Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.959
Filter
1.
J Biomed Opt ; 29(Suppl 3): S33304, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38989257

ABSTRACT

Significance: Imaging blood oxygen saturation ( SO 2 ) in the skin can be of clinical value when studying ischemic tissue. Emerging multispectral snapshot cameras enable real-time imaging but are limited by slow analysis when using inverse Monte Carlo (MC), the gold standard for analyzing multispectral data. Using artificial neural networks (ANNs) facilitates a significantly faster analysis but requires a large amount of high-quality training data from a wide range of tissue types for a precise estimation of SO 2 . Aim: We aim to develop a framework for training ANNs that estimates SO 2 in real time from multispectral data with a precision comparable to inverse MC. Approach: ANNs are trained using synthetic data from a model that includes MC simulations of light propagation in tissue and hardware characteristics. The model includes physiologically relevant variations in optical properties, unique sensor characteristics, variations in illumination spectrum, and detector noise. This approach enables a rapid way of generating high-quality training data that covers different tissue types and skin pigmentation. Results: The ANN implementation analyzes an image in 0.11 s, which is at least 10,000 times faster than inverse MC. The hardware modeling is significantly improved by an in-house calibration of the sensor spectral response. An in-vivo example shows that inverse MC and ANN give almost identical SO 2 values with a mean absolute deviation of 1.3%-units. Conclusions: ANN can replace inverse MC and enable real-time imaging of microcirculatory SO 2 in the skin if detailed and precise modeling of both tissue and hardware is used when generating training data.


Subject(s)
Microcirculation , Monte Carlo Method , Neural Networks, Computer , Oxygen Saturation , Skin , Skin/blood supply , Skin/diagnostic imaging , Skin/chemistry , Humans , Microcirculation/physiology , Oxygen Saturation/physiology , Oxygen/blood , Image Processing, Computer-Assisted/methods , Computer Simulation
2.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001012

ABSTRACT

Wearable alcohol monitoring devices demand noninvasive, real-time measurement of blood alcohol content (BAC) reliably and continuously. A few commercial devices are available to determine BAC noninvasively by detecting transcutaneous diffused alcohol. However, they suffer from a lack of accuracy and reliability in the determination of BAC in real time due to the complex scenario of the human skin for transcutaneous alcohol diffusion and numerous factors (e.g., skin thickness, kinetics of alcohol, body weight, age, sex, metabolism rate, etc.). In this work, a transcutaneous alcohol diffusion model has been developed from real-time captured data from human wrists to better understand the kinetics of diffused alcohol from blood to different skin epidermis layers. Such a model will be a footprint to determine a base computational model in larger studies. Eight anonymous volunteers participated in this pilot study. A laboratory-built wearable blood alcohol content (BAC) monitoring device collected all the data to develop this diffusion model. The proton exchange membrane fuel cell (PEMFC) sensor was fabricated and integrated with an nRF51822 microcontroller, LMP91000 miniaturized potentiostat, 2.4 GHz transceiver supporting Bluetooth low energy (BLE), and all the necessary electronic components to build this wearable BAC monitoring device. The %BAC data in real time were collected using this device from these volunteers' wrists and stored in the end device (e.g., smartphone). From the captured data, we demonstrate how the volatile alcohol concentration on the skin varies over time by comparing the alcohol concentration in the initial stage (= 10 min) and later time (= 100 min). We also compare the experimental results with the outputs of three different input profiles: piecewise linear, exponential linear, and Hoerl, to optimize the developed diffusion model. Our results demonstrate that the exponential linear function best fits the experimental data compared to the piecewise linear and Hoerl functions. Moreover, we have studied the impact of skin epidermis thickness within ±20% and demonstrate that a 20% decrease in this thickness results in faster dynamics compared to thicker skin. The model clearly shows how the diffusion front changes within a skin epidermis layer with time. We further verified that 60 min was roughly the time to reach the maximum concentration, Cmax, in the stratum corneum from the transient analysis. Lastly, we found that a more significant time difference between BACmax and Cmax was due to greater alcohol consumption for a fixed absorption time.


