects , Skin/blood supply , Hot Temperature , Physical Exertion/physiology , Physical Exertion/drug effects , Middle Aged , Skin Temperature/drug effects , Skin Temperature/physiology , Exercise/physiology , Heat Stress Disorders/physiopathology , Thermogenesis/drug effects , Thermogenesis/physiology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology
15.
Skin Res Technol ; 30(7): e13830, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951871

ABSTRACT

BACKGROUND: Consumer products such as electrical shavers exert a combination of dynamic loading in the form of pressure and shear on the skin. This mechanical stimulus can lead to discomfort and skin tissue responses characterised as "Skin Sensitivity". To minimise discomfort following shaving, there is a need to establish specific stimulus-response relationships using advanced tools such as optical coherence tomography (OCT). OBJECTIVE: To explore the spatial and temporal changes in skin morphology and microvascular function following an electrical shaving stimulus. METHODS: Ten healthy male volunteers were recruited. The study included a 60-s electrical shaving stimulus on the forearm, cheek and neck. Skin parameters were recorded at baseline, 20 min post stimulus and 24 h post stimulus. Structural and dynamic skin parameters were estimated using OCT, while transepidermal water loss (TEWL) was recorded to provide reference values for skin barrier function. RESULTS: At baseline, six of the eight parameters revealed statistically significant differences between the forearm and the facial sites, while only surface roughness (Rq) and reflectivity were statistically different (p < 0.05) between the cheek and neck. At 20 min post shaving, there was a significant increase in the TEWL values accompanied by increased blood perfusion, with varying magnitude of change dependent on the anatomical site. Recovery characteristics were observed 24 h post stimulus with most parameters returning to basal values, highlighting the transient influence of the stimulus. CONCLUSIONS: OCT parameters revealed spatial and temporal differences in the skin tissue response to electrical shaving. This approach could inform shaver design and prevent skin sensitivity.


Subject(s)
Skin , Tomography, Optical Coherence , Humans , Male , Tomography, Optical Coherence/methods , Adult , Skin/blood supply , Skin/diagnostic imaging , Forearm/blood supply , Young Adult , Microvessels/diagnostic imaging , Microvessels/physiology , Cheek/blood supply , Cheek/diagnostic imaging , Water Loss, Insensible/physiology , Healthy Volunteers , Skin Physiological Phenomena , Electric Stimulation , Neck/diagnostic imaging , Neck/blood supply , Microcirculation/physiology
16.
J Toxicol Environ Health A ; 87(19): 792-810, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38940434

ABSTRACT

Occupational exposure to welding fumes constitutes a serious health concern. Although the effects of fumes on the respiratory tract have been investigated, few apparent reports were published on their effects on the skin. The purpose of this study was to investigate the effects of exposure to welding fumes on skin cells, focusing on interleukin-24 (IL-24), a cytokine involved in the pathophysiology of skin conditions, such as atopic dermatitis and psoriasis. Treatment with welding fumes increased IL-24 expression and production levels in human dermal microvascular endothelial cells (HDMEC) which were higher than that in normal human epidermal keratinocytes. IL-24 levels in Trolox and deferoxamine markedly suppressed welding fume-induced IL-24 expression in HDMEC, indicating that oxidative stress may be involved in this cytokine expression. IL-24 released from HDMEC protected keratinocytes from welding fume-induced damage and enhanced keratinocyte migration. Serum IL-24 was higher in welding workers than in general subjects and was positively correlated with elevated serum levels of 8-hydroxy-2'-deoxyguanosine, an oxidative stress marker. In summary, welding fumes enhanced IL-24 expression in HDMEC, stimulating keratinocyte survival and migration. IL-24 expression in endothelial cells may act as an adaptive response to welding-fume exposure in the skin.


Subject(s)
Cell Movement , Cell Survival , Interleukins , Keratinocytes , Up-Regulation , Welding , Adult , Humans , Male , Middle Aged , Air Pollutants, Occupational/toxicity , Air Pollutants, Occupational/adverse effects , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Interleukins/metabolism , Keratinocytes/drug effects , Occupational Exposure/adverse effects , Oxidative Stress/drug effects , Skin/metabolism , Skin/drug effects , Skin/blood supply , Up-Regulation/drug effects
17.
Zhen Ci Yan Jiu ; 49(6): 577-584, 2024 Jun 25.
Article in English, Chinese | MEDLINE | ID: mdl-38897801

