Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.894
Filter
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000538

ABSTRACT

Skin penetration of an active pharmaceutical ingredient is key to developing topical drugs. This penetration can be adjusted for greater efficacy and/or safety through the selection of dosage form. Two emerging dosage forms, cream-gel and gel-in-oil emulsion, were tested for their ability to deliver diclofenac into the skin, with the target of maximising skin retention while limiting systemic exposure. Prototypes with varying amounts of solvents and emollients were formulated and evaluated by in vitro penetration testing on human skin. Cream-gel formulas showed better skin penetration than the emulgel benchmark drug even without added solvent, while gel-in-oil emulsions resulted in reduced diffusion of the active into the receptor fluid. Adding propylene glycol and diethylene glycol monoethyl ether as penetration enhancers resulted in different diclofenac penetration profiles depending on the dosage form and whether they were added to the disperse or continuous phase. Rheological characterisation of the prototypes revealed similar profiles of cream-gel and emulgel benchmark, whereas gel-in-oil emulsion demonstrated flow characteristics suitable for massaging product into the skin. This study underlined the potential of cream-gel and gel-in-oil emulsions for adjusting active penetration into the skin, broadening the range of choices available to topical formulation scientists.


Subject(s)
Administration, Cutaneous , Diclofenac , Emulsions , Skin Absorption , Skin , Diclofenac/pharmacokinetics , Diclofenac/administration & dosage , Diclofenac/chemistry , Humans , Skin Absorption/drug effects , Emulsions/chemistry , Skin/metabolism , Skin/drug effects , Rheology , Gels/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Administration, Topical , Emollients/chemistry , Emollients/pharmacokinetics , Emollients/administration & dosage
2.
Sci Data ; 11(1): 755, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987285

ABSTRACT

Whether from environmental and occupational hazards or from topical pharmaceuticals, the human skin comes into contact with various chemicals every day. In vivo experiments not only require large investments of both time and money, but in vivo experiments can also be unethical due to the need to intentionally or incidentally expose humans or animals to toxic chemicals. Comparatively, in vitro experiments offer ethical and financial advantages when combined with the opportunity to selectively choose chemicals for experimentation. With in vivo experimentation being so infeasible, many scientists have chosen to make their in vitro data available publicly. Using these data, a detailed database containing 73 chemicals was created with a robust set of descriptors to be used in connection with mathematical modeling to predict diffusion, permeability, and partition coefficients. This resulting database is tailored to be easily used in various coding languages.


Subject(s)
Skin Absorption , Skin , Humans , Skin/metabolism , Databases, Factual , Models, Biological , Models, Theoretical
3.
AAPS PharmSciTech ; 25(6): 156, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981986

ABSTRACT

Commercial topical formulations containing itraconazole (poorly water soluble), for mycotic infections, have poor penetration to infection sites beneath the nails and skin thereby necessitating oral administration. To improve penetration, colloidal solutions of itraconazole (G1-G4) containing Poloxamer 188, tween 80, ethanol, and propylene glycol were prepared and incorporated into HFA-134-containing sprays. Formulations were characterized using particle size, drug content, and Fourier-transform infrared spectroscopy (FTIR). In vitro permeation studies were performed using Franz diffusion cells for 8 h. Antimycotic activity on Candida albicans and Trichophyton rubrum was performed using broth micro-dilution and flow cytometry, while cytotoxicity was tested on HaCaT cell lines. Particle size ranged from 39.35-116.80 nm. FTIR and drug content revealed that G1 was the most stable formulation (optimized formulation). In vitro release over 2 h was 45% for G1 and 34% for the cream. There was a twofold increase in skin permeation, fivefold intradermal retention, and a sevenfold increase in nail penetration of G1 over the cream. Minimum fungicidal concentrations (MFC) against C. albicans were 0.156 and 0.313 µg/mL for G1 and cream, respectively. The formulations showed optimum killing kinetics after 48 h. MFC values against T. rubrum were 0.312 and 0.625 µg/mL for the G1 and cream, respectively. Transmission electron microscopy revealed organelle destruction and cell leakage for G1 in both organisms and penetration of keratin layers to destroy T. rubrum. Cytotoxicity evaluation of G1 showed relative safety for skin cells. The G1 formulation showed superior skin permeation, nail penetration, and fungicidal activity compared with the cream formulation.


