Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.611
Filter
1.
Int Wound J ; 21(7): e14957, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994923

ABSTRACT

Prolonged mechanical loading of the skin and underlying soft tissue cause pressure ulceration. The use of special support surfaces are key interventions in pressure ulcer prevention. They modify the degree and duration of soft tissue deformation and have an impact on the skin microclimate. The objective of this randomized cross-over trial was to compare skin responses and comfort after lying for 2.5 h supine on a support surface with and without a coverlet that was intended to assist with heat and moisture removal at the patient/surface interface. In addition, physiological saline solution was administered to simulate an incontinence episode on the mattress next to the participants' skin surface. In total, 12 volunteers (mean age 69 years) with diabetes mellitus participated. After loading, skin surface temperature, stratum corneum hydration and skin surface pH increased, whereas erythema and structural stiffness decreased at the sacral area. At the heel skin area, temperature, erythema, and stratum corneum hydration increased. These results indicate occlusion and soft tissue deformation which was aggravated by the saline solution. The differences in skin response showed only minor differences between the support surface with or without the coverlet.


Subject(s)
Beds , Cross-Over Studies , Heel , Pressure Ulcer , Humans , Aged , Pressure Ulcer/prevention & control , Male , Female , Middle Aged , Weight-Bearing/physiology , Aged, 80 and over , Skin Temperature/physiology
2.
Physiol Rep ; 12(11): e16107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849294

ABSTRACT

July 2023 has been confirmed as Earth's hottest month on record, and it was characterized by extraordinary heatwaves across southern Europe. Field data collected under real heatwave periods could add important evidence to understand human adaptability to extreme heat. However, field studies on human physiological responses to heatwave periods remain limited. We performed field thermo-physiological measurements in a healthy 37-years male undergoing resting and physical activity in an outdoor environment in the capital of Sicily, Palermo, during (July 21; highest level of local heat-health alert) and following (August 10; lowest level of local heat-health alert) the peak of Sicily's July 2023 heatwave. Results indicated that ~40 min of outdoor walking and light running in 33.8°C Wet Bulb Globe Temperature (WBGT) conditions (July 21) resulted in significant physiological stress (i.e., peak heart rate: 209 bpm; core temperature: 39.13°C; mean skin temperature: 37.2°C; whole-body sweat losses: 1.7 kg). Importantly, significant physiological stress was also observed during less severe heat conditions (August 10; WBGT: 29.1°C; peak heart rate: 190 bpm; core temperature: 38.48°C; whole-body sweat losses: 2 kg). These observations highlight the physiological strain that current heatwave conditions pose on healthy young individuals. This ecologically-valid empirical evidence could inform more accurate heat-health planning.


Subject(s)
Extreme Heat , Heart Rate , Humans , Male , Adult , Sicily , Heart Rate/physiology , Extreme Heat/adverse effects , Sweating/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Skin Temperature/physiology , Hot Temperature/adverse effects
3.
In Vivo ; 38(4): 1750-1757, 2024.
Article in English | MEDLINE | ID: mdl-38936950

ABSTRACT

BACKGROUND/AIM: Various devices for non-invasive body shape correction are being developed along with the growth of the beauty industry. Radiofrequency (RF) can selectively reduce subcutaneous fat without causing skin damage. The efficacy of the procedure can be improved by applying RF to a large area simultaneously with multiple handpieces. This study evaluated the safety and efficacy of a new RF device with multi-channel handpieces. MATERIALS AND METHODS: In ex vivo experiments, the RF device was used to treat porcine tissue comprising the skin, subcutaneous, and muscle layers. The device's safety was evaluated by temperature measurements of porcine tissue and histological analysis. In in vivo experiments, the dorsal skin of pigs was treated with the RF device. The safety and efficacy of the device were evaluated by measuring the skin temperature, subcutaneous fat layer thickness, and conducting histological analysis. RESULTS: The skin temperature did not exceed the set temperature during treatment, and skin damage was not observed in histologic analysis in both ex vivo and in vivo experiments. In in vivo experiments, the subcutaneous fat layer thickness and subcutaneous lipocyte size were decreased after treatment. In addition, the fibrous tissue between subcutaneous lipocytes was increased in the RF treatment group compared with the non-treatment group. CONCLUSION: The RF device used in this study effectively reduced the size of subcutaneous lipocytes and increased fibrous tissue without skin damage. Therefore, the safe and effective use of this device for non-invasive fat reduction may be possible in clinical settings.