Subject(s)
Blood Alcohol Content , Skin , Wearable Electronic Devices , Humans , Skin/metabolism , Skin/chemistry , Ethanol/blood , Ethanol/analysis , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Diffusion , Adult , Male , Female
3.
Nutrients ; 16(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38999880

ABSTRACT

This study aimed to determine the association between demographic factors, body size, and fruit and vegetable intake in the general population, focusing on individuals with both low and high skin carotenoid levels. This cross-sectional study was conducted during the 14th National Convention on the Promotion of Food and Nutrition Education (2019) in Yamanashi, Japan (a rural area) and the Open House 2019 at the National Institute of Biomedical Innovation, Health, and Nutrition in Tokyo, Japan (an urban area). Skin carotenoid measurements were conducted, and the participants were asked to fill out a self-administered questionnaire. The study population consisted of 492 Japanese individuals aged ≥16 years. The odds ratios (ORs) for low skin carotenoid levels were elevated in males, those who were overweight, and those who almost never consumed or consumed only one vegetable dish/day. Conversely, the ORs were lower in those living in Yamanashi, aged 30-39 and ≥70 years, and those who consumed fruit ≥1 time/week. For high skin carotenoid levels, the ORs were higher among those aged ≥70 years, living in Yamanashi, and those who consumed fruit ≥1 time/day or ≥5 vegetable dishes/day. Demographic factors, body size, and habitual fruit and vegetable intake may serve as indicators of skin carotenoid levels.


Subject(s)
Carotenoids , Diet , Fruit , Skin , Vegetables , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Body Size , Carotenoids/analysis , Cross-Sectional Studies , East Asian People , Japan , Skin/chemistry , Surveys and Questionnaires
4.
Food Res Int ; 188: 114496, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823843

ABSTRACT

Agro-industrial co-products, such as fish gelatin, stand out for their capacity in forming biopolymeric films, being biocompatible and non-toxic; however, its hydrophilicity poses a challenge. Essential oils, rich in bioactives, attract research interest aiming to enhance the protective barrier of films and enable their application in packaging. This study produced films based on cross-linked Nile tilapia skin gelatin, incorporating garlic essential oil. Gelatin obtained through partial collagen hydrolysis from the fish skin and cross-linked with gallic acid had hydroxyproline content of 10.02 g 100 g-1 and gel strength of 287 g, which were consistent with other studies. Oil extraction used supercritical CO2 as a solvent and ethanol as a cosolvent, following a factorial experimental design, evaluating the extraction temperature (40 °C and 70 °C) and cosolvent ratio (1:1 and 1:3), with three central points. Extraction was successful, with higher yields on a dry basis at 70 °C (88.35 %), using a 1:1 cosolvent ratio. Films incorporated with oil exhibited lower water vapor permeability (WVP) than those with only cross-linked gelatin (1.59 (g m-1 s-1 Pa-1) 1011). The film with the most suitable tensile strength (19.07 MPa), elongation (120.91 %), and WVP (1.09 (g m-1 s-1 Pa-1) 1011) properties contained garlic oil extracted at the central point (55 °C and 1:2). Thermal analysis indicated increased melting temperatures in films with added oil, suggesting low thermal degradation. These results suggest that garlic oil addition can improve the properties of fish gelatin-based films, making them promising for biodegradable packaging.


Subject(s)
Food Packaging , Garlic , Gelatin , Oils, Volatile , Permeability , Gelatin/chemistry , Oils, Volatile/chemistry , Animals , Garlic/chemistry , Food Packaging/methods , Tensile Strength , Steam , Sulfides/chemistry , Hydrophobic and Hydrophilic Interactions , Skin/chemistry
5.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930798