Subject(s)
Antifungal Agents , Candida albicans , Colloids , Itraconazole , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Candida albicans/drug effects , Itraconazole/pharmacology , Itraconazole/administration & dosage , Itraconazole/chemistry , Humans , Animals , Trichophyton/drug effects , Microbial Sensitivity Tests/methods , Chemistry, Pharmaceutical/methods , Particle Size , Skin/metabolism , Skin/drug effects , Skin/microbiology , Skin Absorption/drug effects , Cell Line , HaCaT Cells , Nails/drug effects , Nails/microbiology , Nails/metabolism , Arthrodermataceae
4.
AAPS J ; 26(4): 76, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955873

ABSTRACT

The selection of skin is crucial for the in vitro permeation test (IVPT). The purpose of this study was to investigate the influence of different freezing-thawing processes on the barrier function of skin and the transdermal permeability of granisetron and lidocaine. Rat and hairless mouse skins were thawed at three different conditions after being frozen at -20℃ for 9 days: thawed at 4℃, room temperature (RT), and 32℃. There were no significant differences in the steady-state fluxes of drugs between fresh and thawed samples, but compared with fresh skin there were significant differences in lag time for the permeation of granisetron in rat skins thawed at RT and 32℃. Histological research and scanning electron microscopy images showed no obvious structural damage on frozen/thawed skin, while immunohistochemical staining and enzyme-linked immunosorbent assay for the tight junction (TJ) protein Cldn-1 showed significantly impaired epidermal barrier. It was concluded that the freezing-thawing process increases the diffusion rate of hydrophilic drugs partly due to the functional degradation of TJs. It's recommended that hairless, inbred strains and identical animal donors should be used, and the selected thawing method of skin should be validated prior to IVPT, especially for hydrophilic drugs.


Subject(s)
Freezing , Mice, Hairless , Permeability , Skin Absorption , Skin , Animals , Skin/metabolism , Mice , Skin Absorption/drug effects , Rats , Male , Administration, Cutaneous , Lidocaine/administration & dosage , Lidocaine/pharmacokinetics , Rats, Sprague-Dawley
5.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955335

ABSTRACT

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Subject(s)
Nanogels , Psoriasis , Skin Absorption , Psoriasis/drug therapy , Psoriasis/pathology , Animals , Nanogels/chemistry , Lecithins/chemistry , Skin/metabolism , Skin/pathology , Particle Size , Liposomes/chemistry , Polyethylene Glycols/chemistry , Glycine max/chemistry , Rats , Male , Imiquimod/chemistry , Drug Carriers/chemistry , Polyethyleneimine/chemistry , X-Ray Diffraction , Ethanol/chemistry , Acrylates
6.
AAPS PharmSciTech ; 25(6): 160, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992299

ABSTRACT

In part I, we reported Hansen solubility parameters (HSP, HSPiP program), experimental solubility at varied temperatures for TOTA delivery. Here, we studied dose volume selection, stability, pH, osmolality, dispersion, clarity, and viscosity of the explored combinations (I-VI). Ex vivo permeation and deposition studies were performed to observe relative diffusion rate from the injected site in rat skin. Confocal laser scanning microscopy (CLSM) study was conducted to support ex vivo findings. Moreover, GastroPlus predicted in vivo parameters in humans and the impact of various critical factors on pharmacokinetic parameters (PK). Immediate release product (IR) contained 60% of PEG400 whereas controlled release formulation (CR) contained PEG400 (60%), water (10%) and d-limonene (30%) to deliver 2 mg of TOTA. GastroPlus predicted the plasma drug concentration of weakly basic TOTA as function of pH (from pH 2.0 to 9). The cumulative drug permeation and drug deposition were found to be in the order as B-VI˃ C-VI˃A-VI across rat skin. This finding was further supported with CLSM. Moreover, IR and CR were predicted to achieve Cmax of 0.0038 µg/ mL and 0.00023 µg/mL, respectively, after sub-Q delivery. Added limonene in CR extended the plasma drug concentration over period of 12 h as predicted in GastroPlus. Parameters sensitivity analysis (PSA) assessment predicted that sub-Q blood flow rate is the only factor affecting PK parameters in IR formulation whereas this was insignificant for CR. Thus, sub-Q delivery CR would be promising alternative with ease of delivery to children and aged patient.