Subject(s)
Subcutaneous Fat , Animals , Swine , Subcutaneous Fat/cytology , Radiofrequency Therapy/methods , Skin/radiation effects , Body Contouring/methods , Body Contouring/instrumentation , Adipose Tissue/cytology , Skin Temperature/radiation effects
4.
J Therm Biol ; 122: 103877, 2024 May.
Article in English | MEDLINE | ID: mdl-38850622

ABSTRACT

The objective of the study was to examine the lower limbs skin temperature (TSK) changes in response to exhaustive whole-body exercise in trained individuals in reference to changes in plasma adenosine triphosphate (ATP). Eighteen trained participants from distinct sport type ‒ endurance (25.2 ± 4.9 yr) and speed-power (25.8 ± 3.1 yr), and 9 controls (24,9 ± 4,3 yr) ‒ were examined. Lower limbs TSK and plasma ATP measures were applied in parallel in response to incremental treadmill test and during 30-min recovery period. Plasma ATP kinetics were inversely associated to changes in TSK. The first significant decrease in TSK (76-89% of V˙ O2MAX) occurred shortly before a significant plasma ATP increase (86-97% of V˙ O2MAX). During recovery, TSK increased, reaching pre-exercise values (before exercise vs. after 30-min recovery: 31.6 ± 0.4 °C vs. 32.0 ± 0.8 °C, p = 0.855 in endurance; 32.4 ± 0.5 °C vs. 32.9 ± 0.5 °C, p = 0.061 in speed-power; 31.9 ± 0.7 °C vs. 32.4 ± 0.8 °C, p = 0.222 in controls). Plasma ATP concentration did not returned to pre-exercise values in well trained participants (before exercise vs. after 30-min recovery: 699 ± 57 nmol l-1 vs. 854 ± 31 nmol l-1, p < 0.001, η2 = 0.961 and 812 ± 35 nmol l-1 vs. 975 ± 55 nmol l-1, p < 0.001, η2 = 0.974 in endurance and speed-power, respectively), unlike in controls (651 ± 40 nmol l-1 vs. 687 ± 61 nmol·l-1, p = 0.58, η2 = 0.918). The magnitude of TSK and plasma ATP response differed between the groups (p < 0.001, η2 = 0.410 for TSK; p < 0.001, η2 = 0.833 for plasma ATP). We conclude that lower limbs TSK change indirectly corresponds to the reverse course of plasma ATP during incremental exercise and the magnitude of the response depends on the level of physical activity and the associated to it long-term metabolic adaptation.


Subject(s)
Adenosine Triphosphate , Exercise , Lower Extremity , Skin Temperature , Humans , Male , Adenosine Triphosphate/blood , Adenosine Triphosphate/metabolism , Adult , Exercise/physiology , Lower Extremity/physiology , Lower Extremity/blood supply , Young Adult , Female , Physical Endurance
5.
Sci Rep ; 14(1): 12693, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830944

ABSTRACT

Lumbar sympathetic ganglion neurolysis (LSGN) has been used for long-term pain relief in patients with complex regional pain syndrome (CRPS). However, the actual effect duration of LSGN has not been accurately measured. This prospective observational study measured the effect duration of LSGN in CRPS patients and investigated the relationship between temperature change and pain relief. After performing LSGN, the skin temperatures of both the maximum pain site and the plantar area in the affected and unaffected limbs were measured by infrared thermography, and pain intensity was assessed before and at 2 weeks, 1 month, and 3 months. The median time to return to baseline temperature was calculated using survival analysis. The skin temperature increased significantly at all-time points relative to baseline in both regions (maximum pain site: 1.4 °C ± 1.0 °C, plantar region: 1.28 °C ± 0.8 °C, all P < 0.001). The median time to return to baseline temperature was 12 weeks (95% confidence interval [CI] 7.7-16.3) at the maximum pain site and 12 weeks (95% CI 9.4-14.6) at the plantar area. Pain intensity decreased significantly relative to baseline, at all-time points after LSGN. In conclusion, the median duration of the LSGN is estimated to be 12 weeks.


Subject(s)
Complex Regional Pain Syndromes , Ganglia, Sympathetic , Skin Temperature , Humans , Complex Regional Pain Syndromes/physiopathology , Complex Regional Pain Syndromes/therapy , Female , Male , Middle Aged , Prospective Studies , Adult , Ganglia, Sympathetic/physiopathology , Pain Measurement , Thermography/methods , Autonomic Nerve Block/methods , Treatment Outcome , Aged , Time Factors , Lumbosacral Region
6.
Biosensors (Basel) ; 14(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38785695

