Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.501
Filter
1.
Acta Dermatovenerol Croat ; 32(1): 75-76, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38946192

ABSTRACT

Mutation of the BRAF oncogene is one of the most common mutations detected in human neoplasia, occurring in 40-60% of all cutaneous melanoma. BRAF is a serine/threonine protein kinase which is an essential part of the mitogen-activated protein kinase (MAPK) pathway. It is physiologically activated by RAS, but in mutated form, due to molecular conformational change, BRAF becomes constitutively active with subsequent persistent activation of downstream cytoplasmic and nuclear proteins (MEK, ERK, ETS), which finally leads to gene expression that promotes cell growth and survival. Inhibition of the altered MAPK pathway by BRAF inhibitors and combined BRAF/MEK inhibitors in BRAF mutated melanoma has become a standard therapeutic approach (1,2). We recently reported the frequency and clinicopathological features of BRAF V600E mutated melanomas in the Dalmatian region of Croatia. This report included 80 cutaneous melanomas with BRAF analyses performed at our institution until the second half of 2017, using a kit which detected only BRAF V600E mutation (3). From the second half of 2017, we started using a kit which detects several types of BRAF mutations along with NRAS mutation. The aim of this report was to determine the spectrum and frequency of different BRAF mutations in a group of skin melanomas in the Dalmatian region of Croatia and to comment on the relationship between type of BRAF mutation and therapeutic response to MAPK pathway inhibition. The analysis included 179 patients with stage 3 and stage 4 cutaneous melanoma with known BRAF/NRAS mutational status. The paraffin blocks were forwarded from four Dalmatian hospitals (Split: 139 cases, Zadar: 17 cases, Sibenik: 13 cases, Dubrovnik: 10 cases). BRAF/NRAS mutation analysis was performed at the Institute of Pathology, Clinical Hospital Center Split, Croatia, in the period from the second half of 2017 to the end of 2022. For DNA extraction analysis, hematoxylin and eosin stained slides from each submitted sample were reviewed by a pathologist, and tumor tissue was identified for analysis. For all tissue specimens, DNA was extracted from sections (10 mm thick) using the cobas® DNA Sample Preparation Kit (Roche Molecular Diagnostics), following the manufacturer's protocol. The amount of genomic DNA was quantified using the Qubit® 2.0 Fluorometer (Life Technologies) and adjusted to a fixed concentration to be added to the amplification/detection mixture. For mutation analysis, the target DNA was amplified and detected on the cobas z 480 analyzer using the amplification and detection reagents provided in the Roche BRAF/NRAS mutation test (LSR) kit, according to the manufacturer's protocol. The test results were reported as follows: BRAF exon 11 mutation detected, BRAF V600E/E2/D mutation detected, BRAF V600K mutation detected, BRAF V600R mutation detected, BRAF K601E mutation detected, NRAS (G12X, G13X, A18T, Q61X, other NRAS Ex3/4) mutation detected, mutation not detected, or invalid result (no result was obtained on the cobas test). BRAF mutation was observed in 87 patients (48.6%), NRAS mutation was found in 27 patients (15.1%), while 65 patients (36.3%) were without BRAF/NRAS mutation (Table 1). In the group of BRAF mutated melanomas, 61 cases (70.1%) had V600E/E2/D mutation, 20 cases (23%) had V600K mutation, 3 cases (3.4%) had exon 11 mutation, 2 cases (2.3%) had V600R mutation, and 1 case (1.2%) had K601E mutation (Table 2). The observed frequency of BRAF mutated melanomas in this study was similar to the frequency reported in our previous study (48.6% and 47.5%, respectively) (3). The vast majority were BRAF V600 mutations, while BRAF non-V600 mutations were rare (95.4% and 4.6%, respectively). In the group of BRAF V600 mutations, V600E/E2/D mutations predominated, followed by V600K mutations, while V600R mutations were rare. Greaves et al. reported similar frequency of BRAF V600 mutations in a group of 499 BRAF-mutated cutaneous melanomas, with V600E/E2/D mutations observed in 77.2% cases, followed by V600K mutations observed in 17.2% cases, and V600R mutations observed in 2.6% cases (4). BRAF non-V600 mutations (exon 11 and K601E mutations) were rarely observed in this study, confirming the findings of other authors (4,5). A three-class system of BRAF mutations was recently proposed that takes into account the differences in their kinase activity, with class I containing mutants with high kinase activity and high response rate to BRAF and BRAF/MEK inhibitors. Class II BRAF mutations have lower kinase activity than class I mutants, but higher than wild-type BRAF, showing resistance to BRAF inhibitor monotherapy and sensitivity to MEK and BRAF/MEK inhibitors. Finally, class III BRAF mutations are characterized by low kinase activity and low response rate to targeted therapy (6). BRAF V600 mutations belong to class I mutations, which means that the large majority of BRAF-positive melanomas in this study (95.4%) were sensitive to targeted therapy. However, the sensitivity to targeted therapy is different among different class I BRAF mutations. While large randomized controlled trials on combined BRAF/MEK inhibition showed good overall response (63-68%) and improvement of progression-free survival (PFS) and overall survival (OS) for the melanomas with most prevalent V600E and V600K mutations, Menzer et al. showed lower response rate to MAPK pathway inhibition (45%) in the group of metastatic melanomas with BRAF V600 mutations other than V600E/K. The overall response rate to MAPK pathway inhibition in the same group of melanomas with BRAF non-V600 mutations (class II and III mutations) was only 18% (7). In our group of BRAF mutated skin metastatic melanomas, we found only 6 cases (6.9%) with expected lower response rate to MAPK pathway inhibition: 2 cases with V600R mutation (class I non-V600E/K mutation), 1 case with K601E mutation (class II mutation), and 3 cases with exon 11 mutation (class II and III mutations).