Subject(s)
Skin Absorption , Solubility , Tolterodine Tartrate , Animals , Rats , Humans , Skin Absorption/drug effects , Skin Absorption/physiology , Tolterodine Tartrate/administration & dosage , Tolterodine Tartrate/pharmacokinetics , Thermodynamics , Solvents/chemistry , Skin/metabolism , Hydrogen-Ion Concentration , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Terpenes/chemistry , Terpenes/administration & dosage , Terpenes/pharmacokinetics , Administration, Cutaneous , Limonene/administration & dosage , Limonene/pharmacokinetics , Limonene/chemistry , Male , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Chemistry, Pharmaceutical/methods , Cyclohexenes/chemistry , Cyclohexenes/pharmacokinetics , Cyclohexenes/administration & dosage , Rats, Sprague-Dawley
7.
Molecules ; 29(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38998948

ABSTRACT

Herein, we report a transdermal patch prepared using an ionic liquid-based solid in oil (IL-S/O) nanodispersion and a pressure-sensitive adhesive (PSA) to deliver the macromolecular antigenic protein, ovalbumin (OVA). The IL-S/O nanodispersion and a PSA were first mixed at an equal weight ratio, then coated onto a release liner, and covered with a support film. To evaluate the effect of the PSA, three types of PSAs, DURO-TAK 87-4098, DURO-TAK 87-4287, and DURO-TAK 87-235A, were used to obtain the corresponding IL-S/O patches SP-4098, SP-4287, and SP-235A, respectively. The prepared IL-S/O patches were characterized for surface morphology, viscoelasticity, and moisture content. In vitro skin penetration and in vivo immunization studies of the IL-S/O patches were performed using Yucatan micropig skin and the C57BL/6NJc1 mice model, respectively. The SP-4098 and SP-4287 delivered 5.49-fold and 5.47-fold higher amounts of drug compared with the aqueous formulation. Although both patches delivered a similar amount of drug, SP-4287 was not detached fully from the release liner after 30 days, indicating low stability. Mice immunized with the OVA-containing SP-4098 produced a 10-fold increase in anti-OVA IgG compared with those treated with an aqueous formulation. These findings suggested that the IL-S/O patch may be a good platform for the transdermal delivery of antigen molecules.


Subject(s)
Administration, Cutaneous , Antigens , Immunization , Ionic Liquids , Ovalbumin , Transdermal Patch , Ionic Liquids/chemistry , Animals , Mice , Ovalbumin/immunology , Ovalbumin/administration & dosage , Antigens/immunology , Antigens/administration & dosage , Antigens/chemistry , Swine , Skin/metabolism , Skin/immunology , Drug Delivery Systems , Mice, Inbred C57BL , Female , Skin Absorption
8.
Int J Biol Macromol ; 273(Pt 1): 133005, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866268

ABSTRACT

Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.