ABSTRACT

Microwave radiometry (MWR) is instrumental in detecting thermal variations in skin tissue before anatomical changes occur, proving particularly beneficial in the early diagnosis of cancer and inflammation. This study concisely traces the evolution of microwave radiometers within the medical sector. By analyzing a plethora of pertinent studies and contrasting their strengths, weaknesses, and performance metrics, this research identifies the primary factors limiting temperature measurement accuracy. The review establishes the critical technologies necessary to overcome these limitations, examines the current state and prospective advancements of each technology, and proposes comprehensive implementation strategies. The discussion elucidates that the precise measurement of human surface and subcutaneous tissue temperatures using an MWR system is a complex challenge, necessitating an integration of antenna directionality for temperature measurement, radiometer error correction, hardware configuration, and the calibration and precision of a multilayer tissue forward and inversion method. This study delves into the pivotal technologies for non-invasive human tissue temperature monitoring in the microwave frequency range, offering an effective approach for the precise assessment of human epidermal and subcutaneous temperatures, and develops a non-contact microwave protocol for gauging subcutaneous tissue temperature distribution. It is anticipated that mass-produced measurement systems will deliver substantial economic and societal benefits.


Subject(s)
Microwaves , Skin , Humans , Skin Temperature , Radiometry , Temperature
7.
Animal ; 18(6): 101172, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772079

ABSTRACT

As climate change intensifies, heat stress mitigation for pigs becomes more important. Trials involving induced heat waves are useful to test several measures (e.g. reduced stocking density) at a faster rate, but only when accurately evaluated and validated. In the present study, we investigated the suitability of an artificial heating protocol at different pig weights (experiment 1). The impact of different stocking densities on fattening pigs during an artificial heat wave (experiment 2) was also investigated. Experiment 1: Forty 20-week-old pigs weighing 96.5 ± 7.3 kg (W100) and forty 17-week-old pigs weighing 72.7 ± 9.9 kg (W70) were housed in two compartments. An artificial heat wave (heat load) was induced for 3 days. During 3-day periods before, during and after the heat load, physiological parameters (respiration rate (RR), rectal temperature (Trectal), skin temperature (Tskin) and behavior) were measured and average daily feed intake was observed. Ambient temperature, relative humidity and temperature-humidity index (THI) were monitored. Experiment 2: A total of 150 fattening pigs were randomly divided into three treatment groups: SD1.3 (1.3 m2/pig), SD1.0 (1.0 m2/pig) and SD0.8 (0.8 m2/pig). All pens had a total pen surface of 4.88 m2, corresponding with 4, 5 and 6 fattening pigs in the SD1.3, SD1.0 and SD0.8 groups, respectively. The heat load was induced for 7 days on week 21. Respiration rate and Trectal were observed as in experiment 1. Average daily gain and average daily feed intake were also noted. During the heat load, THI reached ≥ 75 (78.4 (experiment 1) and 78.6 (experiment 2)), even when relative humidity decreased to ± 45%. Every physiological parameter showed significant increases during the heat load. The prolonged heating protocol in experiment 2 also provoked significant decreases in average daily feed intake (15%) and average daily gain (19%) for all groups. Weight within the studied range of 70-100 kg did not have a significant impact on any of the parameters. However, Tskin was affected by both weight and heat load (P < 0.05), where Tskin from W100 was always lower in comparison to W70. In addition, we found that 0.8 m2/pig doubled the increase of Trectal during the heat load, namely SD0.8 (0.22 °C) compared to SD1.0 (0.12 °C) (P = 0.033) and SD1.3 (0.13 °C) (P = 0.053). This suggests that pigs housed at higher densities are less able to regulate their internal heat production. However, RR and performances were not significantly affected by heat load in this experimental set-up. A stocking density of 1.0 m2/animal may be sufficient to mitigate some negative effects of heat stress.


Subject(s)
Hot Temperature , Animals , Swine/physiology , Animal Husbandry/methods , Housing, Animal , Heating , Body Temperature , Humidity , Male , Female , Respiratory Rate , Skin Temperature , Body Weight , Sus scrofa/physiology
8.
Sci Rep ; 14(1): 10449, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714775

ABSTRACT

The body temperature of infants at equilibrium with their surroundings is balanced between heat production from metabolism and the transfer of heat to the environment. Total heat production is related to body size, which is closely related to metabolic rate and oxygen consumption. Body temperature control is a crucial aspect of neonatal medicine but we have often struggled with temperature measures. Contactless infrared thermography (IRT) is useful for vulnerable neonates and may be able to assess their spontaneous thermal metabolism. The present study focused on heat oscillations and their cause. IRT was used to measure the skin temperature every 15 s of neonates in an incubator. We analyzed the thermal data of 27 neonates (32 measurements), calculated the average temperature within specified regions, and extracted two frequency components-Components A and B-using the Savitzky-Golay method. Furthermore, we derived an equation describing the cycle-named cycle T-for maintaining body temperature according to body weight. A positive correlation was observed between cycle T and Component B (median [IQR]: 368 [300-506] s). This study sheds light on the physiological thermoregulatory function of newborns and will lead to improved temperature management methods for newborns, particularly premature, low-birth-weight infants.