Subject(s)
Melanoma , Mutation , Proto-Oncogene Proteins B-raf , Skin Neoplasms , Humans , Proto-Oncogene Proteins B-raf/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Croatia/epidemiology , Female , Male , Middle Aged , Aged , Adult , Aged, 80 and over
2.
Skin Res Technol ; 30(7): e13774, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953214

ABSTRACT

OBJECTIVE: Observational studies have identified a dual effect of circulating inflammatory proteins and immune cells on cancer progression. However, the specific mechanisms of action have not been clarified in the exacerbation of cutaneous-origin tumors. Therefore, this study aims to investigate whether the causal relationship between circulating inflammatory factors and basal cell carcinoma (BCC), cutaneous malignant melanoma (SKCM), and cutaneous squamous cell carcinoma (cSCC) is regulated by immune cells. METHODS: This study employed the Two-Sample Mendelian Randomization (TSMR) approach to investigate the causal relationships between 91 circulating inflammatory factors and three prevalent types of skin cancer from a genetic perspective. Bayesian Weighted Mendelian Randomization (BWMR) was also used to validate correlation and reverse MR to assess inverse relationships. Subsequent sensitivity analyses were conducted to limit the impact of heterogeneity and pleiotropy. Finally, the two-step Mendelian Randomization (two-step MR) method was utilized to ascertain the mediating effects of specific immune cell traits in the causal pathways linking circulating inflammatory factors with BCC, SKCM, and cSCC. RESULTS: The Inverse Variance Weighted (IVW) method and the Bayesian Weighted Algorithm collectively identified nine inflammatory factors causally associated with BCC, SKCM, and cSCC. The results from Cochran's Q test, mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger intercept were not statistically significant (p < 0.05). Additionally, the proportions mediated by CD4+ CD8dim T cell %leukocyte, CD4-CD8-Natural Killer T %T cell, and CD20 on IgD-CD38-B cell for FIt3L, CCL4, and OSM were 9.26%, 8.96%, and 10.16%, respectively. CONCLUSION: Immune cell levels potentially play a role in the modulation process between circulating inflammatory proteins and cutaneous-origin exacerbated tumors. This finding offers a new perspective for the in-depth exploration of cutaneous malignancies.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Melanoma , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Melanoma/genetics , Melanoma/immunology , Melanoma/blood , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/immunology , Carcinoma, Basal Cell/blood , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Bayes Theorem , Melanoma, Cutaneous Malignant
4.
Skin Res Technol ; 30(7): e13842, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965799