Subject(s)
Chitosan , Dermatitis, Atopic , Nanoparticles , Tacrolimus , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Tacrolimus/chemistry , Tacrolimus/pharmacology , Tacrolimus/administration & dosage , Tacrolimus/pharmacokinetics , Tacrolimus/therapeutic use , Chitosan/chemistry , Animals , Nanoparticles/chemistry , Mice , Humans , Drug Carriers/chemistry , Skin/drug effects , Skin/pathology , Skin/metabolism , Administration, Topical , Skin Absorption/drug effects , Drug Liberation , Disease Models, Animal , HaCaT Cells
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124617, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38870697

ABSTRACT

Confocal Raman Spectroscopy is recognised as a potent tool for molecular characterisation of biological specimens. There is a growing demand for In Vitro Permeation Tests (IVPT) in the pharmaceutical and cosmetic areas, increasingly conducted using Reconstructed Human Epidermis (RHE) skin models. In this study, chemical fixation of RHE in 10 % Neutral Buffered Formalin for 24 h has been examined for storing RHE samples at 4 °C for up to 21 days. Confocal Raman Spectroscopy (CRS), combined with Principal Components Analysis, revealed the molecular-level effects of fixation, notably in protein and lipid conformation within the stratum corneum and viable epidermis. IVPT by means of high-performance liquid chromatography, using caffeine as a model compound, showed minimal impact of formalin fixation on the cumulative amount, flux, and permeability coefficient after 12 h. While the biochemical architecture is altered, the function of the model as a barrier to maintain rate-limiting diffusion of active molecules within skin layers remains intact. This study opens avenues for enhanced flexibility and utility in skin model research, promising insights into mitigating the limited shelf life of RHE models by preserving performance in fixed samples for up to 21 days.


Subject(s)
Epidermis , Formaldehyde , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Epidermis/metabolism , Epidermis/drug effects , Formaldehyde/chemistry , Permeability/drug effects , Tissue Fixation/methods , Caffeine/pharmacology , Caffeine/metabolism , Skin Absorption/drug effects , Principal Component Analysis
10.
Annu Rev Food Sci Technol ; 15(1): 53-78, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941493

ABSTRACT

Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.


Subject(s)
Administration, Cutaneous , Humans , Animals , Skin/metabolism , Drug Delivery Systems , Skin Absorption
11.
Biol Pharm Bull ; 47(6): 1224-1230, 2024.
Article in English | MEDLINE | ID: mdl-38925923

ABSTRACT

We prepared a supramolecular hydrogel composed of decanoic acid and arginine (C10/Arg gel) and evaluated its application to a transdermal formulation. C10/Arg gel adjusted to pH 7 with 1 M NaOH aq or 1 M HCl aq provided a translucent hydrogel with a lamellar liquid crystal structure in the concentration region of decanoic acid ≥12% and arginine ≤9%. Rheological measurements showed that C10/Arg gel is a viscoelastic material with both solid and liquid properties, with elasticity being dominant over viscosity in the low shear stress region. The skin permeability of hydrocortisone (HC) and indomethacin (IM) from C10/Arg gels was investigated in vitro using hairless mouse skin and compared to control formulation drug suspensions (IM or HC) in water. The cumulative permeation amount of HC and IM from the C10/Arg gel at 10 h after application was approximately 16 and 11 times higher than that of the control, respectively. On the other hand, the flux of IM decreased with increasing arginine concentration, likely due to the acid-base interaction between Arg and IM in C10/Arg gel. Adequate drug skin permeation enhancement by C10/Arg gel requires optimizing the gel composition for each specific drug.


Subject(s)
Administration, Cutaneous , Arginine , Decanoic Acids , Hydrocortisone , Hydrogels , Indomethacin , Mice, Hairless , Skin Absorption , Skin , Animals , Arginine/chemistry , Arginine/administration & dosage , Hydrogels/chemistry , Skin Absorption/drug effects , Skin/metabolism , Skin/drug effects , Indomethacin/administration & dosage , Indomethacin/chemistry , Indomethacin/pharmacokinetics , Decanoic Acids/chemistry , Decanoic Acids/administration & dosage , Hydrocortisone/administration & dosage , Hydrocortisone/chemistry , Hydrocortisone/pharmacokinetics , Mice , Rheology , Permeability , Male
12.
Eur J Pharm Biopharm ; 201: 114382, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942175