Subject(s)
Body Temperature Regulation , Thermography , Humans , Infant, Newborn , Thermography/methods , Body Temperature Regulation/physiology , Female , Male , Monitoring, Physiologic/methods , Body Temperature/physiology , Skin Temperature/physiology
9.
PLoS One ; 19(5): e0300373, 2024.
Article in English | MEDLINE | ID: mdl-38696403

ABSTRACT

Captive and domestic animals are often required to engage in physical activity initiated or organised by humans, which may impact their body temperature, with consequences for their health and welfare. This is a particular concern for animals such as elephants that face thermoregulatory challenges because of their body size and physiology. Using infrared thermography, we measured changes in skin temperature associated with two types of physical activity in ten female Asian elephants (Elephas maximus) at an eco-tourism lodge in Nepal. Six elephants took part in an activity relatively unfamiliar to the elephants-a polo tournament-and four participated in more familiar ecotourism activities. We recorded skin temperatures for four body regions affected by the activities, as well as an average skin temperature. Temperature change was used as the response variable in the analysis and calculated as the difference in elephant temperature before and after activity. We found no significant differences in temperature change between the elephants in the polo-playing group and those from the non-polo playing group. However, for both groups, when comparing the average skin body temperature and several different body regions, we found significant differences in skin temperature change before and after activity. The ear pinna was the most impacted region and was significantly different to all other body regions. This result highlights the importance of this region in thermoregulation for elephants during physical activity. However, as we found no differences between the average body temperatures of the polo and non-polo playing groups, we suggest that thermoregulatory mechanisms can counteract the effects of both physical activities the elephants engaged in.


Subject(s)
Elephants , Skin Temperature , Animals , Elephants/physiology , Female , Skin Temperature/physiology , Physical Conditioning, Animal/physiology , Body Temperature/physiology , Body Temperature Regulation/physiology , Thermography/methods
10.
PLoS One ; 19(5): e0303342, 2024.
Article in English | MEDLINE | ID: mdl-38728306

ABSTRACT

This study protocol aims to investigate how localised cooling influences the skin's microvascular, inflammatory, structural, and perceptual tolerance to sustained mechanical loading at the sacrum, evaluating factors such as morphology, physiology, and perceptual responses. The protocol will be tested on individuals of different age, sex, skin tone and clinical status, using a repeated-measure design with three participants cohorts: i) young healthy (n = 35); ii) older healthy (n = 35); iii) spinal cord injured (SCI, n = 35). Participants will complete three testing sessions during which their sacrum will be mechanically loaded (60 mmHg; 45 min) and unloaded (20 min) with a custom-built thermal probe, causing pressure-induced ischemia and post-occlusive reactive hyperaemia. Testing sessions will differ by the probe's temperature, which will be set to either 38°C (no cooling), 24°C (mild cooling), or 16°C (strong cooling). We will measure skin blood flow (via Laser Doppler Flowmetry; 40 Hz); pro- and anti-inflammatory biomarkers in skin sebum (Sebutape); structural skin properties (Optical Coherence Tomography); and ratings of thermal sensation, comfort, and acceptance (Likert Scales); throughout the loading and unloading phases. Changes in post-occlusive reactive hyperaemia will be considered as the primary outcome and data will be analysed for the independent and interactive effects of stimuli's temperature and of participant group on within- and between-subject mean differences (and 95% Confidence Intervals) in peak hyperaemia, by means of a 2-way mixed model ANOVA (or Friedman). Regression models will also be developed to assess the relationship between absolute cooling temperatures and peak hyperaemia. Secondary outcomes will be within- and between-subject mean changes in biomarkers' expression, skin structural and perceptual responses. This analysis will help identifying physiological and perceptual thresholds for the protective effects of cooling from mechanically induced damage underlying the development of pressure ulcers in individuals varying in age and clinical status.