ABSTRACT

An RP-HPLC method with a UV detector was developed for the simultaneous quantification of diclofenac diethylamine, methyl salicylate, and capsaicin in a pharmaceutical formulation and rabbit skin samples. The separation was achieved using a Thermo Scientific ACCLAIMTM 120 C18 column (Waltham, MA, USA, 4.6 mm × 150 mm, 5 µm). The optimized elution phase consisted of deionized water adjusted to pH = 3 using phosphoric acid mixed with acetonitrile in a 35:65% (v/v) ratio with isocratic elution. The flow rate was set at 0.7 mL/min, and the detection was performed at 205 nm and 25 °C. The method exhibits good linearity for capsaicin (0.05-70.0 µg/mL), methyl salicylate (0.05-100.0 µg/mL), and diclofenac diethylamine (0.05-100.0 µg/mL), with low LOD values (0.0249, 0.0271, and 0.0038 for capsaicin, methyl salicylate, and diclofenac diethylamine, respectively). The RSD% values were below 3.0%, indicating good precision. The overall greenness score of the method was 0.61, reflecting its environmentally friendly nature. The developed RP-HPLC method was successfully applied to analyze Omni Hot Gel® pharmaceutical formulation and rabbit skin permeation samples.


Subject(s)
Capsaicin , Diclofenac , Salicylates , Skin , Capsaicin/analysis , Capsaicin/analogs & derivatives , Diclofenac/analysis , Chromatography, High Pressure Liquid/methods , Salicylates/analysis , Skin/chemistry , Animals , Rabbits , Chromatography, Reverse-Phase/methods , Diethylamines/chemistry
6.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928177

ABSTRACT

This work is the first one that provides not only evidence for the existence of free volumes in the human stratum corneum but also focuses on comparing these experimental data, obtained through the unique positron annihilation lifetime spectroscopy (PALS) method, with theoretical values published in earlier works. The mean free volume of 0.269 nm was slightly lower than the theoretical value of 0.4 nm. The lifetime τ3 (1.83 ns with a coefficient of variation CV of 3.21%) is dependent on the size of open sites in the skin. This information was used to calculate the free volume radius R (0.269 nm with CV 2.14%), free volume size Vf (0.081 nm3 with CV 4.69%), and the intensity I3 (9.01% with CV 10.94%) to estimate the relative fractional free volume fv (1.32 a.u. with CV 13.68%) in human skin ex vivo. The relation between the lifetime of o-Ps (τ3) and the radius of free volume (R) was formulated using the Tao-Eldrup model, which assumes spherical voids and applies to sites with radii smaller than 1 nm. The results indicate that PALS is a powerful tool for confirming the existence of free volumes and determining their size. The studies also focused on describing the probable locations of these nanospaces in SC lipid bilayers. According to the theory, these play an essential role in dynamic processes in biological systems, including the diffusion of low-molecular-weight hydrophobic and moderately hydrophilic molecules. The mechanism of their formation has been determined by the molecular dynamics of the lipid chains.


Subject(s)
Epidermis , Lipid Bilayers , Spectrum Analysis , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Spectrum Analysis/methods , Epidermis/metabolism , Epidermis/chemistry , Skin/metabolism , Skin/chemistry
7.
Forensic Sci Int Genet ; 71: 103066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833776

ABSTRACT

In forensic practice, mixture stains containing various body fluids are common, presenting challenges for interpretation, particularly in multi-contributor mixtures. Traditional STR profiles face difficulties in such scenarios. Over recent years, RNA has emerged as a promising biomarker for body fluid identification, and mRNA polymorphism has shown excellent performance in identifying body fluid donors in previous studies. In this study, a massively parallel sequencing assay was developed, encompassing 202 coding region SNPs (cSNPs) from 45 body fluid/tissue-specific genes to identify both body fluid/tissue origin and the respective donors, including blood, saliva, semen, vaginal secretion, menstrual blood, and skin. The specificity was evaluated by examining the single-source body fluids/tissue and revealed that the same body fluid exhibited similar expression profiles and the tissue origin could be identified. For laboratory-generated mixtures containing 2-6 different components and mock case mixtures, the donor of each component could be successfully identified, except for the skin donor. The discriminatory power for all body fluids ranged from 0.997176329 (menstrual blood) to 0.99999999827 (blood). The concordance of DNA typing and mRNA typing for the cSNPs in this system was also validated. This cSNP typing system exhibits excellent performance in mixture deconvolution.