ABSTRACT

Alzheimer's disease (ALZ) is a neurological disorder characterized by cognitive decline. Rivastigmine (RV), an acetylcholinesterase inhibitor, is commonly used to treat ALZ. Unfortunately, RV is availablein capsule form, which is associated with low drug bioavailability, and in patch form, which can lead to skin irritation upon repeated use. This study successfully fabricated a trilayer dissolving microneedle (TDMN) containing RV with adequate mechanical strength by using the molding method. In vitro release and ex vivo permeation showed that the release and permeation of RV were significantly sustained compared to control without PCL. The release and permeation percentages were 91.34 ± 11.39 % and 13.76 ± 1.49 µg/cm2, respectively. In addition, the concentration of RV in plasma and brain after 168 h was measured to be 0.44 ± 0.09 µg/mL and 1.23 ± 0.26 µg/g, respectively, which reached the minimum concentration to inhibit AcHE and BuChe. Pharmacokinetic testing revealed higher AUC values after administration of TDMN, indicating better bioavailability and RV concentrations in the brain were twice as high as those achieved with oral administration. This study suggests TDMN may enhance the bioavailability and brain delivery of RV.


Subject(s)
Administration, Cutaneous , Alzheimer Disease , Biological Availability , Brain , Cholinesterase Inhibitors , Drug Delivery Systems , Rivastigmine , Rivastigmine/administration & dosage , Rivastigmine/pharmacokinetics , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/administration & dosage , Cholinesterase Inhibitors/pharmacokinetics , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Male , Rats , Needles , Proof of Concept Study , Rats, Sprague-Dawley , Drug Liberation , Skin Absorption/drug effects , Skin/metabolism
13.
Drug Deliv Transl Res ; 14(8): 2032-2040, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38837116

ABSTRACT

Drug delivery technology has advanced significantly over >50 years, and has produced remarkable innovation, countless publications and conferences, and generations of talented and creative scientists. However, a critical review of the current state-of-the-art reveals that the translation of clever and sophisticated drug delivery technologies into products, which satisfy important, unmet medical needs and have been approved by the regulatory agencies, has - given the investment made in terms of time and money - been relatively limited. Here, this point of view is illustrated using a case study of technology for drug delivery into and through the skin and aims:  to examine the historical development of this field and the current state-of-the-art;  to understand why the translation of drug delivery technologies into products that improve clinical outcomes has been quite slow and inefficient; and  to suggest how the impact of technology may be increased and the process of concept to approved product accelerated.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Skin , Humans , Skin/metabolism , Animals , Skin Absorption , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry
14.
Int J Pharm ; 660: 124289, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38825171

ABSTRACT

The transdermal delivery of naloxone for opioid overdose emergency purposes is a challenge due to its poor rate of diffusion through the layers of skin. This results in delayed delivery of an insufficient amount of the drug within minimal time as is desired to save lives. The ability of dissolving polymeric microneedles to shorten the lag time significantly has been explored and shown to have prospects in terms of the transdermal delivery of naloxone. This is an option that offers critical advantages to the ongoing opioid crisis, including ease of distribution and easy administration, with little to no need for intervention by clinicians. Nonetheless, this approach by itself needs augmentation to meet pharmacokinetic delivery attributes desired for a viable clinical alternative to existing market dosage forms. In this study, we report the success of an optimized iontophoresis-coupled naloxone loaded dissolving microneedle patch which had facilitated a 12- fold increase in average cumulative permeation and a 6-fold increase in drug flux over a conventional dissolving microneedle patch within 60 min of application (p < 0.05). This translates to a 30 % decrease in dose requirement in a mechanistically predicted microneedle patch established to be able to achieve the desired early plasma concentration time profile needed in an opioid overdose emergency. Applying a predictive mathematical model, we describe an iontophoresis-coupled microneedle patch design capable of meeting the desired pharmacokinetic profile for a viable naloxone delivery form through skin.