Subject(s)
Sacrum , Skin , Humans , Skin/blood supply , Adult , Male , Female , Middle Aged , Young Adult , Inflammation , Spinal Cord Injuries/physiopathology , Cold Temperature , Aged , Microvessels/physiopathology , Weight-Bearing , Skin Temperature
11.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732798

ABSTRACT

Photoplethysmography (PPG) is a non-invasive method used for cardiovascular monitoring, with multi-wavelength PPG (MW-PPG) enhancing its efficacy by using multiple wavelengths for improved assessment. This study explores how contact force (CF) variations impact MW-PPG signals. Data from 11 healthy subjects are analyzed to investigate the still understudied specific effects of CF on PPG signals. The obtained dataset includes simultaneous recording of five PPG wavelengths (470, 525, 590, 631, and 940 nm), CF, skin temperature, and the tonometric measurement derived from CF. The evolution of raw signals and the PPG DC and AC components are analyzed in relation to the increasing and decreasing faces of the CF. Findings reveal individual variability in signal responses related to skin and vasculature properties and demonstrate hysteresis and wavelength-dependent responses to CF changes. Notably, all wavelengths except 631 nm showed that the DC component of PPG signals correlates with CF trends, suggesting the potential use of this component as an indirect CF indicator. However, further validation is needed for practical application. The study underscores the importance of biomechanical properties at the measurement site and inter-individual variability and proposes the arterial pressure wave as a key factor in PPG signal formation.


Subject(s)
Photoplethysmography , Humans , Photoplethysmography/methods , Male , Adult , Female , Signal Processing, Computer-Assisted , Skin Temperature/physiology , Young Adult
13.
J Appl Physiol (1985) ; 136(6): 1364-1375, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38572540

ABSTRACT

Cold exposure increases blood pressure (BP) and salivary flow rate (SFR). Increased cold-induced SFR would be hypothesized to enhance oral nitrate delivery for reduction to nitrite by oral anaerobes and to subsequently elevate plasma [nitrite] and nitric oxide bioavailability. We tested the hypothesis that dietary nitrate supplementation would increase plasma [nitrite] and lower BP to a greater extent in cool compared with normothermic conditions. Twelve males attended the laboratory on four occasions. Baseline measurements were completed at 28°C. Subsequently, participants ingested 140 mL of concentrated nitrate-rich (BR; ∼13 mmol nitrate) or nitrate-depleted (PL) beetroot juice. Measurements were repeated over 3 h at either 28°C (Norm) or 20°C (Cool). Mean skin temperature was lowered compared with baseline in PL-Cool and BR-Cool. SFR was greater in BR-Norm, PL-Cool, and BR-Cool than PL-Norm. Plasma [nitrite] at 3 h was higher in BR-Cool (592 ± 239 nM) versus BR-Norm (410 ± 195 nM). Systolic BP (SBP) at 3 h was not different between PL-Norm (117 ± 6 mmHg) and BR-Norm (113 ± 9 mmHg). SBP increased above baseline at 1, 2, and 3 h in PL-Cool but not BR-Cool. These results suggest that BR consumption is more effective at increasing plasma [nitrite] in cool compared with normothermic conditions and blunts the rise in BP following acute cool air exposure, which might have implications for attenuating the increased cardiovascular strain in the cold.NEW & NOTEWORTHY Compared with normothermic conditions, acute nitrate ingestion increased plasma [nitrite], a substrate for oxygen-independent nitric oxide generation, to a greater extent during cool air exposure. Systolic blood pressure was increased during cool air exposure in the placebo condition with this cool-induced blood pressure increase attenuated after acute nitrate ingestion. These findings improve our understanding of environmental factors that influence nitrate metabolism and the efficacy of nitrate supplementation to lower blood pressure.


Subject(s)
Blood Pressure , Cold Temperature , Cross-Over Studies , Nitrates , Humans , Male , Nitrates/administration & dosage , Nitrates/blood , Blood Pressure/drug effects , Blood Pressure/physiology , Double-Blind Method , Adult , Young Adult , Nitrites/blood , Nitric Oxide/metabolism , Dietary Supplements , Beta vulgaris , Skin Temperature/drug effects , Skin Temperature/physiology , Fruit and Vegetable Juices
14.
Diabetes Metab Res Rev ; 40(4): e3805, 2024 May.
Article in English | MEDLINE | ID: mdl-38686868