ABSTRACT

BACKGROUND: As the most important modifications on the RNA level, N6-methyladenosine (m6A-) and 5-methylcytosine (m5C-) modification could have a direct influence on the RNAs. Long non-coding RNAs (lncRNAs) could also be modified by methylcytosine modification. Compared with mRNAs, the function of lncRNAs could be more potent to some extent in biological processes like tumorigenesis. Until now, rare reports have been done associated with cutaneous melanoma. Herein, we wonder if the m6A- and m5C- modified lncRNAs could influence the immune landscape and prognosis in melanoma, and we also want to find some lncRNAs which could directly affect the malignant behaviors of melanoma. METHODS: Systematically, we explored the expression pattern of m6A- and m5C- modified lncRNAs in melanoma from datasets including UCSC Xena and NCBI GEO, and the prognostic lncRNAs were selected. Then, according to the expression pattern of lncRNAs, melanoma samples from these datasets were divided into several subtypes. Prognostic model, nomogram survival model, drug sensitivity, GO, and KEGG pathway analysis were performed. Furthermore, among several selected lncRNAs, we identified one lncRNA named LINC00893 and investigated its expression pattern and its biological function in melanoma cell lines. RESULTS: We identified 27 m6A- and m5C- related lncRNAs which were significantly associated with survival, and we made a subtype analysis of melanoma samples based on these 27 lncRNAs. Among the two subtypes, we found differences of immune cells infiltration between these two subtypes. Then, LASSO algorithm was used to screen the optimized lncRNAs combination including ZNF252P-AS1, MIAT, FAM13A-AS1, LINC-PINT, LINC00893, AGAP2-AS1, OIP5-AS1, and SEMA6A-AS1. We also found that there was a significant correlation between the different risk groups predicted based on RS model and the actual prognosis. The nomogram survival model based on independent survival prognostic factors was also constructed. Besides, sensitivity to chemotherapeutic agents, GO and KEGG analysis were performed. In different risk groups, a total of 14 drug molecules with different distributions were obtained, which included AZD6482, AZD7762, AZD8055, camptothecin, dasatinib, erlotinib, gefitinib, gemcitabine, GSK269962A, nilotinib, rapamycin, and sorafenib. A total of 55 significantly related biological processes and 17 KEGG signaling pathways were screened. At last, we noticed that LINC00893 had a relatively lower expression in melanoma tissue and cell lines compared with adjacent tissues and epidermal melanocyte, and down-regulation of LINC00893 could promote the malignant behavior of melanoma cells in A875 and MV3. In these two melanoma cell lines, down-regulation of m6A-related molecules like YTHDF3 and METTL3 could promote the expression of LINC00893. CONCLUSION: We made an analysis of m6A- and m5C- related lncRNAs in melanoma samples and a prediction of these lncRNAs' role in prognosis, tumor microenvironment, immune infiltration, and clinicopathological features. We also found that LINC00893, which is potentially regulated by m6A modification, could serve as a tumor-suppressor in melanoma and play an inhibitory role in melanoma metastasis.


Subject(s)
Adenosine , Melanoma , RNA, Long Noncoding , Skin Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Melanoma/genetics , Melanoma/pathology , Melanoma/mortality , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/mortality , Adenosine/analogs & derivatives , Adenosine/metabolism , Prognosis , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Melanoma, Cutaneous Malignant , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Nomograms
5.
Skin Res Technol ; 30(7): e13781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38932454

ABSTRACT

BACKGROUND: Reports suggest that lipid profiles may be linked to the likelihood of developing skin cancer, yet the exact causal relationship is still unknown. OBJECTIVE: This study aimed to examine the connection between lipidome and skin cancers, as well as investigate any possible mediators. METHODS: A two-sample Mendelian randomization (MR) analysis was conducted on 179 lipidomes and each skin cancer based on a genome-wide association study (GWAS), including melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). Then, Bayesian weighted MR was performed to verify the analysis results of two-sample MR. Moreover, a two-step MR was employed to investigate the impact of TNF-like weak inducer of apoptosis (TWEAK)-mediated lipidome on skin cancer rates. RESULTS: MR analysis identified higher genetically predicted phosphatidylcholine (PC) (17:0_18:2) could reduce the risk of skin tumors, including BCC (OR = 0.9149, 95% CI: 0.8667-0.9658), SCC (OR = 0.9343, 95% CI: 0.9087-0.9606) and melanoma (OR = 0.9982, 95% CI: 0.9966-0.9997). The proportion of PC (17:0_18:2) predicted by TWEAK-mediated genetic prediction was 6.6 % in BCC and 7.6% in SCC. The causal relationship between PC (17:0_18:2) and melanoma was not mediated by TWEAK. CONCLUSION: This study identified a negative causal relationship between PC (17:0_18:2) and keratinocyte carcinomas, a small part of which was mediated by TWEAK, and most of the remaining mediating factors are still unclear. Further research on other risk factors is needed in the future.


Subject(s)
Carcinoma, Basal Cell , Carcinoma, Squamous Cell , Cytokine TWEAK , Keratinocytes , Lipidomics , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Cytokine TWEAK/genetics , Cytokine TWEAK/metabolism , Keratinocytes/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Genome-Wide Association Study , Melanoma/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease/genetics , Bayes Theorem
6.
Melanoma Res ; 34(4): 296-306, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38934060