Subject(s)
Administration, Cutaneous , Iontophoresis , Naloxone , Narcotic Antagonists , Needles , Skin Absorption , Transdermal Patch , Naloxone/administration & dosage , Naloxone/pharmacokinetics , Iontophoresis/methods , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/pharmacokinetics , Animals , Drug Delivery Systems , Polymers/chemistry , Microinjections/methods , Male , Skin/metabolism , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacokinetics
15.
Int J Pharm ; 660: 124297, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38838794

ABSTRACT

The purpose of present work was to study the effects of permeation enhancers' two kinetic behaviors of simultaneous lateral diffusion and vertical penetration in the skin on its enhancing effect. The skin diffusion kinetics of isopropyl ester permeation enhancers were characterized by the innovative concentric tape peeling study and Raman imaging, which were quantitatively assessed through innovative parameters, namely, lateral-to-vertical penetration amount (CL-V) and lateral-to-vertical penetration distance (DL-V). The enhancement effect of permeation enhancers on drug flurbiprofen (FLU) was assessed by in vitro skin permeation tests, which were confirmed by transdermal water loss and skin resistance study. The relationship between kinetic parameters of permeation enhancers and permeation parameters of FLU was carried out by correlation analysis. The molecular mechanisms of effect of skin diffusion kinetics of permeation enhancers on drug permeation were characterized by molecular docking, modulated-temperature differential scanning calorimetry (MTDSC), Raman spectra, solid-state NMR and molecular dynamic simulation. The results indicated skin diffusion kinetics of short-chain (C8-C12) isopropyl ester permeation enhancers were governed by vertical penetration, while long-chain (C14-C18) ones were characterized by lateral spread. Quadratic correlation between CL-V and enhancement ratio of permeation-retention ratio of FLU (ERQ/R) (R2 = 0.95), DL-V and enhancement ratio of permeation area (ERA) of FLU (R2 = 0.98) indicating that varied skin diffusion kinetics of permeation enhancers directly influenced the barrier function of stratum corneum (SC) and further enhancing drug permeation. In terms of molecular mechanism, long-chain isopropyl ester enhancers had good miscibility with SC, leading to their high CL-V and DL-V, and causing strong interaction strength with SC and resulting in weaker skin barrier function for drug permeation. In summary, in comparison to short-chain isopropyl ester enhancers that relied on penetration, long-chain ones that depended on lateral spread exhibited greater enhancement efficacy, which guided the application of enhancers in transdermal formulations.


Subject(s)
Administration, Cutaneous , Esters , Flurbiprofen , Permeability , Skin Absorption , Skin , Skin Absorption/drug effects , Flurbiprofen/pharmacokinetics , Flurbiprofen/administration & dosage , Flurbiprofen/chemistry , Animals , Skin/metabolism , Diffusion , Esters/chemistry , Kinetics , Molecular Docking Simulation , Swine , Male , Spectrum Analysis, Raman , Molecular Dynamics Simulation
16.
Int J Pharm ; 660: 124307, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38852748

ABSTRACT

Red fruit (Pandanus conoideus Lam.) boasts high ß-carotene (BC) content, often consumed orally. However, absorption issues and low bioavailability due to food matrix interaction have led to transdermal delivery exploration. Nevertheless, BC has a short skin retention time. To address these limitations, this study formulates a ß-carotene solid dispersion (SD-BC) loaded thermoresponsive gel combined with polymeric solid microneedles (PSM) to enhance in vivo skin bioavailability. Characterization of SD-BC includes saturation solubility, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and in vitro release. Characterization of SD-BC thermoresponsive gel includes gelation temperature, viscosity, rheological behaviour, pH, bio-adhesiveness, spreadability, and extrudability. PSM's mechanical properties and insertion capability were assessed. Ex vivo and in vivo dermato-pharmacokinetic studies, drug content, hemolysis, and skin irritation assessments were conducted to evaluate overall performance. Results confirm amorphous SD-BC formation, enhancing solubility. Both SD-BC thermoresponsive gel and PSM exhibit favourable characteristics, including rheological properties and mechanical strength. In vitro release studies showed a seven-fold increase in BC release compared to plain hydrogel. SD-BC thermoresponsive gel combined with PSM achieves superior ex vivo permeation (Cmax = 305.43 ± 32.07 µg.mL-1) and enhances in vivo dermato-pharmacokinetic parameters by 200-400 %. Drug content, hemolysis, and skin irritation studies confirmed its safety and non-toxicity.