ABSTRACT

AIMS: Diabetes-related foot ulcers are common, costly, and frequently recur. Multiple interventions help prevent these ulcers. However, none of these have been prospectively investigated for cost-effectiveness. Our aim was to evaluate the cost-effectiveness of at-home skin temperature monitoring to help prevent diabetes-related foot ulcer recurrence. MATERIALS AND METHODS: Multicenter randomized controlled trial. We randomized 304 persons at high diabetes-related foot ulcer risk to either usual foot care plus daily at-home foot skin temperature monitoring (intervention) or usual care alone (control). Primary outcome was cost-effectiveness based on foot care costs and quality-adjusted life years (QALY) during 18 months follow-up. Foot care costs included costs for ulcer prevention (e.g., footwear, podiatry) and for ulcer treatment when required (e.g., consultation, hospitalisation, amputation). Incremental cost-effectiveness ratios were calculated for intervention versus usual care using probabilistic sensitivity analysis for willingness-to-pay/accept levels up to €100,000. RESULTS: The intervention had a 45% probability of being cost-effective at a willingness-to-accept of €50,000 per QALY lost. This resulted from (non-significantly) lower foot care costs in the intervention group (€6067 vs. €7376; p = 0.45) because of (significantly) fewer participants with ulcer recurrence(s) in 18 months (36% vs. 47%; p = 0.045); however, QALYs were (non-significantly) lower in the intervention group (1.09 vs. 1.12; p = 0.35), especially in those without foot ulcer recurrence (1.09 vs. 1.17; p = 0.10). CONCLUSIONS: At-home skin temperature monitoring for diabetes-related foot ulcer prevention compared with usual care is at best equally cost-effective. The intervention resulted in cost-savings due to preventing foot ulcer recurrence and related costs, but this came at the expense of QALY loss, potentially from self-monitoring burdens.


Subject(s)
Cost-Benefit Analysis , Diabetic Foot , Quality-Adjusted Life Years , Humans , Diabetic Foot/prevention & control , Diabetic Foot/economics , Diabetic Foot/etiology , Diabetic Foot/therapy , Female , Male , Middle Aged , Follow-Up Studies , Aged , Skin Temperature , Recurrence , Secondary Prevention/economics , Secondary Prevention/methods , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/economics , Prognosis , Health Care Costs/statistics & numerical data
15.
Chronobiol Int ; 41(5): 684-696, 2024 May.
Article in English | MEDLINE | ID: mdl-38634452

ABSTRACT

This study aimed to explore how natural menstrual cycle phases and dosage of oral hormonal contraceptives (OC) influence the diurnal rhythm of distal skin temperature (DST) under real-life conditions. Participants were 41 healthy females (23.9 ± 2.48 y), comprising 27 females taking monophasic hormonal oral contraceptives (OC users) and 14 females with menstrual cycles (non-OC users). Wrist DST was continuously recorded and averaged over two consecutive 24-hour days during (pseudo)follicular and (pseudo)luteal menstrual phases. Diurnal rhythm characteristics, i.e. acrophase and amplitude, describing timing and strength of the DST rhythm, respectively, were calculated using cosinor analysis. Results show that non-OC users experienced earlier diurnal DST maximum (acrophase, p = 0.019) and larger amplitude (p = 0.016) during the luteal phase than during the follicular phase. This was observed in most (71.4%) but not all individuals. The OC users showed no differences in acrophase or amplitude between pseudoluteal and pseudofollicular phases. OC users taking a higher dosage of progestin displayed a larger amplitude for DST rhythm during the pseudoluteal phase (p = 0.009), while estrogen dosage had no effect. In conclusion, monophasic OC cause changes in diurnal DST rhythm, similar to those observed in the luteal phase of females with menstrual cycles, suggesting that synthetic progestins act in a similar manner on skin thermoregulation as progesterone does.


Subject(s)
Circadian Rhythm , Menstrual Cycle , Skin Temperature , Humans , Female , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Adult , Skin Temperature/drug effects , Young Adult , Menstrual Cycle/drug effects , Contraceptives, Oral, Hormonal/pharmacology , Contraceptives, Oral, Hormonal/administration & dosage , Luteal Phase/drug effects , Luteal Phase/physiology , Body Temperature Regulation/drug effects
16.
J Therm Biol ; 121: 103828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38604115