ABSTRACT

Gender disparity in melanoma is a complex issue where sex hormones could be engaged. Differences in genetic variations are important in understanding the mechanisms of sex disparity in melanoma. Post-transcriptional regulation of prostaglandin-endoperoxide synthase (PTGS2) mRNA occurs through a complex interplay of specific trans-acting RNA-binding proteins and microRNAs. MiR-146a is a key player in melanoma, modulating immune responses and tumor microenvironment (TME). Polymorphisms in PTGS2 gene rs20415GC have been associated with an increased risk of melanoma. Epistasis between polymorphisms rs20415GC was investigated by genotyping 453 melanoma patients and 382 control individuals. The effects of testosterone and 17ß-estradiol were analyzed in keratinocytes and two melanoma cell lines. The rs2910164GG showed a higher risk in the presence of the genotype rs20417CC in the male population. Testosterone and 17ß-estradiol act differently on PTGS2 and miR-146a expression, depending on the cell type. Testosterone augments PTGS2 gene expression in keratinocytes and miR-146a in melanoma cells. While 17ß-estradiol only increases miR-146a expression in HaCaT cells. The present study indicates a sex-specific relation between miR-146a and PTGS2 polymorphisms with melanoma cancer risk. Testosterone and 17ß-estradiol act differently on the expression of PTGS2 and miR-146a depending on the skin cell type.


Subject(s)
Cyclooxygenase 2 , Melanoma , MicroRNAs , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Male , Female , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Risk Factors , Middle Aged , Gonadal Steroid Hormones/metabolism , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Adult , Sex Factors , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Estradiol/metabolism , Aged
7.
Skin Res Technol ; 30(7): e13814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924611

ABSTRACT

BACKGROUND: Skin cutaneous melanoma (SKCM) is an aggressive form of malignant melanoma with poor prognosis and high mortality rates. Disulfidptosis is a newly discovered cell death regulatory mechanism caused by the abnormal accumulation of disulfides. This unique pathway is guiding significant new research to understand cancer progression for targeted treatment. However, the correlation between disulfidptosis with long non-coding RNAs (lncRNAs) in SKCM remains unknown at present. METHODS: The Cancer Genome Atlas database furnished lncRNA expression data and clinical information for SKCM patients. Pearson correlation and Cox regression analyses identified disulfidptosis-related lncRNAs associated with SKCM prognosis. ROC curves and a nomogram validated the model. TME, immune infiltration, GSEA analysis, immune checkpoint gene expression profiling, and drug sensitivity were assessed in high and low-risk groups. Consistent clustering categorized SKCM patients for personalized clinical treatment guidance. RESULTS: A total of twelve disulfidptosis-related lncRNAs were identified for the development of prognosis prediction models. The area under the curve (AUC) values of the ROC curve and the nomogram provided reliable discrimination to evaluate the prognostic potential for SKCM patients. The TME played a crucial role in tumorigenesis, progression and prognosis, and the risk scores were closely related to immune cell infiltration. Meanwhile, the combination of chemotherapy, targeted therapy, and immunotherapy was recommended for low-risk patients based on drug sensitivity and immune efficacy analyses. CONCLUSION: We identified a risk model of twelve disulfidptosis-related lncRNAs that could be used to predict the prognosis of SKCM patients and help guide immunotherapy and chemotherapy for personalized treatment plans.


Subject(s)
Melanoma , RNA, Long Noncoding , Skin Neoplasms , Tumor Microenvironment , Humans , RNA, Long Noncoding/genetics , Melanoma/genetics , Melanoma/immunology , Melanoma/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/drug therapy , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Middle Aged , Nomograms , Melanoma, Cutaneous Malignant , Biomarkers, Tumor/genetics , ROC Curve
8.
Exp Dermatol ; 33(6): e15092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888196

ABSTRACT

Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression. To evaluate the clinical significance of SPOCK2 expression in patients with melanoma, we analysed the association between SPOCK2 expression and its prognostic value for patients with melanoma using systematic multiomic analysis. Subsequently, to investigate the roles of Spock2 in melanoma progression in vitro and in vivo, we knocked down Spock2 in the B16F10 melanoma cell line. High SPOCK2 levels were positively associated with good prognosis and long survival rate of patients with melanoma. Spock2 knockdown promoted melanoma cell proliferation by inducing the cell cycle and inhibiting apoptosis. Moreover, Spock2 downregulation significantly increased cell migration and invasion by upregulating MMP2 and MT1-MMP. The increased cell proliferation and migration were inhibited by MAPK inhibitor, and ERK phosphorylation was considerably enhanced in Spock2 knockdown cells. Therefore, Spock2 could function as a tumour suppressor gene to regulate melanoma progression by regulating the MAPK/ERK signalling pathway. Additionally, Spock2 knockdown cell injection induced considerable tumour growth and lung metastasis in C57BL6 mice compared to that in the control group. Our findings suggest that SPOCK2 plays crucial roles in malignant progression of melanoma and functions as a novel therapeutic target of melanoma.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Disease Progression , Melanoma , Skin Neoplasms , Animals , Female , Humans , Male , Mice , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cell Cycle , Cell Line, Tumor , Gene Knockdown Techniques , MAP Kinase Signaling System , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Neoplasm Invasiveness , Prognosis , Proteoglycans/metabolism , Proteoglycans/genetics , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
9.
Cells ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38920684