Subject(s)
Administration, Cutaneous , Fruit , Gels , Needles , Skin Absorption , Skin , beta Carotene , Animals , beta Carotene/administration & dosage , beta Carotene/pharmacokinetics , beta Carotene/chemistry , Fruit/chemistry , Skin/metabolism , Temperature , Drug Liberation , Drug Delivery Systems , Biological Availability , Solubility , Polymers/chemistry , Male , Rheology , Viscosity
17.
Int J Pharm ; 660: 124342, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38880253

ABSTRACT

Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ± 0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ± 0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a âˆ¼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.


Subject(s)
Administration, Cutaneous , Antipsychotic Agents , Rats, Sprague-Dawley , Risperidone , Schizophrenia , Animals , Risperidone/administration & dosage , Risperidone/pharmacokinetics , Schizophrenia/drug therapy , Female , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/pharmacokinetics , Transdermal Patch , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Drug Liberation , Skin Absorption , Rats , Drug Delivery Systems , Skin/metabolism , Polyvinyl Alcohol/chemistry , Paliperidone Palmitate/administration & dosage , Paliperidone Palmitate/pharmacokinetics , Particle Size , Solubility , Needles
18.
Int J Pharm ; 660: 124347, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38885777

ABSTRACT

Ropivacaine hydrochloride (RPL) is a local anesthetic agent that has been widely used for the treatment of pain during or after surgery. However, this drug is only available in parenteral dosage form and may contribute to the infiltration of RPL into the plasma, causing some undesirable side effects. Intradermal delivery of RPL using dissolving microneedles may become a promising strategy to deliver such drugs into the skin. This research aimed to develop RPL-loaded dissolving microneedles (DMN-RPLs) as a proof of the concept of intradermal delivery of a local anesthetic. The DMN-RPLs were fabricated using either centrifugation or air-pressurized chamber methods. Several polymers, such as poly(vinyl pyrrolidone) (PVP), poly(vinyl alcohol) (PVA), and sodium hyaluronate (SH), were utilized for manufacturing the DMN-RPLs. The prepared DMN-RPLs were assessed for their thermal properties, chemical bonds, mechanical strength, insertion ability, skin-dissolution study, and drug content. Furthermore, in-skin deposition and dermatokinetic studies were also performed. The results showed that F9 (30 % w/w PVP-4 % w/w SH) and F10 (30 % w/w PVP-5 % w/w PVA) containing 5 % w/w of RPL were the most promising formulations, as shown by their needle height reduction (<10 %) and insertion depth (∼400 µm). Both formulations were also able to deliver more than 60 % of the RPL contained in the DMNs into the epidermis, dermis, and receiver compartment. This study, for the first time, has provided a proof concept to deliver RPL as a local anesthetic using DMNs and the intradermal route, aiming to minimize pain and discomfort during administration and improve the patient's experience.


Subject(s)
Anesthetics, Local , Drug Delivery Systems , Needles , Ropivacaine , Skin , Ropivacaine/administration & dosage , Ropivacaine/pharmacokinetics , Anesthetics, Local/administration & dosage , Anesthetics, Local/pharmacokinetics , Anesthetics, Local/chemistry , Animals , Skin/metabolism , Administration, Cutaneous , Drug Liberation , Skin Absorption , Povidone/chemistry , Proof of Concept Study , Solubility , Hyaluronic Acid/chemistry , Hyaluronic Acid/administration & dosage , Microinjections/methods , Male , Rats, Sprague-Dawley , Polyvinyl Alcohol/chemistry
19.
Int J Pharm ; 660: 124376, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38914355