ABSTRACT

Heating, Ventilation, and Air Conditioning (HVAC) systems in high-speed trains (HST) are responsible for consuming approximately 70% of non-operational energy sources, yet they frequently fail to ensure provide adequate thermal comfort for the majority of passengers. Recent advancements in portable wearable sensors have opened up new possibilities for real-time detection of occupant thermal comfort status and timely feedback to the HVAC system. However, since occupant thermal comfort is subjective and cannot be directly measured, it is generally inferred from thermal environment parameters or physiological signals of occupants within the HST compartment. This paper presents a field test conducted to assess the thermal comfort of occupants within HST compartments. Leveraging physiological signals, including skin temperature, galvanic skin reaction, heart rate, and ambient temperature, we propose a Predicted Thermal Comfort (PTC) model for HST cabin occupants and establish an intelligent regulation model for the HVAC system. Nine input factors, comprising physiological signals, individual physiological characteristics, compartment seating, and ambient temperature, were formulated for the PTS model. In order to obtain an efficient and accurate PTC prediction model for HST cabin occupants, we compared the accuracy of different subsets of features trained by Machine Learning (ML) models of Random Forest, Decision Tree, Vector Machine and K-neighbourhood. We divided all the predicted feature values into four subsets, and did hyperparameter optimisation for each ML model. The HST compartment occupant PTC prediction model trained by Random Forest model obtained 90.4% Accuracy (F1 macro = 0.889). Subsequent sensitivity analyses of the best predictive models were then performed using SHapley Additive explanation (SHAP) and data-based sensitivity analysis (DSA) methods. The development of a more accurate and operationally efficient thermal comfort prediction model for HST occupants allows for precise and detailed feedback to the HVAC system. Consequently, the HVAC system can make the most appropriate and effective air supply adjustments, leading to improved satisfaction rates for HST occupant thermal comfort and the avoidance of energy wastage caused by inaccurate and untimely predictive feedback.


Subject(s)
Machine Learning , Skin Temperature , Humans , Air Conditioning/instrumentation , Air Conditioning/methods , Heart Rate , Galvanic Skin Response , Thermosensing , Temperature , Male
17.
J Therm Biol ; 121: 103842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38608549

ABSTRACT

Mastitis is a global threat that challenges dairy farmers' economies worldwide. Sub-clinical mastitis (SCM) beholds the lion's share in it, as its visible clinical signs are not evident and are challenging to diagnose. The treatment of intramammary infection (IMI) demands antimicrobial therapy and subsequent milk withdrawal for a week or two. This context requires a non-invasive diagnostic tool like infrared thermography (IRT) to identify mastitis. It can form the basis of precision dairy farming. Therefore, the present study focuses on thermal imaging of the udder and teat quarters of Murrah buffaloes during different seasons to identify SCM and clinical mastitis (CM) cases using the Darvi DTL007 camera. A total of 30-45 lactating Murrah buffalo cows were screened out using IRT regularly throughout the year 2021-22. The IMI was further screened using the California mastitis test. The thermogram analysis revealed a significant difference (p < 0.01) in the mean values of the udder and teat skin surface temperature of Murrah buffaloes between healthy, SCM, and CM during different seasons. The mean values of udder skin surface temperature (USST) during different seasons ranged between 30.28 and 36.81 °C, 32.54 to 38.61 °C, and 34.32 to 40.02 °C among healthy, SCM, and CM-affected quarters. Correspondingly, the mean values of teat skin surface temperature (TSST) were 30.52 to 35.96 °C, 32.92 to 37.55 °C, and 34.51 to 39.05 °C, respectively. Further results revealed an increase (p < 0.01) in the mean values of USST during winter, summer, rainy, and autumn as 2.26, 4.04; 2.19, 3.35; 1.80, 3.21; and 1.45, 2.64 °C and TSST as 2.40, 3.99; 2.28, 3.26; 1.59, 3.09; and 1.68, 2.92 °C of SCM, CM-affected quarters to healthy quarters, respectively. The highest incidence of SCM was observed during autumn and CM during winter. Henceforth, irrespective of the seasons studied in the present study, IRT is an efficient, supportive tool for the early identification of SCM.


Subject(s)
Buffaloes , Mammary Glands, Animal , Seasons , Thermography , Animals , Female , Thermography/methods , Thermography/veterinary , Mastitis/veterinary , Mastitis/diagnosis , Skin Temperature
18.
Scand J Trauma Resusc Emerg Med ; 32(1): 35, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664809

ABSTRACT

BACKGROUND: Use of a vapor barrier in the prehospital care of cold-stressed or hypothermic patients aims to reduce evaporative heat loss and accelerate rewarming. The application of a vapor barrier is recommended in various guidelines, along with both insulating and wind/waterproof layers and an active external rewarming device; however, evidence of its effect is limited. This study aimed to investigate the effect of using a vapor barrier as the inner layer in the recommended "burrito" model for wrapping hypothermic patients in the field. METHODS: In this, randomized, crossover field study, 16 healthy volunteers wearing wet clothing were subjected to a 30-minute cooling period in a snow chamber before being wrapped in a model including an active heating source either with (intervention) or without (control) a vapor barrier. The mean skin temperature, core temperature, and humidity in the model were measured, and the shivering intensity and thermal comfort were assessed using a subjective questionnaire. The mean skin temperature was the primary outcome, whereas humidity and thermal comfort were the secondary outcomes. Primary outcome data were analyzed using analysis of covariance (ANCOVA). RESULTS: We found a higher mean skin temperature in the intervention group than in the control group after approximately 25 min (p < 0.05), and this difference persisted for the rest of the 60-minute study period. The largest difference in mean skin temperature was 0.93 °C after 60 min. Humidity levels outside the vapor barrier were significantly higher in the control group than in the intervention group after 5 min. There were no significant differences in subjective comfort. However, there was a consistent trend toward increased comfort in the intervention group compared with the control group. CONCLUSIONS: The use of a vapor barrier as the innermost layer in combination with an active external heat source leads to higher mean skin rewarming rates in patients wearing wet clothing who are at risk of accidental hypothermia. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT05779722.