ABSTRACT

Exposure to inorganic arsenic (As) is recognized as a risk factor for non-melanoma skin cancer (NMSC). We followed up with 7000 adults for 6 years who were exposed to As. During follow-up, 2.2% of the males and 1.3% of the females developed basal cell carcinoma (BCC), while 0.4% of the male and 0.2% of the female participants developed squamous cell carcinoma (SCC). Using a panel of more than 400 cancer-related genes, we detected somatic mutations (SMs) in the first 32 NMSC samples (BCC = 26 and SCC = 6) by comparing paired (tissue-blood) samples from the same individual and then comparing them to the SM in healthy skin tissue from 16 participants. We identified (a) a list of NMSC-associated SMs, (b) SMs present in both NMSC and healthy skin, and (c) SMs found only in healthy skin. We also demonstrate that the presence of non-synonymous SMs in the top mutated genes (like PTCH1, NOTCH1, SYNE1, PKHD1 in BCC and TP53 in SCC) significantly affects the magnitude of differential expressions of major genes and gene pathways (basal cell carcinoma pathways, NOTCH signaling, IL-17 signaling, p53 signaling, Wnt signaling pathway). These findings may help select groups of patients for targeted therapy, like hedgehog signaling inhibitors, IL17 inhibitors, etc., in the future.


Subject(s)
Arsenic , Mutation , Skin Neoplasms , Transcriptome , Humans , Skin Neoplasms/genetics , Arsenic/toxicity , Female , Mutation/genetics , Male , Transcriptome/genetics , Transcriptome/drug effects , Middle Aged , Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/genetics , Adult , Gene Expression Profiling , Aged , Gene Expression Regulation, Neoplastic/drug effects
10.
Front Immunol ; 15: 1337400, 2024.
Article in English | MEDLINE | ID: mdl-38873609

ABSTRACT

Case report: A 55-year-old male patient developed a mass in the left inguinal area with left lower limb swelling and first visited a local hospital 3 months earlier because of unrelieved pain. An MRI scan suggested left suprapubic branch and left acetabular bone destruction, abnormal soft tissue signals within the iliopsoas muscle of the anterior edge of the left iliac bone, and enlarged lymph nodes in the left iliac fossa and left inguinal region. The patient subsequently underwent left pelvic lesion open biopsy and inguinal lymph node resection biopsy. According to pathological reports, the left inguinal mass was considered to be a malignant tumor of cutaneous accessory origin (pilomatrix carcinoma) with extensive vitreous changes. The suprapupubis branch mass was considered to be a bone metastatic pilomatrix carcinoma. Immunohistochemistry (IHC) revealed a PDL1 combined positive score (CPS) of 8. DNA next-generation sequencing (NGS) showed CDKN2A L65Rfs*53 mutation. The patient received three cycles of gemcitabine and nedaplatin. However, the lesion progressed. Conclusion: Chemotherapy is not effective for treating pilomatrix carcinoma. PDL1 antibodies and CDK4/6 inhibitors might be treatment options for pilomatrix carcinoma.


Subject(s)
B7-H1 Antigen , Cyclin-Dependent Kinase Inhibitor p16 , Pilomatrixoma , Skin Neoplasms , Humans , Male , Middle Aged , Cyclin-Dependent Kinase Inhibitor p16/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Pilomatrixoma/genetics , Pilomatrixoma/pathology , Mutation , Hair Diseases/genetics , Hair Diseases/pathology
11.
Exp Dermatol ; 33(6): e15119, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881438

ABSTRACT

This manuscript presents a comprehensive investigation into the role of lactate metabolism-related genes as potential prognostic markers in skin cutaneous melanoma (SKCM). Bulk-transcriptome data from The Cancer Genome Atlas (TCGA) and GSE19234, GSE22153, and GSE65904 cohorts from GEO database were processed and harmonized to mitigate batch effects. Lactate metabolism scores were assigned to individual cells using the 'AUCell' package. Weighted Co-expression Network Analysis (WGCNA) was employed to identify gene modules correlated with lactate metabolism. Machine learning algorithms were applied to construct a prognostic model, and its performance was evaluated in multiple cohorts. Immune correlation, mutation analysis, and enrichment analysis were conducted to further characterize the prognostic model's biological implications. Finally, the function of key gene NDUFS7 was verified by cell experiments. Machine learning resulted in an optimal prognostic model, demonstrating significant prognostic value across various cohorts. In the different cohorts, the high-risk group showed a poor prognosis. Immune analysis indicated differences in immune cell infiltration and checkpoint gene expression between risk groups. Mutation analysis identified genes with high mutation loads in SKCM. Enrichment analysis unveiled enriched pathways and biological processes in high-risk SKCM patients. NDUFS7 was found to be a hub gene in the protein-protein interaction network. After the expression of NDUFS7 was reduced by siRNA knockdown, CCK-8, colony formation, transwell and wound healing tests showed that the activity, proliferation and migration of A375 and WM115 cell lines were significantly decreased. This study offers insights into the prognostic significance of lactate metabolism-related genes in SKCM.