ABSTRACT

Nanoemulsions have carved their position in topical delivery owing to their peculiar features of forming a uniform film on the skin and conquering stratum corneum barrier and hence fostering dermal penetration and retention. The present work developed syringic acid nanoemulsion (SA-NE) by spontaneous emulsification as an anti-psoriatic remedy via the dermal route. SA-NE were prepared with either lauroglycol90, limonene or their combination (oil phase) and tween80 (surfactant) with variable concentrations. The physicochemical characteristics of SA-NE were assessed together with Ex-vivo skin deposition and dermal toxicity. The effectiveness of optimal formula in psoriatic animal model and psoriatic patients was investigated using PASI scoring and dermoscope examination. Results showed that, SA-NE containing mixture of lauroglycol 90, limonene and 10 % tween80 (F5), was selected as the optimal formula presenting stable nanoemulsion for 2-month period, showing droplet size of 177.6 ± 13.23 nm, polydispersity index of 0.16 ± 0.06, zeta potential of -21.23 ± 0.41 mV. High SA% in different skin strata and no dermal irritation was noticed with limonene-based SA-NE also it showed high in-vitro anti- inflammatory potential compared to the blank and control formulations. A preclinical study demonstrated that limonene-based SA-NE is effective in alleviating psoriasis-like skin lesions against imiquimod-induced psoriasis in rats. Clinically, promising anti-psoriatic potential was asserted as all patients receiving F5 experienced better clinical improvement and response to therapy, achieving ≥ 50 % reduction in PASI scores versus only 35 % responders in the Dermovate® cream group. Collectively, the practical feasibility of limonene-based SA-NE topical delivery can boost curative functionality in the treatment of psoriatic lesions.


Subject(s)
Administration, Cutaneous , Emulsions , Limonene , Psoriasis , Skin Absorption , Skin , Animals , Limonene/chemistry , Limonene/administration & dosage , Limonene/pharmacology , Psoriasis/drug therapy , Skin Absorption/drug effects , Male , Skin/drug effects , Skin/metabolism , Skin/pathology , Humans , Female , Nanoparticles/chemistry , Rats , Adult , Middle Aged , Polysorbates/chemistry , Terpenes/chemistry , Terpenes/administration & dosage , Terpenes/pharmacology , Rats, Wistar , Disease Models, Animal
20.
Int J Pharm ; 660: 124377, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38914351

ABSTRACT

Lidocaine is generally recognized and preferred for local anaesthesia, but in addition, studies have described additional benefits of lidocaine in cancer therapy, inflammation reduction, and wound healing. These properties contribute to its increasing importance in dermatological applications, and not only in pain relief but also in other potential therapeutic outcomes. Therefore, the purpose of our study was to enhance lidocaine delivery through the skin. A stable nanostructured lipid carrier (NLC), as a passive permeation enhancer, was developed using a 23 full factorial design. The nanosystems were characterized by crystallinity behaviour, particle size, zeta potential, encapsulation efficiency measurements, and one of them was selected for further investigation. Then, NLC gel was formulated for dermal application and compared to a traditional dermal ointment in terms of physicochemical (rheological behaviour) and biopharmaceutical (qualitative Franz diffusion and quantitative Raman investigations) properties. The study also examined the use of 3D printed solid microneedles as active permeation enhancers for these systems, offering a minimally invasive approach to enhance transdermal drug delivery. By actively facilitating drug permeation through the skin, microneedles can complement the passive transport achieved by NLCs, thereby providing an innovative and synergistic approach to improving lidocaine delivery.


Subject(s)
Administration, Cutaneous , Anesthetics, Local , Lidocaine , Permeability , Skin Absorption , Skin , Lidocaine/administration & dosage , Lidocaine/pharmacokinetics , Lidocaine/chemistry , Skin Absorption/drug effects , Anesthetics, Local/administration & dosage , Anesthetics, Local/pharmacokinetics , Anesthetics, Local/chemistry , Animals , Skin/metabolism , Lipids/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Nanostructures/chemistry , Nanostructures/administration & dosage , Swine , Needles , Particle Size , Gels
SELECTION OF CITATIONS
SEARCH DETAIL
...