Subject(s)
Cervix Mucus , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , RNA, Messenger , Saliva , Semen , Humans , RNA, Messenger/genetics , Female , Semen/chemistry , Cervix Mucus/chemistry , Saliva/chemistry , Male , Body Fluids/chemistry , DNA Fingerprinting , Skin/chemistry , Menstruation , Forensic Genetics/methods , Tissue Donors , Sequence Analysis, RNA
8.
Sci Rep ; 14(1): 13271, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858407

ABSTRACT

Touch DNA, which can be found at crime scenes, consists of invisible biological traces deposited through a person's skin's contact with an object or another person. Many factors influence touch DNA transfer, including the "destination" substrate's surface. The latter's physicochemical characteristics (wettability, roughness, surface energy, etc.) will impact touch DNA deposition and persistence on a substrate. We selected a representative panel of substrates from objects found at crime scenes (glass, polystyrene, tiles, raw wood, etc.) to investigate the impact of these characteristics on touch DNA deposition and detection. These were shown to impact cell deposition, morphology, retention, and subsequent touch DNA genetic analysis. Interestingly, cell-derived fragments found within keratinocyte cells and fingermarks using in vitro touch DNA models could be successfully detected whichever the substrates' physicochemistry by targeting cellular proteins and carbohydrates for two months, indoors and outdoors. However, swabbing and genetic analyses of such mock traces from different substrates produced informative profiles mainly for substrates with the highest surface free energy and therefore the most hydrophilic. The substrates' intrinsic characteristics need to be considered to better understand both the transfer and persistence of biological traces, as well as their detection and collection, which require an appropriate methodology and sampling device to get informative genetic profiles.


Subject(s)
DNA , Touch , Humans , DNA/chemistry , Surface Properties , Skin/metabolism , Skin/chemistry , Keratinocytes/metabolism , DNA Fingerprinting/methods
9.
Sci Rep ; 14(1): 14054, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890435

ABSTRACT

The derivation of polysaccharide has an important impact on its properties. The preparation process of phosphorylated-shaddock skin polysaccharides (SSP) and acetylated-SSP was optimized by the response surface method. The constructed model was accurate and reliable in predicting the substitution of acetylated-SSP and the phosphate content of phosphorylated-SSP. This method was simple and easy to operate, which provided a basis for the preparation of a large number of derivatives.


Subject(s)
Polysaccharides , Skin , Polysaccharides/chemistry , Skin/metabolism , Skin/chemistry , Animals , Phosphorylation , Acetylation
10.
Skin Res Technol ; 30(6): e13733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887131

ABSTRACT

BACKGROUND: Fourier Transform Infrared (FTIR) spectroscopy has emerged as a powerful analytical tool in medical research, offering non-invasive and precise examination of the molecular composition of biological samples. The primary objective of this review is to underscore the benefits of FTIR spectroscopy in medicinal research, emphasizing its ability to delineate molecular fingerprints and assist in the identification of biochemical structures and key peaks in biological samples. METHODS: This review comprehensively explores the diverse applications of FTIR spectroscopy in medical investigations, with a specific focus on its utility in analyzing tissue, cells, and hair samples. Various sources, including Google Scholar, PubMed, WorledCat and Scopus, were utilized to conduct this comprehensive literature review. RESULTS: Recent advancements showcase the versatility of FTIR spectroscopy in elucidating cellular and molecular processes, facilitating disease diagnostics, and enabling treatment monitoring. Notably, FTIR spectroscopy has found significant utility in clinical assessment, particularly in screening counterfeit medicines, owing to its user-friendly operation and minimal sample preparation requirements. Furthermore, customs officials can leverage this technique for preliminary analysis of suspicious samples. CONCLUSION: This review aims to bridge a gap in the literature and serve as a valuable resource for future research endeavors in FTIR spectroscopy within the medical domain. Additionally, it presents fundamental concepts of FTIR spectroscopy and spectral data interpretation, highlighting its utility as a tool for molecular analysis using Mid-Infrared (MIR) radiation.