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) stimulation of "Zusanli"(ST36) and"Xuehai"(SP10) on the angiogenesis of the local injured skin tissue in mice with psoriasis, so as to explore its mechanisms underlying improvement of psoriasis-induced skin lesions. METHODS: A total of 24 female BALB/c mice aged 6-8 weeks were randomly divided into control, model and EA groups, with 8 mice in each group. The psoriasis-like skin lesion model was established by application of 5% imiquimod (IMQ) cream to the mice's back skin, 62.5 mg/d, for 7 days after local depilation, and the mice of the control group received local application of an equal amount of petroleum jelly once a day for 7 days. EA stimulation (2 Hz/100 Hz) was applied to ST36 and SP10 for 30 min, once daily for 7 consecutive days. Photos of the topical injured skin at the back were taken every day, and the severity of psoriasis lesions (psoriasis area and severity index ï¼»PASIï¼½) was scaled. Following H.E. staining, the morphological changes in the injured skin tissue were observed with epidermal thickness analyzed, and the Masson staining was used to observe the proportion of collagen fibers in the injured skin tissues. Immunohistochemical method was used to detect the expression of microvascular markers CD31 and vascular endothelial growth factor (VEGF) and the microvascular density (MVD) was calculated. Western blot was used to detect the expression levels of CD31, VEGF proteins and mitogen activated protein kinases (MAPK) signaling pathway related proteins p38, phosphorylated p38 (p-p38), extracellular regulated protein kinases (ERK), p-ERK, c-Jun N-terminal kinase (JNK) and p-JNK in the injured skin tissue. RESULTS: Compared with the control group, the mice in the model group showed an evident increase in the erythema score, scales score, skin thickening score and PASI score, epidermal thickness, proportion of the collagen fibers, MVD value of CD31 and VEGF, and expression levels of CD31 and VEGF proteins, and p-p38/p38, p-ERK/ERK and p-JNK/JNK ratios in the injured skin tissue (P<0.001, P<0.01). In contrast to the model group, the EA group had a significant decrease in the levels of all the indexes mentioned above (P<0.05, P<0.01, P<0.001). CONCLUSIONS: EA intervention can improve the psoriasis-like skin lesions induced by IMQ in mice, which may be related with its functions in down-regulating the expression of angiogenic related factors CD31 and VEGF proteins and MAPK signaling pathway related proteins in the topical injured skin tissue.


Subject(s)
Electroacupuncture , Mice, Inbred BALB C , Psoriasis , Vascular Endothelial Growth Factor A , Animals , Psoriasis/therapy , Psoriasis/metabolism , Mice , Female , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Skin/blood supply , Skin/metabolism , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/metabolism , Disease Models, Animal , Acupuncture Points , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Angiogenesis
18.
Microcirculation ; 31(5): e12860, 2024 07.
Article in English | MEDLINE | ID: mdl-38837938

ABSTRACT

OBJECTIVE: Diabetic foot ulcer (DFU) is a severe complication with high mortality. High plantar pressure and poor microcirculation are considered main causes of DFU. The specific aims were to provide a novel technique for real-time measurement of plantar skin blood flow (SBF) under walking-like pressure stimulus and delineate the first plantar metatarsal head dynamic microcirculation characteristics because of life-like loading conditions in healthy individuals. METHODS: Twenty young healthy participants (14 male and 6 female) were recruited. The baseline (i.e., unloaded) SBF of soft tissue under the first metatarsal head were measured using laser Doppler flowmetry (LDF). A custom-made machine was utilized to replicate daily walking pressure exertion for 5 min. The exerted plantar force was adjusted from 10 N (127.3 kPa) to 40 N (509.3 kPa) at an increase of 5 N (63.7 kPa). Real-time SBF was acquired using the LDF. After each pressure exertion, postload SBF was measured for comparative purposes. Statistical analysis was performed using the R software. RESULTS: All levels of immediate-load and postload SBF increased significantly compared with baseline values. As the exerted load increased, the postload and immediate-load SBF tended to increase until the exerted load reached 35 N (445.6 kPa). However, in immediate-load data, the increasing trend tended to level off as the exerted pressure increased from 15 N (191.0 kPa) to 25 N (318.3 kPa). For postload and immediate-load SBF, they both peaked at 35 N (445.6 kPa). However, when the exerted force exceeds 35 N (445.6 kPa), both the immediate-load and postload SBF values started to decrease. CONCLUSIONS: Our study offered a novel real-time plantar soft tissue microcirculation measurement technique under dynamic conditions. For the first metatarsal head of healthy people, 20 N (254.6 kPa)-plantar pressure has a fair microcirculation stimulus compared with higher pressure. There might be a pressure threshold at 35 N (445.6 kPa) for the first metatarsal head, and soft tissue microcirculation may decrease when local pressure exceeds it.