Subject(s)
Lactic Acid , Machine Learning , Melanoma , Skin Neoplasms , Humans , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Melanoma/genetics , Melanoma/metabolism , Prognosis , Lactic Acid/metabolism , Single-Cell Analysis , Mutation , Transcriptome , Melanoma, Cutaneous Malignant , Cell Line, Tumor , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
12.
Article in Russian | MEDLINE | ID: mdl-38884429

ABSTRACT

OBJECTIVE: To identify the characteristics of pain syndrome in patients with schwannomas depending on genetic predisposition. MATERIAL AND METHODS: The study included 46 patients with peripheral, spinal and intracranial schwannomas, corresponding to the schwannomatosis phenotype according to the 2022 clinical criteria. All patients underwent sequencing of the LZRT1, Nf2 and SMARCB1 and a copy number study in the NF2. RESULTS: The most severe widespread pain was observed in patients with pathogenic LZRT1 variants, while patients with mosaic variants may not even have local tumor-related pain. Patients with SMARCB1variants may have no pain or have localized pain that responds well to surgical treatment. CONCLUSION: Further studies of the molecular features of schwannomatosis and driver mutations in the pathogenesis of pain are necessary to improve the effectiveness of pain therapy in this group of patients. Schwannomatosis is a disease from the group of neurofibromatosis, manifested by the development of multiple schwannomas. Neuropathic pain is one of the main symptoms characteristic of peripheral schwannomas, however, the severity and prevalence of the pain syndrome does not always correlate with the location of the tumors. According to modern concepts, the key factors influencing the characteristics of the pain syndrome are the target gene and the type of pathogenic variant. The most severe widespread pain is observed in patients with pathogenic variants in the LZRT1 gene, while patients with mosaic variants may not even have local pain associated with tumors. Patients with variants in SMARCB1 may have no pain or localized pain that responds well to surgical treatment.


Subject(s)
Neurilemmoma , Neurofibromatoses , SMARCB1 Protein , Humans , Neurilemmoma/genetics , Neurilemmoma/complications , Neurilemmoma/diagnosis , Neurofibromatoses/complications , Neurofibromatoses/genetics , Male , Female , Adult , SMARCB1 Protein/genetics , Middle Aged , Skin Neoplasms/genetics , Skin Neoplasms/complications , Neurofibromin 2/genetics , Transcription Factors/genetics , Mutation , Neuralgia/genetics , Neuralgia/etiology , Neuralgia/diagnosis , Genetic Predisposition to Disease , Young Adult
13.
Arch Dermatol Res ; 316(7): 382, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850312

ABSTRACT

Cutaneous squamous cell carcinoma (CSCC) is the second most common malignant tumor of the skin. B7 homolog 4 (B7-H4) and B7-H5 (B7 homolog 5) are associated with a variety of tumors. Investigate the potential role of B7-H4 and B7-H5 in regulating the tumorigenesis and progression of CSCC. B7-H4 and B7-H5 transcriptome data were collected from GEO and TCGA databases and subjected to bioinformatical analysis by protein-protein interaction (PPI) network, functional enrichment analysis, immune analysis, and drug-gene interaction prediction analysis. We characterized the expression of B7-H4 and B7-H5 in carcinoma tissues of CSCC patients by immunohistochemistry. Meanwhile, the clinical correlation of B7-H4 and B7-H5 in CSCC was explored by statistical analysis. B7-H4 and B7-H5 genes were under-expressed in CSCC and correlated with tumor staging. According to GO and KEGG Pathway enrichment analysis, B7-H4, and B7-H5 can regulate the proliferation and activation of T cells, lymphocytes, and monocytes, and the expression of cytokines, such as IL-6 and IL-10, in CSCC. B7-H4 and B7-H5 are also jointly involved in the occurrence and development of CSCC via the JAK-STAT and Notch signaling pathways. We found that B7-H4 and B7-H5 proteins were abnormally highly expressed in CSCC tissue and correlated with tumor size and stage. Our findings offer new insights into the pathogenesis of CSCC and suggest that B7-H4 and B7-H5 are novel tissue biomarkers and promising therapeutic targets for CSCC.