Subject(s)
Hair , Spectroscopy, Fourier Transform Infrared/methods , Humans , Hair/chemistry , Biomedical Research/methods , Skin/chemistry , Skin/pathology
11.
J Phys Chem B ; 128(26): 6327-6337, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38913878

ABSTRACT

Transdermal behavior is a critical aspect of studying delivery systems and evaluating the efficacy of cosmetics. However, existing methods face challenges such as lengthy experiments, high cost, and limited model accuracy. Therefore, developing accurate transdermal models is essential for formulation development and effectiveness assessment. In this study, we developed a multiscale model to describe the transdermal behavior of active ingredients in the stratum corneum. Molecular dynamics simulations were used to construct lipid bilayers and determine the diffusion coefficients of active ingredients in different regions of these bilayers. These diffusion coefficients were integrated into a multilayer lipid pathway model using finite element simulations. The simulation results were in close agreement with our experimental results for three active ingredients (mandelic acid (MAN), nicotinamide (NIC), and pyruvic acid (PYR)), demonstrating the effectiveness of our multiscale model. This research provides valuable insights for advancing transdermal delivery methods.


Subject(s)
Administration, Cutaneous , Lipid Bilayers , Molecular Dynamics Simulation , Niacinamide , Pyruvic Acid , Niacinamide/chemistry , Niacinamide/administration & dosage , Lipid Bilayers/chemistry , Pyruvic Acid/chemistry , Mandelic Acids/chemistry , Mandelic Acids/administration & dosage , Diffusion , Skin/metabolism , Skin/chemistry
12.
Molecules ; 29(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893394

ABSTRACT

Type V collagen is considered to be a crucial minor collagen in fish skin with unique physiological functions. In this research, the cDNAs of three procollagens (Tacol5a1, Tacol5a2, and Tacol5a3) in type V collagen were cloned from the skin of shortbill spearfish (Tetrapturus angustirostris). The open reading frames (ORFs) of Tacol5a1, Tacol5a2, and Tacol5a3 contained 5991, 4485, and 5607 bps, respectively, encoding 1997, 1495, and 1869 amino acid residues. Each of the deduced amino acid sequences of procollagens contained a signal peptide and a fibrillar collagen C-terminal domain (COLFI). A conserved thrombospondin-like N-terminal domain (TSPN) was found at the N-terminus of Tacol5a1 and 5a3 procollagens, whereas a von Willebrand factor (VWC) was found at the N-terminus of Tacol5a2 procollagen. Tacol5a1, Tacol5a2, and Tacol5a3 had their theoretical isoelectric points of 5.06, 6.75, and 5.76, respectively, and predicted molecular weights of 198,435.60, 145,058.48, and 189,171.18, respectively. The phylogenetic tree analysis revealed that Tacol5a1 of shortbill spearfish clustered with that of yellow perch (Perca flavescens) instead of broadbill swordfish (Xiphias gladius). In addition, type V collagen was extracted from the shortbill spearfish skin. The in silico method demonstrated that shortbill spearfish type V collagen has a high potential for angiotensin-converting enzyme (ACE) inhibition activity (79.50%), dipeptidyl peptidase IV inhibition (74.91%) activity, and antithrombotic activity (46.83%). The structural clarification and possible functional investigation in this study provide the foundation for the applications of exogenous type V collagen derived from fish sources.


Subject(s)
Amino Acid Sequence , Phylogeny , Skin , Animals , Skin/metabolism , Skin/chemistry , Cloning, Molecular , Fishes/metabolism , Fishes/genetics , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/metabolism
13.
ACS Appl Mater Interfaces ; 16(27): 34732-34742, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38938185

ABSTRACT

Integrating gels with human skin through wearables provides unprecedented opportunities for health monitoring technology and artificial intelligence. However, most conductive hydrogels, organogels, and ionogels lack essential environmental stability, biocompatibility, and adhesion for reliable epidermal sensing. In this study, we have developed a liquid metal eutectogel simultaneously possessing superior viscoelasticity, semiflowability, and mechanical rigidity for low interfacial skin impedance, high skin adhesion, and durability. Liquid metal particles (LMPs) are employed to generate free radicals and gallium ions to accelerate the polymerization of acrylic acid monomers in a deep eutectic solvent (DES), obtaining highly viscoelastic polymer networks via physical cross-linking. In particular, graphene oxide (GO) is utilized to encapsulate the LMPs through a sonication-assisted electrostatic assembly to stabilize the LMPs in DES, which also enhances the mechanical toughness and regulates the rheological properties of the eutectogels. Our optimized semi-flowable eutectogel exhibits viscous fluid behavior at low shear rates, facilitating a highly conformable interface with hairy skin. Simultaneously, it demonstrates viscoelastic behavior at high shear rates, allowing for easy peel-off. These distinctive attributes enable the successful applications of on-skin adhesive strain sensing and high-fidelity human electrophysiological (EP) monitoring, showcasing the versatility of these ionically conductive liquid metal eutectogels in advanced personal health monitoring.