Subject(s)
Foot , Microcirculation , Skin , Humans , Male , Female , Microcirculation/physiology , Adult , Skin/blood supply , Skin/physiopathology , Foot/blood supply , Pressure , Metatarsal Bones/blood supply , Metatarsal Bones/physiopathology , Laser-Doppler Flowmetry/methods , Young Adult , Walking/physiology , Diabetic Foot/physiopathology
19.
Microvasc Res ; 155: 104706, 2024 09.
Article in English | MEDLINE | ID: mdl-38871050

ABSTRACT

Prior work has yet to determine whether the reduction of dietary nitrate (NO3-) to NO, via the enterosalivary pathway, may modify cutaneous vascular conductance (CVC) responses to local heating in older women. Changes occurring with the transition to menopause related to hormonal flux, increased adiposity, and/or decreased physical activity may further compound the negative influence of aging on nitric oxide (NO)-dependent CVC. Herein, we characterized changes in NO-dependent CVC following acute ingestion of 140 mL of NO3--rich beetroot juice in 24 older women (age: 65 ± 5 y, BMI: 31.2 ± 3.7 kg/m2). Red blood cell (RBC) flux was measured continuously via laser-Doppler flowmetry on the dorsal aspect of the forearm during local skin heating to 39 °C/44 °C before and 3 h after NO3- ingestion. NO-dependent changes in CVC were calculated as RBC flux/mean arterial blood pressure at 39 °C and normalized as a proportion of maximal CVC at 44 °C (%CVCmax). Changes (Δ) in fractional exhaled NO (FeNO) following NO3- ingestion were used an index of NO bioavailability. Despite increased FeNO (+81 ± 70 %, P < 0.001), %CVCmax at 39 °C was reduced (-16 ± 10 %, P < 0.001) following NO3- ingestion. A greater reduction in %CVCmax was weakly to moderately associated with higher body fat% (r = 0.45 [0.05-0.72], P = 0.029), central adiposity% (r = 0.50 [0.13-0.75], P = 0.012), neutrophil% (r = 0.42 [0.02-0.70], P = 0.041), and higher neutrophil to lymphocyte ratio (r = 0.49 [0.11-0.75], P = 0.016). These findings demonstrate a single dose of dietary NO3- does not promote CVC responses to local heating in sedentary older women with overweight and obesity. Correlation with multiple biomarkers suggest systemic inflammation may be involved.


Subject(s)
Beta vulgaris , Nitrates , Nitric Oxide , Regional Blood Flow , Skin , Humans , Female , Aged , Nitric Oxide/metabolism , Skin/blood supply , Middle Aged , Nitrates/administration & dosage , Fruit and Vegetable Juices , Age Factors , Vasodilation/drug effects , Laser-Doppler Flowmetry , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Blood Flow Velocity , Erythrocytes/metabolism , Time Factors
20.
J Cosmet Dermatol ; 23(9): 2895-2904, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943266

ABSTRACT

OBJECTIVE: To assess the effectiveness and safety of treating erythematotelangiectatic rosacea using fractional radiofrequency (FRF). METHODS: Twenty patients with a confirmed diagnosis of erythema capillaris rosacea were selected, and one side of each patient's face was randomly assigned to receive FRF treatments for three to six times, with an interval of 2 weeks between each treatment. VISIA, dermoscopy, and the Clinician's Erythema Evaluation Scale (CEA) were applied to evaluate the efficacy of the treatment before and after the treatment, to record the VAS scores and adverse reactions, and to conduct a patient satisfaction survey. RESULTS: The characteristic counts and scores of red zone and porphyrin as assessed by VISIA test were significantly decreased, and the difference between the treated side and the pretreatment side was statistically significant (p < 0.05), and the efficacy of the treatment was statistically insignificant compared with the control side, except for the red zone and porphyrin which were statistically significant before and after the treatment (p > 0.05). By CEA score, the difference between the treated side after treatment and the control side was statistically significant (p < 0.05), and the difference between the treated side before and after treatment was statistically significant (p < 0.05); the difference between the control side before and after treatment was not statistically significant (p > 0.05). Dermatoscopic observation showed reduction in pore size, reduction of yellowish-white and black horn plugs within the pores, lightening of the red background and thinning and blurring of the capillary structure on the treated side of the skin compared to the control side, and the skin on the treated side showed the above mentioned changes before and after the treatment as well. The mean pain score of the subjects was obtained by VAS score 3.67 ± 0.90. Adverse effects included mild edema, erythema, and microscopic crusting; no long-term adverse effects were seen in all patients. The efficacy of FRF treatment was evaluated 1 month after the final treatment, and 85% of the subjects rated it as satisfactory, very satisfactory, and very satisfactory. CONCLUSION: FRF for the treatment of erythematous capillary dilatation rosacea is effective, safe, and suitable for clinical promotion.


Subject(s)
Patient Satisfaction , Rosacea , Humans , Rosacea/therapy , Rosacea/diagnosis , Rosacea/radiotherapy , Female , Adult , Middle Aged , Treatment Outcome , Male , Radiofrequency Therapy/adverse effects , Radiofrequency Therapy/methods , Dermoscopy , Erythema/etiology , Erythema/therapy , Telangiectasis/therapy , Telangiectasis/radiotherapy , Telangiectasis/diagnostic imaging , Young Adult , Severity of Illness Index , Face , Skin/radiation effects , Skin/pathology , Skin/diagnostic imaging , Skin/blood supply , Abnormalities, Multiple , Eyebrows/abnormalities , Darier Disease
SELECTION OF CITATIONS
SEARCH DETAIL