Subject(s)
Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Skin Neoplasms , V-Set Domain-Containing T-Cell Activation Inhibitor 1 , Aged , Female , Humans , Male , Middle Aged , B7 Antigens/metabolism , B7 Antigens/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Immunoglobulins , Neoplasm Staging , Protein Interaction Maps , Signal Transduction , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , V-Set Domain-Containing T-Cell Activation Inhibitor 1/genetics , V-Set Domain-Containing T-Cell Activation Inhibitor 1/metabolism
15.
Arch Dermatol Res ; 316(6): 328, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824251

ABSTRACT

Observational studies have revealed associations between various dietary factors and skin conditions. However, the causal relationship between diet and skin condition is still unknown. Data on 17 dietary factors were obtained from the UK Biobank. Data on four skin conditions were derived from the UK Biobank and another large-scale GWAS study. Genetic predictions suggested that the intake of oily fish was associated with a lower risk of skin aging (OR: 0.962, P = 0.036) and skin pigmentation (OR: 0.973, P = 0.033); Tea intake was associated with a lower risk of skin pigmentation (OR: 0.972, P = 0.024); Salad/raw vegetables intake was associated with a lower risk of keratinocyte skin cancer (OR: 0.952, P = 0.007). Coffee intake was associated with increased risk of skin aging (OR: 1.040, P = 0.028); Pork intake was associated with increased risk of skin aging (OR: 1.134, P = 0.020); Beef intake was associated with increased risk of cutaneous melanoma (OR: 1.013, P = 0.016); Champagne plus white wine intake was associated with increased risk of cutaneous melanoma (OR: 1.033, P = 0.004); Bread intake was associated with increased risk of keratinocyte skin cancer (OR: 1.026, P = 0.013). Our study results indicate causal relationships between genetically predicted intake of oily fish, tea, salad/raw vegetables, coffee, pork, beef, champagne plus white wine, and bread and skin conditions.


Subject(s)
Diet , Mendelian Randomization Analysis , Skin Neoplasms , Humans , Diet/adverse effects , Diet/statistics & numerical data , Skin Neoplasms/genetics , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Skin Aging/genetics , Skin Pigmentation/genetics , Coffee/adverse effects , Genome-Wide Association Study , United Kingdom/epidemiology , Tea/adverse effects , Risk Factors
16.
Arch Dermatol Res ; 316(7): 414, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38880834

ABSTRACT

Previous studies showed an association between single nucleotide gene variants (SNVs) of PD-1 and cancer susceptibility. We analyzed PD1.5 C > T and PD1.7 T > C SNVs to investigate their association with the risk of developing metastatic melanoma (MM). Utilizing a cohort of 125 MM patients treated with anti-PD-1 agents and 84 healthy controls, we examined genotype/allele frequencies through a modified Poisson regression model, adjusted for age and sex. Our findings indicate that the PD1.5 T allele is associated with a reduced risk of MM, showing a significantly lower risk in both codominant (RR = 0.56, 95%CL: 0.37-0.87) and dominant (RR = 0.73 95%CL: 0.59-0.90) models. Conversely, the PD1.7 C allele is linked to an increased risk of MM, with the C/C genotype exhibiting a higher risk in the codominant (RR = 1.65, 95%CL: 1.32-2.05) and allelic (RR = 1.23, 95%CL: 1.06-1.43) models. These results are consistent with previous meta-analyses on other cancer types, mainly highlighting the PD1.5 SNV's potential role in promoting anti-tumor immunity through increased PD1-positive circulating effector T cell activity.


Subject(s)
Gene Frequency , Genetic Predisposition to Disease , Melanoma , Polymorphism, Single Nucleotide , Programmed Cell Death 1 Receptor , Skin Neoplasms , Humans , Melanoma/genetics , Programmed Cell Death 1 Receptor/genetics , Female , Male , Middle Aged , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Aged , Case-Control Studies , Adult , Genotype , Immune Checkpoint Inhibitors/therapeutic use , Alleles
17.
Skin Res Technol ; 30(6): e13770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881051

ABSTRACT

BACKGROUND: Melanoma is one of the most malignant forms of skin cancer, with a high mortality rate in the advanced stages. Therefore, early and accurate detection of melanoma plays an important role in improving patients' prognosis. Biopsy is the traditional method for melanoma diagnosis, but this method lacks reliability. Therefore, it is important to apply new methods to diagnose melanoma effectively. AIM: This study presents a new approach to classify melanoma using deep neural networks (DNNs) with combined multiple modal imaging and genomic data, which could potentially provide more reliable diagnosis than current medical methods for melanoma. METHOD: We built a dataset of dermoscopic images, histopathological slides and genomic profiles. We developed a custom framework composed of two widely established types of neural networks for analysing image data Convolutional Neural Networks (CNNs) and networks that can learn graph structure for analysing genomic data-Graph Neural Networks. We trained and evaluated the proposed framework on this dataset. RESULTS: The developed multi-modal DNN achieved higher accuracy than traditional medical approaches. The mean accuracy of the proposed model was 92.5% with an area under the receiver operating characteristic curve of 0.96, suggesting that the multi-modal DNN approach can detect critical morphologic and molecular features of melanoma beyond the limitations of traditional AI and traditional machine learning approaches. The combination of cutting-edge AI may allow access to a broader range of diagnostic data, which can allow dermatologists to make more accurate decisions and refine treatment strategies. However, the application of the framework will have to be validated at a larger scale and more clinical trials need to be conducted to establish whether this novel diagnostic approach will be more effective and feasible.