Subject(s)
Adhesives , Humans , Adhesives/chemistry , Graphite/chemistry , Wearable Electronic Devices , Gels/chemistry , Viscosity , Skin/chemistry , Elasticity , Hydrogels/chemistry
14.
Sensors (Basel) ; 24(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931768

ABSTRACT

The monitoring of body temperature is a recent addition to the plethora of parameters provided by wellness and fitness wearable devices. Current wearable temperature measurements are made at the skin surface, a measurement that is impacted by the ambient environment of the individual. The use of near-infrared spectroscopy provides the potential for a measurement below the epidermal layer of skin, thereby having the potential advantage of being more reflective of physiological conditions. The feasibility of noninvasive temperature measurements is demonstrated by using an in vitro model designed to mimic the near-infrared spectra of skin. A miniaturizable solid-state laser-diode-based near-infrared spectrometer was used to collect diffuse reflectance spectra for a set of seven tissue phantoms composed of different amounts of water, gelatin, and Intralipid. Temperatures were varied between 20-24 °C while collecting these spectra. Two types of partial least squares (PLS) calibration models were developed to evaluate the analytical utility of this approach. In both cases, the collected spectra were used without pre-processing and the number of latent variables was the only optimized parameter. The first approach involved splitting the whole dataset into separate calibration and prediction subsets for which a single optimized PLS model was developed. For this first case, the coefficient of determination (R2) is 0.95 and the standard error of prediction (SEP) is 0.22 °C for temperature predictions. The second strategy used a leave-one-phantom-out methodology that resulted in seven PLS models, each predicting the temperatures for all spectra in the held-out phantom. For this set of phantom-specific predicted temperatures, R2 and SEP values range from 0.67-0.99 and 0.19-0.65 °C, respectively. The stability and reproducibility of the sample-to-spectrometer interface are identified as major sources of spectral variance within and between phantoms. Overall, results from this in vitro study justify the development of future in vivo measurement technologies for applications as wearables for continuous, real-time monitoring of body temperature for both healthy and ill individuals.


Subject(s)
Phantoms, Imaging , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation , Humans , Least-Squares Analysis , Calibration , Skin/chemistry , Gelatin/chemistry , Temperature , Water/chemistry , Wearable Electronic Devices , Emulsions/chemistry , Soybean Oil/chemistry , Phospholipids
15.
Anal Methods ; 16(24): 3847-3858, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38841864

ABSTRACT

AKBA (3-acetyl-11-keto-ß-boswellic acid) is a phytoconstituent derived from Boswellia serrata extract and utilized in the management of rheumatoid arthritis. Drug delivery approaches showed interest in delivering AKBA with advanced nanotechnology. There is a need for a simple, sensitive, and robust HPLC method that can determine AKBA in complex nanoformulation and in vitro and ex vivo samples. In the proposed work, the RP-HPLC method was developed using a mobile phase comprising a mixture of acetonitrile : milli Q (90 : 10) at detection λmax 250 nm. The method exhibited a linearity of 250 to 20 000 ng mL-1 with a high correlation coefficient of 1. The limit of detection and limit of quantification for the analytes were found to be 41.32 ng mL-1 and 125.21 ng mL-1, respectively. In the accuracy study, the % recovery of AKBA was found to be 98% to 102%, and the precision study showed less than 2% relative standard deviation. The developed method was found to be robust under chromatographic conditions with changes in pH and mobile phase mixture ratio. The method was also explored for forced degradation study, and the results showed the successful separation of degradation products from the AKBA. Further, the RP-HPLC method was applied for the quantification of AKBA in topical nanoformulations and different matrices, such as skin matrices and adhesive tapes. The method was able to measure entrapment efficiency (93.13 ± 1.94%), drug loading (25.83 ± 0.54%), drug assay in a gel matrix (96.99 ± 3.89%), drug amount in stratum corneum (7.90 ± 0.62 µg cm-2), and drug amount in viable skin layers (33.94 ± 0.21 µg cm-2) with high-speed reproducibility. The developed method can be utilized for the routine analysis of AKBA in conventional and complex formulations in academia and industry.