Subject(s)
Cross-Over Studies , Emergency Medical Services , Hypothermia , Rewarming , Humans , Rewarming/methods , Male , Female , Adult , Emergency Medical Services/methods , Hypothermia/prevention & control , Skin Temperature/physiology , Young Adult , Cold Temperature
19.
Eur Eat Disord Rev ; 32(4): 700-717, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38446505

ABSTRACT

Eating disorders (ED) are serious psychiatric illnesses, with no everyday support to intervene on the high rates of relapse. Understanding physiological indices that can be measured by wearable sensor technologies may provide new momentary interventions for individuals with ED. This systematic review, searching large databases, synthesises studies investigating peripheral physiological (PP) indices commonly included in wearable wristbands (heart rate [HR], heart rate variability [HRV], electrodermal activity [EDA], peripheral skin temperature [PST], and acceleration) in ED. Inclusion criteria included: (a) full peer-reviewed empirical articles in English; (b) human participants with active ED; and (c) containing one of five wearable physiological measures. Kmet risk of bias was assessed. Ninety-four studies were included (Anorexia nervosa [AN; N = 4418], bulimia nervosa [BN; N = 916], binge eating disorder [BED; N = 1604], other specified feeding and eating disorders [OSFED; N = 424], and transdiagnostic [N = 47]). Participants with AN displayed lower HR and EDA and higher HRV compared to healthy individuals. Those with BN showed higher HRV, and lower EDA and PST compared to healthy individuals. Other ED and Transdiagnostic samples showed mixed results. PP differences are indicated through various assessments in ED, which may suggest diagnostic associations, although more studies are needed to validate observed patterns. Results suggest important therapeutic potential for PP in ED, and larger studies including diverse participants and diagnostic groups are needed to fully uncover their role in ED.


Subject(s)
Feeding and Eating Disorders , Heart Rate , Humans , Feeding and Eating Disorders/physiopathology , Heart Rate/physiology , Galvanic Skin Response/physiology , Wearable Electronic Devices , Skin Temperature/physiology
20.
J Cosmet Dermatol ; 23(7): 2427-2432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38497418

ABSTRACT

BACKGROUND: Intense pulsed light (IPL) is used for the treatment and improvement of various skin issues. However, patients often experience local skin burning and pain after IPL treatment. Cooling and analgesic measures are indispensable. AIMS: To investigate the clinical effect of thermal shock therapy on pain relief and reduction of adverse reactions during IPL therapy. PATIENTS/METHODS: A total of 60 female patients with facial photoaging who received IPL therapy were enrolled in the study. As a comparative split-face study, one side of the face was randomly selected as the control side. The other side was given thermal shock therapy before and after the IPL treatment immediately as analgesic side. The visual analog scale (VAS) was used to evaluate the pain degree of the patients. The telephone follow-ups regarding the occurrence of adverse reactions were conducted respectively on the 2nd day, 7th day, and 1 month after treatment. RESULTS: The VAS score and skin temperature of analgesia side was lower than that of control side at different stages of treatment. In terms of adverse reactions, the incidence of transient facial redness on the analgesic side was lower than that on the control side. Two patients showed slight secondary pigmentation on the control side, and the other patients showed no other adverse reactions on both sides. CONCLUSIONS: Thermal shock therapy assisted IPL therapy can reduce skin temperature during treatment, effectively relieve patients' pain, reduce the occurrence of adverse reactions caused by heat injury, and improve patients' comfort level.


Subject(s)
Intense Pulsed Light Therapy , Pain Measurement , Humans , Female , Intense Pulsed Light Therapy/adverse effects , Intense Pulsed Light Therapy/methods , Middle Aged , Adult , Skin Aging/radiation effects , Skin Temperature , Face , Pain Management/methods , Pain Management/adverse effects , Treatment Outcome , Pain, Procedural/etiology , Pain, Procedural/prevention & control , Pain, Procedural/diagnosis , Pain, Procedural/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...