Subject(s)
Deep Learning , Dermoscopy , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/diagnostic imaging , Melanoma/diagnosis , Melanoma/pathology , Skin Neoplasms/genetics , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Dermoscopy/methods , Neural Networks, Computer , Reproducibility of Results , Genomics/methods , Female , Male , Middle Aged , Adult , Aged
18.
Cells ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38891107

ABSTRACT

Over the past few decades, the worldwide incidence of cutaneous melanoma, a malignant neoplasm arising from melanocytes, has been increasing markedly, leading to the highest rate of skin cancer-related deaths. While localized tumors are easily removed by excision surgery, late-stage metastatic melanomas are refractory to treatment and exhibit a poor prognosis. Consequently, unraveling the molecular mechanisms underlying melanoma tumorigenesis and metastasis is crucial for developing novel targeted therapies. We found that the multiple endocrine neoplasia type 1 (MEN1) gene product Menin is required for the transforming growth factor beta (TGFß) signaling pathway to induce cell growth arrest and apoptosis in vitro and prevent tumorigenesis in vivo in preclinical xenograft models of melanoma. We further identified point mutations in two MEN1 family members affected by melanoma that led to proteasomal degradation of the MEN1 gene product and to a loss of TGFß signaling. Interestingly, blocking the proteasome degradation pathway using an FDA-approved drug and RNAi targeting could efficiently restore MEN1 expression and TGFß transcriptional responses. Together, these results provide new potential therapeutic strategies and patient stratification for the treatment of cutaneous melanoma.


Subject(s)
Melanoma , Signal Transduction , Transforming Growth Factor beta , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Humans , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Mice , Neoplasm Metastasis , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Apoptosis/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
19.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891963

ABSTRACT

Cutaneous field cancerization (CFC) refers to a skin region containing mutated cells' clones, predominantly arising from chronic exposure to ultraviolet radiation (UVR), which exhibits an elevated risk of developing precancerous and neoplastic lesions. Despite extensive research, many molecular aspects of CFC still need to be better understood. In this study, we conducted ex vivo assessment of cell differentiation, oxidative stress, inflammation, and DNA damage in CFC samples. We collected perilesional skin from 41 patients with skin cancer and non-photoexposed skin from 25 healthy control individuals. These biopsies were either paraffin-embedded for indirect immunofluorescence and immunohistochemistry stain or processed for proteins and mRNA extraction from the epidermidis. Our findings indicate a downregulation of p53 expression and an upregulation of Ki67 and p16 in CFC tissues. Additionally, there were alterations in keratinocyte differentiation markers, disrupted cell differentiation, increased expression of iNOS and proinflammatory cytokines IL-6 and IL-8, along with evidence of oxidative DNA damage. Collectively, our results suggest that despite its outwardly normal appearance, CFC tissue shows early signs of DNA damage, an active inflammatory state, oxidative stress, abnormal cell proliferation and differentiation.


Subject(s)
Cell Differentiation , DNA Damage , Inflammation , Oxidative Stress , Skin Neoplasms , Ultraviolet Rays , Humans , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Male , Female , Middle Aged , Ultraviolet Rays/adverse effects , Aged , Keratinocytes/metabolism , Keratinocytes/pathology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Adult , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Skin/metabolism , Skin/pathology , Skin/radiation effects , Ki-67 Antigen/metabolism , Ki-67 Antigen/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Interleukin-6/metabolism , Interleukin-6/genetics
20.
Acta Neuropathol Commun ; 12(1): 102, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38907342

ABSTRACT

Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.


Subject(s)
Benzimidazoles , Extracellular Matrix , Schwann Cells , Signal Transduction , Skin Neoplasms , Humans , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology , Skin Neoplasms/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Benzimidazoles/pharmacology , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/genetics , Signal Transduction/drug effects , Neurofibroma/genetics , Neurofibroma/drug therapy , Neurofibroma/metabolism , Neurofibroma/pathology , Female , Male , RNA-Seq , Middle Aged , Adult , Neurofibromatosis 1/genetics , Neurofibromatosis 1/drug therapy , Neurofibromatosis 1/pathology , Protein Kinase Inhibitors/pharmacology , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...