Subject(s)
Triterpenes , Triterpenes/analysis , Chromatography, High Pressure Liquid/methods , Animals , Chromatography, Reverse-Phase/methods , Skin/chemistry , Skin/metabolism , Limit of Detection , Reproducibility of Results , Boswellia/chemistry , Swine , Humans
16.
Sci Rep ; 14(1): 13431, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862633

ABSTRACT

Until recently, the identification of the species of origin for skin and fur materials used in the production of archaeological clothing has been based on the analysis of macro- and microscopic morphological features and on the traditional knowledge of Indigenous groups. This approach, however, is not always applicable due to the deterioration of the archaeological objects. Paleoproteomics was used as an alternative approach to identify the species of origin of fifteen samples of various tissues from approximately 600-year-old garments found in Nuulliit, northern Greenland. Proteomics revealed that a limited group of marine and terrestrial mammals were used for clothing production. The results obtained from the analysis of multiple types of clothing and elements, such as sinew thread and gut skin, suggest that their applications were based on their properties. When conclusive assignment of a sample to a species via proteomics was not possible, the observation by transmitted light microscopy of feather and hair micromorphology, if not affected by diagenesis, was used to improve the identification. The proteomic characterization of animal materials used for clothing production in the Nuulliit archaeological context provides an insight into the practical knowledge and the strategies adopted by the local Indigenous community to exploit natural resources.


Subject(s)
Archaeology , Clothing , Proteomics , Skin , Greenland , Archaeology/methods , Proteomics/methods , Animals , Skin/chemistry , Clothing/history , Humans
17.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894145

ABSTRACT

Advanced glycation end-products (AGEs) are complex compounds closely associated with several chronic diseases, especially diabetes mellitus (DM). Current methods for detecting AGEs are not suitable for screening large populations, or for long-term monitoring. This paper introduces a portable autofluorescence detection system that measures the concentration of AGEs in the skin based on the fluorescence characteristics of AGEs in biological tissues. The system employs a 395 nm laser LED to excite the fluorescence of AGEs, and uses a photodetector to capture the fluorescence intensity. A model correlating fluorescence intensity with AGEs concentration facilitates the detection of AGEs levels. To account for the variation in optical properties of different individuals' skin, the system includes a 520 nm light source for calibration. The system features a compact design, measuring only 60 mm × 50 mm × 20 mm, and is equipped with a miniature STM32 module for control and a battery for extended operation, making it easy for subjects to wear. To validate the system's effectiveness, it was tested on 14 volunteers to examine the correlation between AGEs and glycated hemoglobin, revealing a correlation coefficient of 0.49. Additionally, long-term monitoring of AGEs' fluorescence and blood sugar levels showed a correlation trend exceeding 0.95, indicating that AGEs reflect changes in blood sugar levels to some extent. Further, by constructing a multivariate predictive model, the study also found that AGEs levels are correlated with age, BMI, gender, and a physical activity index, providing new insights for predicting AGEs content and blood sugar levels. This research supports the early diagnosis and treatment of chronic diseases such as diabetes, and offers a potentially useful tool for future clinical applications.


Subject(s)
Glycation End Products, Advanced , Humans , Glycation End Products, Advanced/analysis , Female , Male , Adult , Glycated Hemoglobin/analysis , Middle Aged , Blood Glucose/analysis , Skin/chemistry , Diabetes Mellitus/diagnosis , Diabetes Mellitus/blood , Fluorescence , Optical Imaging/methods , Optical Imaging/instrumentation , Spectrometry, Fluorescence/methods
18.
Skin Res Technol ; 30(6): e13788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881052

ABSTRACT

PURPOSE: This study aimed to develop a novel exfoliating material with high efficacy and low irritation by synthesizing the Mandelic acid_Carnitine ion pairing complex (M_C complex) and evaluating its exfoliating properties. Additionally, the study assessed the skin improvement effects of the M_C complex through clinical evaluations. METHODS: The M_C complex was synthesized in a 1:1 molar ratio of Mandelic acid and Carnitine. Structural characterization was performed using dynamic light scattering and Fourier-transform infrared spectroscopy. Exfoliating efficacy was evaluated on porcine skin, and clinical assessments were conducted on human subjects to measure various skin improvement parameters. RESULTS: The formation of the M_C complex was confirmed through particle size analysis, zeta-potential measurements, and FT-IR spectroscopy. The M_C complex demonstrated superior exfoliating efficacy compared to Mandelic acid alone, especially at pH 4.5. Clinical evaluations showed significant improvements in blackheads, whiteheads, pore volume, depth, density, count, and affected area, as well as skin texture. No adverse reactions were observed. CONCLUSION: The M_C complex exhibits high exfoliating efficacy and minimal irritation, making it a promising cosmetic ingredient for improving skin health. These findings support its potential as a low-irritation exfoliating material under mildly acidic conditions, contributing to overall skin health enhancement.


Subject(s)
Carnitine , Cosmetics , Mandelic Acids , Mandelic Acids/chemistry , Mandelic Acids/pharmacology , Humans , Carnitine/pharmacology , Carnitine/chemistry , Animals , Swine , Cosmetics/pharmacology , Cosmetics/chemistry , Female , Adult , Skin/drug effects , Skin/chemistry , Male , Middle Aged , Spectroscopy, Fourier Transform Infrared
19.
J Photochem Photobiol B ; 255: 112927, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701631

ABSTRACT

Since the mechanism underlying real-time acquisition of mechanical strength during laser-induced skin wound fusion remains unclear, and collagen is the primary constituent of skin tissue, this study investigates the structural and mechanical alterations in collagen at temperatures ranging from 40 °C to 60 °C using various spectroscopic techniques and molecular dynamics calculations. The COMSOL Multiphysics coupling is employed to simulate the three-dimensional temperature field, stress-strain relationship, and light intensity distribution in the laser thermal affected zone of skin wounds during dual-beam laser welding process. Raman spectroscopy, synchronous fluorescence spectroscopy and circular dichroism measurement results confirm that laser energy activates biological activity in residues, leading to a transformation in the originally fractured structure of collagen protein for enhanced mechanical strength. Molecular dynamics simulations reveal that stable hydrogen bonds form at amino acid residues within the central region of collagen protein when the overall temperature peak around the wound reaches 60 °C, thereby providing stability to previously fractured skin incisions and imparting instantaneous strength. However, under a 55 °C system, Type I collagen ensures macrostructural stability while activating biological properties at amino acid bases to promote wound healing function; this finding aligns with experimental analysis results. The COMSOL simulation outcomes also correspond well with macroscopic morphology after laser welding samples, confirming that by maintaining temperatures between 55 °C-60 °C during laser welding of skin incisions not only can certain instantaneous mechanical strength be achieved but irreversible thermal damage can also be effectively controlled. It is anticipated that these findings will provide valuable insights into understanding the healing mechanism for laser-welded skin wounds.


Subject(s)
Collagen , Lasers , Molecular Dynamics Simulation , Skin , Spectrum Analysis, Raman , Skin/chemistry , Skin/radiation effects , Collagen/chemistry , Collagen/metabolism , Wound Healing , Hydrogen Bonding , Finite Element Analysis , Animals , Circular Dichroism , Temperature , Spectrometry, Fluorescence
20.
Mar Drugs ; 22(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38786589

ABSTRACT

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Subject(s)
Chondroitin Sulfates , Flounder , Glycosaminoglycans , Tandem Mass Spectrometry , Animals , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/isolation & purification , Glycosaminoglycans/isolation & purification , Glycosaminoglycans/chemistry , Chromatography, High Pressure Liquid , Bone and Bones/chemistry , Skin/chemistry , Skin/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/isolation & purification , Muscles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...